• Tidak ada hasil yang ditemukan

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR

N/A
N/A
Protected

Academic year: 2021

Membagikan "BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR"

Copied!
15
0
0

Teks penuh

(1)

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGA NUKLIR

RINGKASAN

Beberapa tipe Pembangkit Listrik Tenaga Nuklir (PLTN) adalah Reaktor Air Tekan (Pressurized Water Reactor, PWR), Reaktor Air Tekan Rusia (VVER), Reaktor Air Didih (Boiling Water Reactor, BWR), Reaktor Air Berat Pipa Tekan (CANDU), Reaktor Air Berat Pembangkit Uap (Steam Generating Heavy Water Reactor, SGHWR), Reaktor Pendingin Gas (Gas Cooled Reactor, GCR), Reaktor Gas Maju (Advanced Gas Reactor, AGR), Reaktor Gas Suhu Tinggi (High Temperatur Gas Reactor, HTGR), Reaktor Moderator Grafit Pendingin Air Didih (RBMK), Reaktor Pembiak Cepat (Fast Breeder Reactor, FBR).

URAIAN

1. Prinsip Kerja PLTN

Perbedaan cara kerja pembangkit listrik tenaga uap (PLTU) dengan pembangkit listrik tenaga nuklir (PLTN) ditunjukkan pada Gambar 1. Pada PLTU, di dalam ketel uap (boiler) minyak atau batu bara dibakar untuk membangkitkan uap dengan temperatur dan tekanan tinggi, kemudian uap ini disalurkan ke turbin untuk membangkitkan tenaga listrik. Dalam hal pembangkitan listrik, PLTU dan PLTN mempunyai prinsip yang sama.

Panas yang dihasilkan digunakan untuk membangkitkan uap dan kemudian uap disalurkan ke turbin untuk membangkitkan listrik. Yang berbeda dari kedua tipe pembangkit listrik ini adalah mesin pembangkit uapnya, yang satu berupa ketel uap dan yang lainnya berupa reaktor nuklir. Dalam reaktor nuklir PLTN, reaksi fisi berantai dipertahankan kontinuitasnya dalam bahan bakar sehingga bahan bakar menjadi panas. Panas ini kemudian ditransfer ke pendingin reaktor yang kemudian secara langsung atau tak langsung digunakan untuk membangkitkan uap. Pembangkitan uap langsung dilakukan dengan membuat pendingin reaktor (biasanya air biasa, H2O) mendidih dan menghasilkan uap. Pada pembangkitan uap tak langsung, pendingin reaktor (disebut pendingin primer) yang menerima panas dari bahan bakar disalurkan melalui pipa ke perangkat pembangkit uap.

Pendingin primer ini kemudian memberikan panas (menembus media dinding pipa) ke pendingin sekunder (air biasa) yang berada di luar pipa perangkat pembangkit uap untuk kemudian panas tersebut mendidihkan pendingin sekunder dan membangkitkan uap.

2. Tipe Reaktor PLTN

Beberapa tipe reaktor nuklir serta jenis bahan moderator dan pendingin yang digunakan diperlihatkan pada Tabel 1. Pada umumnya tipe reaktor nuklir dalam PLTN dibedakan berdasarkan komposisi dan konstruksi dari bahan moderator neutron dan bahan pendingin yang digunakan sehingga digunakan sebutan seperti reaktor gas, reaktor air ringan, reaktor air berat (air ringan: H2O; air berat: D2O; D adalah salah satu isotop hidrogen, yaitu deuterium 2H1). Selain itu faktor kondisi air pendingin juga menjadi pertimbangan penggolongan tipe reaktor nuklir dalam PLTN. Jika air pendingin dalam kondisi mendidih disebut reaktor air didih, jika tak mendidih (atau tidak diizinkan mendidih, dengan memberi tekanan secukupnya pada pendingin) disebut reaktor air tekan. Reaktor nuklir dengan temperatur pendingin sangat tinggi (di atas 800 oC) disebut reaktor gas temperatur tinggi. Kecepatan neutron rata- rata dalam reaktor yang dihasilkan dari reaksi fisi juga dipakai untuk menggolongkan tipe reaktor. Berdasarkan kecepatan neutron rata-rata dalam teras, ada reaktor cepat dan reaktor termal (neutron dengan kecepatan relatif lambat sering disebut sebagai neutron termal). Dalam Tabel 2 diperlihatkan beberapa PLTN yang beroperasi di dunia dengan penggolongan tipe reaktornya.

