• Tidak ada hasil yang ditemukan

Jenis jenis Generator DC

N/A
N/A
Protected

Academic year: 2018

Membagikan "Jenis jenis Generator DC"

Copied!
36
0
0

Teks penuh

(1)

GENERATOR DC

GENERATOR DC

Cr e a t e d By

Achmad Gunawan

0906602364

Adhitya Iskandar P

y

0906602370

Adi Wijayanto

906602383

Arief Kurniawan

0906602446

(2)

Generator DC / Arus Searah :

Generator DC / Arus Searah :

Generator DC / Arus Searah :

Generator DC / Arus Searah :

1.

Pengertian Generator DC

2

Bagian-bagian / Struktur Generator DC

2.

Bagian bagian / Struktur Generator DC

3.

Prinsip Kerja Generator DC

4.

Reaksi Jangkar pada Generator DC

5

Jenis jenis Generator DC

5.

Jenis-jenis Generator DC

6.

Efisiensi Generator DC

7.

Kerja Paralel Generator DC

K

l

(3)

1 Definisi Generator

1 Definisi Generator

1. Definisi Generator

1. Definisi Generator

y

Generator

ialah suatu mesin yang mengubah tenaga

mekanis

menjadi

tenaga

g

listrik

.

GENERATOR

Energi Mekanis

Energi Listrik

y

Tenaga mekanis : memutar kumparan kawat penghantar dalam medan

magnet

ataupun

sebaliknya memutar magnet diantara kumparan

kawat penghantar.

p

g

y

Tenaga listrik yang dihasilkan oleh generator tersebut adalah

arus

searah (DC)

atau

arus bolak-balik (AC)

, hal ini tergantung dari susunan

atau konstruksi dari generator, serta tergantung dari sistem

bil

pengambilan arusnya.

(4)

2

2

B i

B i

b i

b i //St kt

St kt

G

G

t

t

DC

DC

2.

(5)

1.

ROTOR : bagian Generator DC yang berputar

Poros

Inti

Inti

Komutator

Kumparan/Lilitan

2.

STATOR : bagian Generator DC yang diam

Kerangka

Kutub Utama dan Belitan

Kutub Bantu dan Belitan

Kutub Bantu dan Belitan

Bantalan dan Sikat

3.

CELAH UDARA : ruangan antara Stator dan Rotor

(6)

3 Prinsip Kerja Generator DC

3 Prinsip Kerja Generator DC

3. Prinsip Kerja Generator DC

3. Prinsip Kerja Generator DC

Teori yang mendasari terbentuknya GGL induksi pada generator ialah

Pe r coba a n Fa r a da y

.

Pe r coba a n Fa r a da y membuktikan bahwa pada sebuah

kumparan akan dibangkitkan GGL Induksi apabila jumlah

garis gaya yang diliputi oleh kumparan berubah-ubah.

g

g y y

g

p

p

Ada 3 hal pok ok terkait dengan GGL Induksi ini, yaitu :

1

Adanya flux magnet yang dihasilkan oleh kutub-kutub magnet

1.

Adanya flux magnet yang dihasilkan oleh kutub-kutub magnet.

2.

Adanya kawat penghantar yang merupakan tempat terbentuknya

EMF.

3.

Adanya perubahan flux magnet yang melewati kawat penghantar

listrik.

(7)

PRINSIP KERJA GENERATOR DC

PRINSIP KERJA GENERATOR DC

B B

y

Pada gambar Generator DC Sederhana dengan sebuah penghantar kutub

tersebut

,

dengan memutar rotor ( penghantar ) maka pada penghantar akan

timbul EMF.

y

Kumparan ABCD terletak dalam medan magnet sedemikian rupa sehingga sisi

A-B dan C-D terletak tegak lurus pada arah fluks magnet.

