• Tidak ada hasil yang ditemukan

Analisa Sistem Pendeteksian Warna Kulit dan Wajah Senyum dengan menggunakan metode Learning Vektor Quantization.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisa Sistem Pendeteksian Warna Kulit dan Wajah Senyum dengan menggunakan metode Learning Vektor Quantization."

Copied!
2
0
0

Teks penuh

(1)

i ABSTRAK

Pengenalan pola adalah disiplin ilmu yang bertujuan untuk mengklasifikasikan objek menjadi beberapa kategori atau kelas, pola adalah entitas yang terdefinisi dan dapat di identifikasikan melalui ciri-cirinya. Pengolahan citra digital adalah pemrosesan citra, khususnya dengan menggunakan Komputer sehingga citra itu kualitasnya menjadi baik dan menghasilkan informasi untuk tiap-tiap warnanya. Learning Vektor Quantization Suatu metode untuk melakukan pembelajaran pada lapisan kompetitif yang terawasi. Suatu lapisan kompetitif akan secara otomatis belajar untuk mengklasifikasikan vector-vektor input. Kelas-kelas yang didapatkan sebagai hasil hanya tergantung pada jarak antara vector-vektor input. Input pelatihan deteksi warna kulit dan wajah senyum di peroleh dari hasil pengolahan citra dengan metode Learning Vektor Quantization. Hasil penelitian yang diperoleh dalam penelitian deteksi warna kulit dan wajah senyum menggunakan Learning Vektor Quantization menunjukkan false positif rate sebesar 60% dan Detection Rate sebesar 40%. Untuk meningkatkan unjuk kerja dari deteksi warna kulit dan wajah senyum, dapat dilakukan dengan memberikan pelatihan lebih lanjut dengan tambahan data training yang lebih banyak dan bervariasi, sehingga sudah bisa digunakan untuk mengenali warna kulit dan wajah senyum karena sudah terlihat dengan semakin jelas.

Kata kunci: Citra, warna,kulit,wajah,senyum,Learning Vector Quantization.

(2)

ii

SKIN COLOR AND SMILING FACE DETECTION SYSTEM BY USING LEARNING VECTOR QUANTIZATION

ABSTRACT

Pattern recognition is a discipline that aims to classify objects into categories or classes. Pattern is an entity that is defined and identifiable through its distinctive characteristics. Digital image processing is image processing, in particular by using the computer so that it can generate good quality images and information for each value of each color. Learning Vector quantization is a method to perform learning in supervised competitive layer. A competitive layer will automatically learn to classify the input vectors. The classes obtained as the results only depend on the distance between the input vectors. Input of training of skin color and smiling face detection obtained from the image processing by using Learning Vector Quantization. The results obtained in the study of skin color and smiling face detection by using Learning Vector Quantization showed false positive rate of 60% and a detection rate of 40%. Improving the performance of skin color and smiling face detection can be done by providing further training with the varied and more numerous training data so that they can be used to identify skin color and smiling face as they can be seen more clearly.

Keywords: image, color, skin, face ,smile, Learning Vector Quantization

Referensi

Dokumen terkait

Penelitian ini bertujuan untuk menentukan keserasian warna kulit dengan warna busana secara otomatis, dengan membuat prioritas keserasian warna busana untuk masing-masing jenis

Generalisasi yang dihasilkan pada pengujian ini adalah sebesar 9.476% dengan rata-rata waktu pengujian (mulai dari akuisisi citra, deteksi wajah, sampai pengenalan wajah)

Penentuan wilayah wajah berdasarkan warna kulit dan dengan menggunakan metode template matching dapat menentukan wilayah wajah manusia pada citra berwarna dengan

Hasil pengujian untuk deteksi jenis kulit menggunakan metode discrete wavelet transform dan menggunakan klasifikasi backpropagation mendapatkan hasil tertinggi

[3] melakukan penelitian pengenalan wajah secara real time menggunakan metode Camshift dan LoGDCT2D, dimana dalam penelitiannya ini untuk melakukan deteksi dan

Dari beberapa penelitian yang telah dilakukan, diketahui bahwa masalah yang ditemui dalam deteksi kemerahan pada kulit wajah adalah ekstraksi kulit dengan warna

Penelitian ini bertujuan untuk memprediksi penyakit Tuberculosis Paru dengan menggunakan Learning Vector Quantization berdasarkan data rekam medis puskesmas kamonji kota

Dalam penelitian ini dengan menerapkan ruang warna YcbCr kita dapat mendeteksi wajah pada manusia dengan tingkat akurasi persentase yang tinggi dengan persentase precession 77%, Recal