3. Reaktor Air Ringan (Light Water Reactor, LWR)

Di antara PLTN yang masih beroperasi di dunia, 80 % adalah PLTN tipe Reaktor Air Ringan (LWR). Reaktor ini pada awalnya dirancang untuk tenaga penggerak kapal selam angkatan laut Amerika. Dengan modifikasi secukupnya dan peningkatan daya seperlunya kemudian digunakan dalam PLTN. PLTN tipe ini dengan daya terbesar yang masih beroperasi pada saat ini (tahun 2003) adalah PLTN Chooz dan Civaux di Perancis yang mempunyai daya 1500 MWe, dari kelas N-4 Perancis. Reaktor Air Ringan dapat dibedakan menjadi dua golongan yaitu Reaktor Air Didih dan Reaktor Air Tekan (pendingin tidak mendidih), kedua golongan ini menggunakan air ringan sebagai bahan pendingin dan moderator.

Pada tipe reaktor air ringan sebagai bahan bakar digunakan uranium dengan pengayaan rendah sekitar 2% - 4%;

(2)

bukan uranium alam karena sifat air yang menyerap neutron. Kemampuan air dalam memoderasi neutron (menurunkan kecepatan/ energi neutron) sangat baik, maka jika digunakan dalam reaktor (sebagai moderator neutron dan pendingin) ukuran teras reaktor menjadi lebih kecil (kompak) bila dibandingkan dengan reaktor nuklir tipe reaktor gas dan reaktor air berat.

3.1 Reaktor Air Tekan (Pressurized Water Reactor, PWR)

Pada PLTN tipe PWR, air sistem pendingin primer masuk ke dalam bejana tekan reaktor pada tekanan tinggi dan temperatur lebih kurang 290 oC. Air bertekanan dan bertemperatur tinggi ini bergerak pada sela-sela batang bahan bakar dalam perangkat bahan bakar ke arah atas teras sambil mengambil panas dari batang bahan bakar, sehingga temperaturnya naik menjadi sekitar 320 oC. Air pendingin primer ini kemudian disalurkan ke perangkat pembangkit uap (lewat sisi dalam pipa pada perangkat pembangkit uap), di perangkat ini air pendingin primer memberikan energi panasnya ke air pendingin sekunder (yang ada di sisi luar pipa pembangkit uap) sehingga temperaturnya naik sampai titik didih dan terjadi penguapan. Uap yang dihasilkan dari penguapan air pendingin sekunder tersebut kemudian dikirim ke turbin untuk memutar turbin yang dikopel dengan generator listrik.

Perputaran generator listrik akan menghasilkan energi listrik yang disalurkan ke jaringan listrik. Air pendingin primer yang ada dalam bejana reaktor dengan temperatur 320 oC akan mendidih jika berada pada tekanan udara biasa (sekitar satu atmosfer). Agar pendingin primer ini tidak mendidih, maka sistem pendingin primer diberi tekanan hingga 157 atm. Karena adanya pemberian tekanan ini maka bejana reaktor sering disebut sebagai bejana tekan atau bejana tekan reaktor. Pada reaktor tipe PWR, air pendingin primer yang membawa unsur-unsur radioaktif dialirkan hanya sampai ke pembangkit uap, tidak sampai turbin, oleh karena itu pemeriksaan dan perawatan sistem sekunder (komponen sistem sekunder: turbin, kondenser, pipa penyalur, pompa sekunder dll.) menjadi mudah dilakukan. Konstruksi bejana reaktor tipe PWR ditunjukkan pada Gambar 2, dan perubahan teknologi PWR ditunjukkan pada Gambar 3.