A B dan C D terletak tegak lurus pada arah fluks magnet.

y

Kumparan ABCD diputar dengan kecepatan sudut yang tetap terhadap sumbu

putarnya yang sejajar dengan sisi A-B dan C-D.

y

GGL induksi yang terbentuk pada sisi A-B dan sisi C-D besarnya sesuai dengan

perubahan fluks magnet yang dipotong kumparan ABCD tiap detik sebesar :

(8)

4. Reaksi Jangkar pada Generator DC

4. Reaksi Jangkar pada Generator DC

4. Reaksi Jangkar pada Generator DC

4. Reaksi Jangkar pada Generator DC

y

Sikat berada di tengah t egak lurus

fluks. Jangkar dalam keadaan diam

Î

Maka : E=0 dan I

a

=0

y

Kemudian jangkar diputar searah jarum jam

Î

maka : E

0 , I

a

0 ,

Φ

=f(I

a

). Arah fluks t egak lurus

fluks medan, disebut fluks lintang.

y

Sikat tidak berada t egak lurus

fluks magnet, maka pada sikat timbul

percikan bunga api karena perpindahan komutasi tegangan

0.

p

g

p

p

p

g

g

y

Cara mengatasi bergesernya garis netral adalah

dipasang kutub bantu

yang arah medannya melawan reaksi jangkar.

y

atau dipasang belitan kompensasi yang akan menimbulkan medan

atau dipasang belitan kompensasi yang akan menimbulkan medan

(9)

5 Jenis

5 Jenis--jenis Generator DC

jenis Generator DC

5. Jenis

5. Jenis jenis Generator DC

jenis Generator DC

A G

t

D C d

t t

i

h

A. Ge n e r a t or D C de n ga n pe n gu a t t e r pisa h

B. Ge n e r a t or D C de n ga n pe n gu a t se n dir i

a . Ge n e r a t or D C Sh u n t

b. Ge n e r a t or D C Se r i

c. Ge n e r a t or D C Kom pon ( ca m pu r a n )

(10)

A.

A. Ge n e r a t or D C

Ge n e r a t or D C de n ga n

de n ga n pe n gu a t

pe n gu a t t e r pisa h

t e r pisa h

Generator DC dengan penguat terpisah yaitu bila

Generator DC dengan penguat terpisah yaitu bila

arus kemagnetan diperoleh dari sumber tenaga

listrik arus searah di luar generator.

Generator

Generator

DC

DC

dengan

dengan

penguat

penguat

terpisah

terpisah

hanya

hanya

dipakai

dalam

keadaan

tertentu.

Dengan

terpisahnya

sumber

arus

kemagnetan

dari

generator, berarti besar kecilnya arus kemagnetan

tid k

t

h

l h

il i

il i

t

tidak

terpengaruh

oleh

nilai-nilai

arus

ataupun

(11)

B.

B. Ge n e r a t or D C

Ge n e r a t or D C de n ga n

de n ga n pe n gu a t

pe n gu a t se n dir i

se n dir i

y

Disebut sebagai Generator DC dengan penguat

y

Disebut sebagai Generator DC dengan penguat

sendiri, bila arus kemagnetan bagi kutub-kutub

magnet berasal dari generator DC itu sendiri.

y

Pengaruh nilai-nilai tegangan dan arus generator

terhadap arus penguat tergantung cara bagaimana

terhadap arus penguat tergantung cara bagaimana

hubungan lilitan penguat magnet dengan lilitan

jangkar.

(12)

6 Efisiensi Generator DC

6 Efisiensi Generator DC

6. Efisiensi Generator DC

6. Efisiensi Generator DC

a . Ru gi- r u gi Te m ba ga :

Rugi-rugi Jangkar,

g

g

g

,

Pj

j

= Ia . Ra

Watt

Rugi-rugi Shunt,

Psh

= Ish . Rsh

Watt

Rugi-rugi Seri,

Ps

= Is . Rs

Watt

b Ru gi r u gi I n t i :

b. Ru gi- r u gi I n t i :

Rugi-rugi Hysterisis

Rugi-rugi Eddy current

c. Ru gi- r u gi M e k a n is :

