• Tidak ada hasil yang ditemukan

resume04_2. 72KB Jun 04 2011 12:07:02 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "resume04_2. 72KB Jun 04 2011 12:07:02 AM"

Copied!
2
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

20

(2008), 289–325

Class invariants and cyclotomic unit groups

from special values of modular units

par

Amanda FOLSOM

R´esum´e. Dans cet article, nous obtenons des invariants de classe

et des groupes d’unit´es cyclotomiques en consid´erant des sp´eciali-sations d’unit´es modulaires. Nous construisons ces unit´es modu-laires `a partir de solutions d’´equations fonctionnelles deq -r´ecur-rence donn´ees par Selberg dans son travail g´en´eralisant les iden-tit´es de Rogers-Ramanujan. Commme corollaire, nous donnons une nouvelle preuve d’un r´esultat de Zagier et Gupta, originelle-ment consid´er´e par Gauss, `a propos des p´eriodes de Gauss. Ces r´esultats proviennent pour partie de la th`ese de l’auteur en 2006 [1] dans laquelle la structure de ces groupes d’unit´es modulaires et de leur groupe de classes de diviseurs cuspidaux associ´e est donn´ee en termes de produits de fonctionsLet compar´ee `a la formule clas-sique du nombre de classes relatives pour les corps cyclotomiques [1, 2].

Abstract. In this article we obtain class invariants and

cyclo-tomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher orderq-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, regarding the Gauss periods. These results comprise part of the author’s 2006 Ph.D. thesis [1] in which the structure of these modular unit groups and their associated cus-pidal divisor class groups are also characterized, and a cuscus-pidal divisor class number formula is given in terms of products ofL -functions and compared to the classical relative class number for-mula within the cyclotomic fields [1, 2].

References

[1] A. Folsom,Modular Units. UCLA Ph.D. Thesis, 2006.

[2] A. Folsom,Modular units, divisor class groups, and the q-difference equations of Selberg. Preprint, submitted.

(2)

290 AmandaFolsom

AmandaFolsom

Department of Mathematics University of California, Los Angeles Box 951555

Los Angeles, CA 90095-1555, USA E-mail:[email protected]

Referensi

Dokumen terkait

As in the case of CM-points on classical modular curves, CM- fake elliptic curves play a key role in the construction of class fields by means of special values of automorphic

For this purpose, we pro- pose to use the action of the Frobenius on torsion points of small order built with class invariants generalizing the classical Weber functions..

Si le rang de telles courbes vaut 1, nous d´eterminons la structure compl`ete du groupe de Mordell-Weil et nous trouvons tous les points entiers sur le mod`ele original de la

On the generation of the coefficient field of a newform by a single Hecke eigenvalue.. par Koopa Tak-Lun KOO, William STEIN et

Journal de Th´ eorie des Nombres de Bordeaux 16 (2004), 577–585.. The cuspidal torsion packet on hyperelliptic

Lately, in [1], the local reachability index has been characterized for a particular class of positive 2-D systems, which are a generalization of the systems presented in [2] and

These authors proved that the shock was characterized by the evolu- tion of a second class particle, which moved at the shock speed, and followed the characteristic lines and shocks

(See also a different approach in the unpublished manuscript [ 7 ].) For a Poisson manifold, the modular class coincides up to a factor 2 with the modular class of its cotangent