Pada prinsipnya PWR yang dikembangkan oleh Rusia (disebut VVER) sama dengan PWR yang dikembangkan oleh negara-negara barat. Perbedaan konstruksi terdapat pada bentuk penampang perangkat bahan bakar VVER (berbentuk segi enam) dan letak pembangkit uap VVER (horisontal).

Pada reaktor tipe PWR, seperti yang banyak beroperasi saat ini, peralatan sistem primer saling dihubungkan membentuk suatu untai (loop). Jika peralatan sistem primer dihubungkan oleh dua pipa penghubung utama yang diperpendek, dan kemudian dimasukkan dalam bejana reaktor maka sistem seperti ini disebut reaktor setengah terintegrasi (setengah modular). Tetapi jika seluruh sistem primer disatukan dan dimasukkan ke dalam bejana reaktor maka disebut reaktor terintegrasi (modular), lihat Gambar 4. Reaktor setengah modular ataupun modular tidak dikembangkan untuk PLTN berdaya besar.

3.2 Reaktor Air Didih (Boiling Water Reactor, BWR)

Karakteristika unik dari reaktor air didih adalah uap dibangkitkan langsung dalam bejana reaktor dan kemudian disalurkan ke turbin pembangkit listrik. Pendingin dalam bejana reaktor berada pada temperatur sekitar 285 oC dan tekanan jenuhnya sekitar 70 atm. Reaktor ini tidak memiliki perangkat pembangkit uap tersendiri, karena uap dibangkitkan di bejana reaktor. Karena itu pada bagian atas bejana reaktor terpasang perangkat pemisah dan pengering uap, akibatnya konstruksi bejana reaktor menjadi lebih rumit. Konstruksi reaktor BWR diperlihatkan pada Gambar 5, sedangkan pada Gambar 6 ditunjukan perkembangan teknologi reaktor BWR.

4. Reaktor Air Berat (Heavy Water Reactor, HWR)

Dalam hal kemampuan memoderasi neutron, air berat berada pada urutan berikutnya setelah air ringan, tetapi air berat hampir tidak menyerap neutron. Oleh karena itu jika air berat dipakai sebagai moderator, maka dengan hanya menggunakan uranium alam (tanpa pengayaan) reaktor dapat beroperasi dengan baik. Bejana reaktor (disebut kalandria) merupakan tangki besar yang berisi air berat, di dalamnya terdapat pipa kalandria yang berisi perangkat bahan bakar. Tekanan air berat biasanya berkisar pada tekanan satu atmosfer, dan temperaturnya

(3)

dijaga agar tetap di bawah 100 oC. Akan tetapi pendingin dalam pipa kalandria mempunyai tekanan dan temperatur yang tinggi, sehingga konstruksi pipa kalandria berwujud pipa tekan yang tahan terhadap tekanan dan temperatur yang tinggi.

4.1 Reaktor Air Berat Tekan (Pressurized Heavy Water Reactor, PHWR)

CANadian Deuterium Uranium Reactor (CANDU) adalah suatu PLTN yang tergolong pada tipe reaktor pendingin air berat tekan dengan pipa tekan. Reaktor ini merupakan reaktor air berat yang banyak digunakan. Bahan bakar yang digunakan adalah uranium alam. Kanada menjadi pelopor penyebaran reaktor tipe ini di seluruh dunia. Gambar konstruksi reaktor CANDU Pickering-1 ditunjukkan pada Gambar 7.