Rugi-rugi gesekan poros

Rugi-rugi angin akibat putaran jangkar

Rugi-rugi gesekan akibat gesekan sikat dengan

(13)

Diagram

Diagram aliran

aliran daya

daya generator DC

generator DC

Daya Masuk

y

Daya yang

Daya keluar generator

mekanis

(P

m

)

y y

g

dibangkitkan

jangkar (P

j

)

= E. I

a

(watt)

Daya keluar generator

(P

out

)

= V.I (watt)

Rugi besi

tembaga

Rugi besi

dan

gesekan

tembaga

total

(14)

Perhitungan

Perhitungan Efisiensi

gg

Efisiensi Pada

Pada Generator DC

Generator DC

y

Rugi besi dan gesekan,

Pg = Pm – Pj

y

Rugi tembaga total,

Pt = Pj - Pout

Efi i

i k

i

y

Efisiensi mekanis,

y

Efisiensi listrik

x

100

%

P

j

=

η

y

Efisiensi listrik,

y

Efisiensi total,

(15)

KERJA PARALEL GENERATOR DC

KERJA PARALEL GENERATOR DC

JJ

™

Beberapa generator DC dapat kita operasikan secara paralel.

Dengan tujuan untuk menjaga kontinuitas pasokan daya listrik dan

Dengan tujuan untuk menjaga kontinuitas pasokan daya listrik, dan

memasok

beban

yang

cukup

besar

melebihi

kapasitas

yang

mungkin dipasok oleh satu generator saja.

™

syarat-syarat pengoperasian paralel generator :

Terminal-terminal generator harus dihubungkan dengan

kutub-kutub yang sama polaritasnya.

Tegangan kerja generator sama. Jika 2 generator / lebih diparalel

maka arusnya menjadi ; I

1

+ I

2

= I

t t l

maka arusnya menjadi ; I

g1

+ I

g2

I

total

(16)

Contoh

Contoh ::

Contoh

Contoh ::

Sebuah generator shunt 100 Kw, 250 V, pada jangkar diinduksikan tegangan 285

V,dengan rated load.

g

y

Tentukan tahanan jangkar dan VR jika arus medan shunt 6 A dan tegangan tanpa

beban 264 V

P = VI

IL = P = 100.1000 = 400 A

V

250

Ia = IL + If = 400 + 6 = 406 A

Ea = V + IaRa

285 = 250 + 406Ra

Ra = 0.086 ohm

VR = VNL – VFL = 264 – 250 x 100 % = 5.6 %

(17)

Kesimpulan

Kesimpulan

Kesimpulan

Kesimpulan

y

Ge n e r a t or

ialah suatu mesin yang mengubah tenaga m ekanis

menjadi tenaga list rik

j

g

.

y

Bagian utama dari Generator yaitu Komutator Stator dan Celah

udara.

y

GGL Induksi terbentuk sesuai rumus dibawah ini:

( )

Volt

dt

d

N

t

E

=

φ

(18)

MAKALAH TEKNIK TENAGA LISTRIK

“DC Generator”

Disusun oleh :

1. Achmad Gunawan 0906602364 2. Adhitya Iskandar P 0906602370 3. Adi Wijayanto 0906602383 4. Arief Kurniawan 0906602446

EKSTENSI TEKNIK ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS INDONESIA

2010

(19)

2

 

 

 

I. DEFINISI GENERATOR DC

Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:

1. Generator penguat terpisah 2. Generator shunt

3. Generator kompon

Konstruksi Generator DC

Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjuk-kan gambar potongan melintang konstruksi generator DC.

Gambar 1. Konstruksi Generator DC

(20)

Gambar 2. Struktur Generator DC

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

II. PRINSIP KERJA GENERATOR DC

Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday :

Dimana : N = Jumlah Lilitan

= Fluksi Magnet

e = Tegangan Imbas, GGL (Gaya Gerak Listrik)

Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu.