4.2 Reaktor Air Berat Pendingin Gas (Heavy Water Gas Cooled Reactor, HWGCR)

HWGCR atau sering dibalik GCHWR adalah suatu tipe reaktor nuklir yang menggunakan air berat sebagai bahan moderatornya, sehingga pemanfaatan neutronnya optimal. Gas pendingin dinaikkan temperaturnya sampai pada tingkat yang cukup tinggi sehingga efisiensi termal reaktor ini dapat ditingkatkan. Tetapi oleh karena persoalan pengembangan bahan kelongsong yang tahan terhadap temperatur tinggi dan paparan radiasi lama belum terpecahkan hingga sekarang, maka pada akhirnya di dunia hanya terdapat 4 reaktor tipe ini. Di negara Perancis reaktor tipe ini dibangun, tetapi sebagai bahan kelongsong tidak digunakan berilium melainkan stainless steel.

4.3 Reaktor Air Berat Pembangkit Uap (Steam Generated Heavy Water Reactor, SGHWR)

Reaktor ini sering disebut Light Water Cooled Heavy Water Reactor (LWCHWR) dan hanya ada di Pusat Penelitian Winfrith Inggris. Reaktor berdaya 100 MWe ini merupakan prototipe reaktor pembangkit daya tipe SGHWR, dan beroperasi dari tahun 1968 sampai tahun 1990. Pada waktu itu reaktor SGHWR sempat menjadi suatu fokus pengembangan di Inggris, tetapi oleh karena persoalan ekonomi maka tidak dikembangkan lebih lanjut.

Sementara itu Jepang mengembangkan reaktor air berat yang disebut Advanced Thermal Reactor (ATR). Jepang membangun reaktor ATR Fugen berdaya 165 MWe. Keunikan dari reaktor ATR ini adalah, bahan bakar dapat terbuat dari uranium dengan pengayaan rendah atau uranium alam yang diperkaya dengan plutonium. Pada saat bahan bakar terbakar, penyusutan plutonium di bahan bakar sedikit sekali. Reaktor prototipe Fugen dioperasikan sejak tahun 1979, tetapi karena terjadi perubahan kebijakan dari pemerintah, sampai saat ini reaktor ATR komersial belum pernah terwujud.

Reaktor Fugen beroperasi hingga tahun 2002 dan pada tahun berikutnya direncanakan untuk didekomisioning.

5. Reaktor Grafit

5.1 Reaktor Pendingin Gas (Gas Cooled Reactor, GCR)

Grafit sebagai bahan moderator sudah digunakan oleh ilmuwan Enrico Fermi sejak reaktor nuklir pertama Chicago Pile No.1 (CP 1). Grafit terkenal murah dan dapat diperoleh dalam jumlah besar.

Plutonium (Pu-239) yang digunakan pada bom atom yang dijatuhkan pada saat Perang Dunia II dibuat di reaktor grafit. Setelah perang dunia berakhir reaktor GCR adalah salah satu tipe reaktor yang didesain-ulang di Inggris maupun Perancis. Reaktor ini menggunakan bahan bakar logam uranium alam, moderator grafit pendingin gas karbondioksida. Bahan kelongsong terbuat dari paduan magnesium (Magnox), oleh karena itu reaktor ini disebut sebagai reaktor Magnox. Reaktor Magnox mempunyai pembangkitan daya listrik cukup besar dan efisiensi ekonomi yang baik. Raktor tipe modifikasi Magnox pernah dibangun di Jepang pada tahun 1967 sebagai PLTN Tokai. Setelah beroperasi selama 30 tahun reaktor ini ditutup pada tahun 1998.

5.2 Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR)

Di Inggris fokus pengembangan teknologi PLTN bergeser ke reaktor berbahan bakar uranium dengan

(4)

pengayaan rendah, yang memiliki kerapatan daya dan efisiensi termal yang tinggi. Unjuk kerja reaktor ini terbukti dapat diperbaiki. Di Inggris reaktor ini hanya sempat dibangun sebanyak 14 buah saja, karena setelah pertengahan tahun 1980 kebijakan Pemerintah Inggris berubah.