Jadi syarat untuk dapat dibangkitkan GGL adalah :

• harus ada konduktor ( hantaran kawat )

(21)

4

 

 

 

• harus ada gerak atau perputaran dari konduktor dalam medan, atau ada fluksi yang berubah yang memotong konduktor itu

Gambar 3. Prinsip kerja Generator DC

Keterangan gambar :

• Pada gambar Generator DC Sederhana dengan sebuah penghantar kutub tersebut,

dengan memutar rotor ( penghantar ) maka pada penghantar akan timbul EMF.

• Kumparan ABCD terletak dalam medan magnet sedemikian rupa sehingga sisi A-B dan C-D terletak tegak lurus pada arah fluks magnet.

• Kumparan ABCD diputar dengan kecepatan sudut yang tetap terhadap sumbu putarnya yang sejajar dengan sisi A-B dan C-D.

• GGL induksi yang terbentuk pada sisi A-B dan sisi C-D besarnya sesuai dengan perubahan fluks magnet yang dipotong kumparan ABCD tiap detik sebesar :

Untuk menentukan arah arus pada setiap saat, berlaku pada kaidah tangan kanan :

• ibu jari : gerak perputaran

• jari telunjuk : medan magnetik kutub utara dan selatan

• jari tengah : besaran galvanis tegangan U dan arus I

(22)

Untuk perolehan arus searah dari tegangan bolak-balik, meskipun tujuan utamanya adalah pembangkitan tegangan searah, tampak bahwa tegangan kecepatan yang dibangkitkan pada kumparan jangkar merupakan tegangan bolak-balik. Bentuk gelom-bang yang berubah-ubah tersebut karenanya harus disearahkan.

Untuk mendapatkan arus searah dari arus bolak balik dengan menggunakan

• Saklar

• Komutator

• Dioda

Sistem Saklar

Saklar berfungsi untuk menghubungsingkatkan ujung-ujung kumparan. Prinsip kerjanya adalah sebagai berikut :

Bila kumparan jangkar berputar, maka pada kedua ujung kumparan akan timbul tegangan yang sinusoida. Bila setengah periode tegangan positif saklar di hubungkan, maka tegangan menjadi nol. Dan bila saklar dibuka lagi akan timbul lagi tegangan. Begitu seterusnya setiap setengah periode tegangan saklar dihubungkan, maka akan di hasilkan tegangan searah gelombang penuh.

Sistem Komutator

Komutator berfungsi sebagai saklar, yaitu untuk menghubungsingkatkan kumparan jangkar. Komutator berupa cincin belah yang dipasang pada ujung kumparan jangkar.Bila kumparan jangkar berputar, maka cincin belah ikut berputar. Karena kumparan berada dalam medan magnet, akan timbul tegangan bolak balik sinusoidal.

(23)

6

 

 

 

Gambar 4. Efek Komutasi

Sistem Dioda

Dioda adalah komponen pasif yang mempunyai sifat-sifat sebagai berikut:

• Bila diberi prasikap maju (forward bias) bisa dialiri arus.

• Bila diberi prasikap balik (reverse bias) dioda tidak akan dialiri arus.

Berdasarkan bentuk gelombang yang dihasilkan, dioda dibagi dalam:

• Half Wave Rectifier (penyearah setengah gelombang)

• Full Wave Rectifier (penyearah satu gelombang penuh)

III. KARAKTERISTIK GENERATOR ARUS SEARAH

Medan magnet pada generator dapat dibangkitkan dengan dua cara yaitu :

• dengan magnet permanen

• dengan magnet remanen

Generator listrik dengan magnet permanen sering juga disebut magneto dynamo. Karena banyak kekurangannya, maka sekarang jarang digunakan. Sedangkan generator dengan magnet remanen menggunakan medan magnet listrik, mempunyai kelebihan-kelebihan yaitu :

(24)

Pada generator arus searah berlaku hubungan-hubungan sebagai berikut :

Dimana : Ea = GGL yang dibangkitkan pada jangkar generator = Fluks per kutub

z = Jumlah penghantar total n = Kecepatan putar

e = Jumlah hubungan paralel

Bila(Konstanta), maka :

Berdasarkan cara memberikan fluks pada kumparan medannya, generator arus searah dapat dikelompokkan menjadi 2 yaitu:

1. Generator berpenguatan bebas

Generator tipe penguat bebas dan terpisah adalah generator yang lilitan medannya dapat dihubungkan ke sumber dc yang secara listrik tidak tergantung dari mesin. Tegangan searah yang dipasangkan pada kumparan medan yang mempunyai tahanan Rf akan menghasilkan arus If dan menimbulkan fluks pada kedua kutub. Tegangan induksi akan dibangkitkan pada generator.

Jika generator dihubungkan dengan beban, dan Ra adalah tahanan dalam generator, maka hubungan yang dapat dinyatakan adalah:

Besaran yang mempengaruhi kerja dari generator :

• Tegangan jepit (V)

(25)

8

 

 

 

• Arus jangkar (Ia)

• Kecepatan putar (n)

2. Generator berpenguatan sendiri

a. Generator searah seri

b. Generator Shunt

Pada generator shunt, untuk mendapatkan penguatan sendiri diperlukan :

• Adanya sisa magnetik pada sistem penguat

• Hubungan dari rangkaian medan pada jangkar harus sedemikian, hingga arah medan yang terjadi, memperkuat medan yang sudah ada.

Mesin shunt akan gagal membangkitkan tegangannya kalau:

• Sisa magnetik tidak ada.

(26)

dijalankan sebagai motor shunt dengan polaritas sikat-sikat dan perputarannominal

• Hubungan medan terbalik,

Karena generator diputar oleh arah yang salah dan dijalankan, sehingga arus medan tidak memperbesar nilai fluksi. Untuk memperbaikinya denganhubungan-hubungan perlu diubah dan diberi kembali sisa magnetik, seperti carauntuk memberikan sisa magnetik

• Tahanan rangkaian penguat terlalu besar.

Hal ini terjadi misalnya pada hubungan terbuka dalam rangkaian medan, hingga Rf tidak berhingga atau tahanan kontak sikat terlalu besar atau komutator kotor.

c. Generator Kompon

Generator kompon merupakan gabungan dari generator shunt dan generator seri, yang dilengkapi dengan kumparan shunt dan seri dengan sifat yangdimiliki merupakan gabungan dari keduanya. Generator kompon bisadihubungkan sebagai kompon pendek atau dalam kompon panjang. Perbedaandari kedua hubungan ini hampir tidak ada, karena tahanan kumparan seri kecil, sehingga tegangan drop pada kumparan ini ditinjau daritegangan terminal kecil sekali dan terpengaruh.

Biasanya kumparan seri dihubungkan sedemikian rupa, sehingga kumparan seri ini membantu kumparan shunt, yakni MMF nya searah. Bila generator ini dihubungkan seperti itu, maka dikatakan generator itu mempunyai kumparankompon bantu.

(27)

10

 

 

 

i. Kompon Panjang

ii. Kompon Pendek

Pembangkitan Tegangan Induksi Pada Generator Berpenguatan Sendiri

Disini akan diterangkan pembangkitan tegangan induksi generator shunt dalam keadaan tanpa beban. Pada saat mesin dihidupkan (S tutup), timbul suatu fluks residu yang memang sudah terdapat pada kutub. Dengan memutarkan rotor, akan dibangkitkan tegangan induksi yang kecil pada sikat. Akibat adanya tegangan induksi ini mengalirlah arus pada kumparan medan. Arus ini akan menimbulkan fluks yang memperkuat fluks yang telah ada sebelumnya. Proses terus berlangsung hingga dicapai tegangan yang stabil.

Jika tahanan medan diperbesar, tegangan induksi yang dibangkitkan menjadi lebih kecil. Berarti makin besar tahanan kumparan medan, makin buruk generator tersebut.