5.3 Reaktor Pendingin Gas Suhu Tinggi (High Temperatur Gas-cooled Reactor, HTGR)

Reaktor ini menggunakan gas helium sebagai pendingin. Karakteristika menonjol yang unik dari reaktor HTGR ini adalah konstruksi teras didominasi bahan moderator grafit, temperatur operasi dapat ditingkatkan menjadi tinggi dan efisiensi pembangkitan listrik dapat mencapai lebih dari 40 %.

Terdapat 3 bentuk bahan bakar dari HTGR, yaitu dapat berupa: (a) Bentuk batang seperti reaktor air ringan (dipakai di reaktor Dragon dan Peach Bottom); (b) Bentuk blok, di mana di dalam lubang blok grafit yang berbentuk segi enam di masukkan batang bahan bakar (dipakai di reaktor Fort St. Vrain (lihat Gambar 8), MHTGR, HTTR); (c) Bentuk bola (peble bed), di mana butir bahan bakar bersalut didistribusikan dalam bola grafit (dipakai di reaktor AVR, THTR-300).

5.4 Reaktor Pipa Tekan Air Didih Moderator Grafit (Light Water Gas-cooled Reactor, LWGR)

RBMK adalah reaktor tipe ini yang hanya dikembangkan di Rusia. Reaktor ini tidak menggunakan tangki kalandria (berisi air berat) seperti reaktor tipe SGHWR tetapi menggunakan grafit sebagai moderator, oleh karena itu dimensi reaktor menjadi besar. Sekitar 1700 buah pipa tekan menembus susunan blok grafit. Di dalam pipa tekan diisi batang bahan bakar di mana di sekelilingnya mengalir air ringan yang mengambil panas dari batang bahan bakar sehingga mendidih. Uap yang terbentuk dikirim ke turbin pembangkit listrik untuk memutar turbin dan membangkitkan listrik. Salah satu reaktor tipe ini yang terkenal karena mengalami kecelakaan adalah reaktor Chernobyl No.4 yang merupakan reaktor tipe RBMK-1000. Salah satu kegagalan desain pada reaktor tipe RBMK yang dianggap sebagai kambing hitam terjadinya kecelakaan Chernobyl adalah tidak tersedianya bejana pengungkung reaktor.

6. Reaktor Cepat (Fast Reactor, FR), Reaktor Pembiak Cepat (Liquid Metal Fast Breeder Reactor, LMFBR) Seperti tersirat dalam nama tipe reaktor ini, neutron cepat yang dihasilkan dari reaksi fisi dengan kecepatan tinggi dikondisikan sedemikian rupa sehingga diserap oleh uranium-238 menghasilkan plutonium-239. Dengan kata lain di dalam reaktor dapat dibiakkan (dibuat) unsur plutonium. Rapat daya dalam teras reaktor cepat sangat tinggi, oleh karena itu sebagai pendingin biasanya digunakan bahan logam natrium cair atau logam cair campuran natrium dan kalium (NaK) yang mempunyai kemampuan tinggi dalam mengambil panas dari bahan bakar.

Konstruksi reaktor pembiak cepat terdiri dari pendingin primer yang berupa bahan logam cair mengambil panas dari bahan bakar dan kemudian mengalir ke alat penukar panas-antara (intermediate heat exchanger), selanjutnya energi panas ditransfer ke pendingin sekunder dalam alat penukar panas-antara ini. Kemudian pendingin sekunder (bahan pendingin adalah natrium cair atau logam cair natrium) yang tidak mengandung bahan radioaktif akan mengalir membawa panas yang diterima dari pendingin primer menuju ke perangkat pembangkit uap, dan memberikan panas ke pendingin tersier (air ringan) sehingga temperaturnya meningkat dan mendidih (proses pembangkitan uap). Uap yang dihasilkan selanjutnya dialirkan ke turbin untuk memutar generator listrik yang dikopel dengan turbin.