IV. REAKSI JANGKAR PADA GENERATOR DC

(28)

jangkar ini menyebabkan timbulnya fluks pada konduktor tersebut. Dengan mengnggap tidak ada arus medan yang mengalir dalam kumparan medan, fluks ini seperti digambarkan pada gambar dibawah ini.

(29)

12

 

 

 

V.JENIS – JENIS GENERATOR DC

Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu: 1. Generator penguat terpisah

2. Generator shunt 3. Generator kompon

Generator Penguat Terpisah

Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:

1. Penguat elektromagnetik (Gambar 8.a)

2. Magnet permanent / magnet tetap (Gambar 8.b)

Gambar 8. Generator Penguat Terpisah.

Energi listrik yang dihasilkan oleh penguat elektromagnet dapat diatur melalui pengaturan tegangan eksitasi. Pengaturan dapat dilakukan secara elektronik atau magnetik. Generator ini bekerja dengan catu daya DC dari luar yang dimasukkan melalui belitan F1-F2.

(30)

Karakteristik Generator Penguat Terpisah

Gambar 9. Karakteristik Generator Penguat Terpisah

• karakteristik generator penguat terpisah saat eksitasi penuh (Ie 100%) dan saat eksitasi setengah penuh (Ie 50%). Ie adalah arus eksitasi, I adalah arus beban.Tegangan output generator akan sedikit turun jika arus beban semakin besar.

• Kerugian tegangan akibat reaksi jangkar.

• Perurunan tegangan akibat resistansi jangkar dan reaksi jangkar, selanjutnya mengakibatkan turunnya pasokan arus penguat ke medan magnet, sehingga tegangan induksi menjadi kecil.

Generator Shunt

(31)

14

 

 

 

Gambar 10. Diagram Rangkaian Generator Shunt

Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.

Karakteristik Generator Shunt

Gambar 11. Karakteristik Generator Shunt.

Generator shunt mempunyai karakteristik seperti ditunjukkan pada Gambar 11. Tegangan output akan turun lebih banyak untuk kenaikan arus beban yang sama, dibandingkan dengan tegangan output pada generator penguat terpisah.

Sebagai sumber tegangan, karakteristik dari generator penguat terpisah dan generator shunt tentu kurang baik, karena seharusnya sebuah generator mempunyai tegangan output yang konstan, namun hal ini dapat diperbaiki pada generator kompon.

Generator Kompon

(32)

rangkaian generator kompon ditunjukkan pada Gambar 12. Pengatur medan magnet (D1-D2) terletak di depan belitan shunt.

Gambar 12. Diagram Rangkaian Generator Kompon

Karakteristik Generator Kompon

Gambar 13. Karakteristik Generator Kompon

(33)

16

 

 

 

VI KERJA PARALEL GENERATOR DC

Untuk memberi tenaga pada suatu beban kadang-kadang diperlukan kerja pararel dari dua atau lebih generator. Pada penggunaan beberapa buah mesin perlu dihindari terjadinya beban lebih pada salah satu mesin. Kerja pararel generator juga diperlukan untuk meningkatkan efisiensi yang besar pada perusahaan listrik umum yang senantiasa memerlukan tegangan yang konstan. Untuk hal-hal yang khusus sering dynamo dikerrjakan pararel dengan aki, sehingga secara teratur dapat mengisi aki tesebut.

Tujuan kerja pararel dari generator adalah :

• Untuk membantu mengatasi beban untuk manjaga jangan sampai mesin dibebani

lebih.

• Jika satu mesin dihentikan akan diperbaiki karena ada kerusakan, maka harus ada

mesin lain yang meueruskan pekerjaan. Jadi untuk menjamin kontinuitas dari penyediaan tenaga listrik.

syarat-syarat pengoperasian paralel generator :

• Terminal-terminal generator harus dihubungkan dengan kutub-kutub yang sama polaritasnya.

(34)

VII KESIMPULAN

y Generator ialah suatu mesin yang mengubah tenaga mekanis menjadi tenaga listrik.

y Bagian utama dari Generator yaitu Komutator Stator dan Celah udara.

y GGL Induksi terbentuk sesuai rumus dibawah ini:

( )

Volt

dt d N t

(35)

18

 

 

 

Daftar Pustaka

http://dunia-listrik.blogspot.com/2009/01/generator-dc.html

http://dunia-listrik.blogspot.com/2009/09/animasi-generator-dc-dan-generator-ac.html

http://www.docstoc.com/docs/17291496/Generator-DC

(36)

Pertanyaan dan Jawaban

1. Reza Nugraha Kelompok 7

a. Filosofi Generator DC dan Motor DC ?

b. Apakah Generator DC dapat difungsikan menjadi Motor DC?

c. Bila Generator diberi tegangannya tidak sama apakah dapat disinkronkan dan jika bias bagaimana

cara mensikronisasinya?

Jawab

a. Generator DC – Mekanik menjadi Listrik

Motor DC-Listrik menjadi mekanik

b. Bisa Jika Generator diposisikan sebagai beban dan dapat membebani

c. Tidak bias jika tegangan tidak sama maka dapat mengakibatkan kerusakan pada alat jika tegangan

yang diberikan semakin mengalami perbedaan yang jauh

2. Arief

a. Kenapa jaringan Listrik kita tidak memakai generator DC?

Jawab

a. Jika jaringan listrik kita amenggunakan generatod DC maka akan butuh alat/ generator yang besar dikarenakan butuh komutator yang besar pula yang pada akhirnya akan membutuhkan biaya yang sangat besar. Dan pada dasarnya peralatan listrik disini menggunakan tegangan AC.

3. Firman

a. Cara Meminimalisir rugi rugi generator DC?

Jawab

a. Penggunaan pelumas dalam pemeliharaan

Dengan mereduksi panas yang diakibatkan oleh putaran komutator.

Untuk pada rugi – rugi tembaga tidak dapat diminimalisir dikarenakan jika kondisi tembaga sudah tidak layak pakai harus segera diganti

4. Hilman

a. Dari tampilan video tadi merupakan generator DC atau AC?

Jawab

a. Dari tampilan video tersebut merupakan generator AC dikarenakan tidak terdapat komutator. Jika

terdapat komutator dan stator maka disebut generator DC

5. Bapak Chaerul

a. Terangkan proses Komutasi

Jawab

Gambar

Gambar 1. Konstruksi Generator DC
Gambar 2. Struktur Generator DC
Gambar 3. Prinsip kerja Generator DC
Gambar 4. Efek Komutasi
+5

Referensi

Dokumen terkait

Gambar 2.6 Skematik diagram pembangkit tenaga angin variable speed dengan (a) generator induksi rotor sangkar, (b) generator induksi rotor belitan, (c) permanent

Untuk mengatur putaran motor DC dilakukan dengan mengatur arus eksitasi penguat medan magnet dengan tahanan geser yang dipasang seri dengan belitan penguat Shunt E1-E2.

Apabila rotor generator diputar pada kecepatan nominalnya, dimana putaran tersebut diperoleh dari putaran penggerak mulanya (prime mover), kemudian pada kumparan medan rotor

Jika kedua‑duanya dibalik  katup magnet dan arah arus angker , maka putaran motor akan tetap 

Dari rumus di atas terlihat bahwa frekuensi yang dihasilkan generator sinkron sangat dipengaruhi oleh keceparan putaran rotor dan jumlah kutup magnet pada generator. Jika

Rotor silinder umumnya digunakan pada generator sinkron dengan kecepatan putaran tinggi (1500 atau 3000 rpm) karena distribusi disekeliling rotor mendekati bentuk

Sebuah generator DC shunt mempunyai arus beban 195 A dan tegangan beban 250 volt. Besar hambatan armatur 0,02 ohm, hambatan kumparan shunt 50 ohm, serta rugi- rugi gesek 950

Medan magnet yang sebelumnya adalah magnet permanen diganti menjadi elektromagnet, sehingga kuat medan magnet bisa diatur oleh besarnya arus penguatan medan magnet. Belitan