Komponen sistem primer dari reaktor pembiak cepat terdiri dari bejana reaktor, pompa sirkulasi primer, alat penukar panas-antara. Komponen ini dirangkai oleh pipa penyalur pendingin membentuk suatu untai (loop), karena itu reaktor seperti ini digolongkan dalam kelas reaktor untai. Apabila seluruh komponen sistem primer di atas semuanya dimasukkan ke dalam bejana reaktor, maka reaktor pembiak cepat seperti ini digolongkan dalam kelas reaktor tangki atau reaktor kolam. Contoh reaktor pembiak cepat tipe reaktor untai adalah reaktor prototipe Monju di Jepang, sedangkan untuk tipe reaktor kolam adalah reaktor Super Phenix di Perancis yang sudah menjadi reaktor komersial (lihat Gambar 9). Reaktor Cepat Eropa (Europian Fast Reactor, EFR) yang secara intensif dikembangkan oleh negara-negara Eropa diharapkan akan mulai masuk pasar komersial pada tahun 2010.

TABEL DAN GAMBAR:

(5)

Tabel 1. Komposisi pendingin dan moderator reaktor pada suatu reaktor prototipe

(6)

Tabel 2. Kontribusi berbagai tipe reaktor yang beroperasi di dunia

(7)

Gambar 1. Perbedaan prinsip kerja PLTU dan PLTN

Gambar 2. Diskripsi konstruksi dalam bejana tekan PWR

(8)
(9)

Gambar 3. Transisi perkembangan teknologi PWR

(10)

Gambar 4. Prototipe PWR: tipe untai, tipe setengah modular, tipe modular

(11)

Gambar 5. Diskripsi konstruksi di dalam bejana tekan BWR

(12)

Gambar 6. Transisi teknologi BWR

(13)

Gambar 7. Diskripsi konstruksi reaktor CANDU (diwakili oleh reaktor Pickering-1)

(14)

Gambar 8. Gambar potongan tampang lintang reaktor FSV

(15)

Gambar 9. Konstruksi dari FBR komersial Super Phenix

Gambar

Tabel 1. Komposisi pendingin dan moderator reaktor pada suatu reaktor prototipe
Tabel 2. Kontribusi berbagai tipe reaktor yang beroperasi di dunia
Gambar 1. Perbedaan prinsip kerja PLTU dan PLTN
Gambar 3. Transisi perkembangan teknologi PWR
+7

Referensi

Dokumen terkait

Jika banyak siswa yang gemar volly 75 orang, maka banyak siswa yang gemar catur

Variabel askes sebagai kepemilikan asuransi kesehatan oleh individu pada hasil regresi IV sebelum ditambahkan variabel kontrol individu, rumah tangga dan indikator komunitas

Di antara mudharat yang timbul jika seseorang tidak minta izin kepada penghuni rumah adalah bahwa hal itu akan menimbulkan kecurigaan dari tuan rumah, bahkan bisa-bisa

Karena kenyataan itu, mungkin kita merasa bahwa kaum wanita tidak mempunyai tempat atau pelayanan dalam jemaat (gereja) Tuhan. Meskipun demikian, Firman

Pisang memiliki kandungan vitamin B6 yang dapat membantu dalam mencegah penurunan kognitif dan perubahan suasana hati pada seseorang, terutama pada wanita yang sedang

Kredit yg diberikan atas dasar jaminan berupa benda tidak bergerak; 2). Surat pernyataan berutang untuk jangka panjang yg berisi ketentuan bahwa kreditor dapat memindahkan

| Jika cakap dan memenuhi syarat-syarat, menurut lowongan, | dapat diangkat menjadi Inspektur (golongan

Ekstraksi atau pemisahan residu pestisida dari bahan utama yang dianalisis (bagian tumbuhan, residu pestisida dari bahan utama yang dianalisis (bagian tumbuhan, tanah, air