• Tidak ada hasil yang ditemukan

BAB IV HASIL DAN PEMBAHASAN. dicolokan ke komputer, hal ini untuk menghindari noise yang biasanya muncul

N/A
N/A
Protected

Academic year: 2022

Membagikan "BAB IV HASIL DAN PEMBAHASAN. dicolokan ke komputer, hal ini untuk menghindari noise yang biasanya muncul"

Copied!
18
0
0

Teks penuh

(1)

BAB IV

HASIL DAN PEMBAHASAN 4.1 Hasil

4.1.1 Pengambilan Database

Awalnya gitar terlebih dahulu ditala menggunakan efek gitar ZOOM 505II, setelah ditala suara gitar dimasukan kedalam komputer melalui jack yang dicolokan ke komputer, hal ini untuk menghindari noise yang biasanya muncul jika menggunakan microphone, dalam penginputan ini juga perlu diperhatikan arus listrik yang masuk kedalam komputer dan kualitas soundcard yang harus baik sebab hal diatas juga sangat berpengaruh dalam munculnya noise, setelah direkam maka suara selanjutnya akan disampling untuk proses selanjutnya.

Perolehan database diambil dari ekstraksi sinyal suara gitar yang telah ditala, setelah itu tiap senar gitar akan diproses untuk dicari frekuensinya. Seperti pada gambar 4.1.

Gambar 4.1 Perolehan Database

Database Input Suara

Gitar

Sampling Feature extraction (Wavelet)

37

(2)

Dari hasil pencarian frekuensi sinyal untuk pembuatan database maka diperoleh hasil sebagai berikut:

Tabel 4.1 Frekuensi Database

No Senar Nada Frekuensi

1 2 3 4 5 6

Senar 1 Senar 2 Senar 3 Senar 4 Senar 5 Senar 6

E’

B G D A E

659,0493 Hz 494.6489 Hz 392,4689 Hz 292,6624 Hz 221,8312 Hz 165,5622 Hz Nilai frekuensi pada tabel diatas yang akan menjadi database sebagai titik acuan untuk penalaan pada setiap snare gitar, karena dalam proses penalaan angka frekuensi sinyal yang tidak selalu tepat, maka digunakan batas toleransi nada dalam penalaan yang untuk batasannya ½ nada dengan jarak ED adalah 1. Jarak toleransi nadanya menggunakan batas atas dan batas bawah seperti pada tabel 4.2.

Tabel 4.2 Batas toleransi ½ nada

No Senar Batas Atas Batas Bawah

1 2 3 4 5 6

1 E5 659,0493 Hz 2 B4 494.6489 Hz 3 G4 392,4689 Hz 4 D4 292,6624 Hz 5 A3 221,8312 Hz 6 E3 165,5622 Hz

F5 698,46 Hz C5 523,25 Hz G4# 415,30 Hz D4# 311,13 Hz A3# 233,08 Hz F3 174,61 Hz

D5# 622,25 Hz A4# 466,16 Hz F4# 369,99 Hz C4# 277,18 Hz G3# 207,65 Hz D3# 155,56 Hz

(3)

4.1.2 Input Query

Suara gitar di input kedalam komputer menggunakan jack pada gitar, kebanyakan pengambilan suara menggunakan microphone sering ditemukan suara-suara tambahan yang tidak diperlukan tetapi tidak menutup kemungkinan microphone juga bisa digunakan untuk pengambilan suara pada gitar akustik yang tidak mempunyai colokan jack, penggunaan jack ini untuk menghindari suara noise. Untuk proses pengambilan sampel suara gitar yaitu dilakukan recording,

keluaran hasil dari proses recording ini yaitu audio berformat wav. Berikut adalah hasil dari pengambilan query pada gitar berdasarkan penalaan menggunakan feeling dan efek ZOOM 505II.

a. Tuning terdasarkan feeling

Awalnya gitar ditala terlebih dahulu sesuai dengan feeling, selanjutnya suara gitar diinput kedalam komputer untuk dicari informasi sinyalnya. Berikut adalah hasil pengambilan query berdasarkan feeling.

Tabel 4.3 Hasil tuning berdasarkan feeling

No Snare Frekuensi

Hasil tuning

Nada

1 2 3 4 5 6

Satu Dua Tiga Empat

Lima Enam

571,6166 Hz 438,5042 Hz 347,8403 Hz 260,5786 Hz 197,1019 Hz 150,924 Hz

Tdk diketahui Tdk diketahui Tdk diketahui Tdk diketahui Tdk diketahui Tdk diketahui

(4)

b. Tuning dengan effect gitar

gitar terlebih dahulu distem menggunakan efek gitar yang dalam hal ini menggunakan efek ZOOM 505II, setelah semua senar telah ditala maka suara gitar kemudian di input kedalam komputer untuk selanjutnya dicari nilai frekuensinya. Berikut adalah haslil pengambilan query gitar yang telah ditala menggunakan efek ZOOM 505II.

Tabel 4.4 Hasil Tuning dengan efek ZOOM 505II

No Senar Frekuensi ZOOM 505II

1 2 3 4 5 6

1 E5 659,0493 Hz 2 B4 494.6489 Hz 3 G4 392,4689 Hz 4 D4 292,6624 Hz 5 A3 221,8312 Hz 6 E3 165,5622 Hz

662,833 Hz 495,1438 Hz 393,1168 Hz 292,425 Hz 221,9204 Hz 164,6767 Hz

4.1.3 Sampling

Gelombang suara tidak dapat langsung di representasikan pada komputer.

Komputer mengukur amplitudo pada satuan waktu tertentu untuk menghasilkan sejumlah angka. Tiap satuan pengukuran ini dinamakan sampel untuk itu kita harus melakukan konversi data analog untuk dijadikan data digital karena sampel yang diambil nantinya akan lebih menggambarkan sinyal yang asli.

Sampling terjadi pada saat proses recording dengan sampling rate yang digunakan adalah default pada MATLAB yaitu 11025 Hz, pada proses ini sinyal analog diubah menjadi deretan nilai – nilai diskrit yang nantinya akan

(5)

didekomposisi menggunakan wavelet transform. Hasil dari proses sampling berupa file berformat Wav. Seperti pada gambar 4.2 dibawah.

Gambar 4.2 Sampel Nada Gitar

Untuk melihat gambaran sinyal yang telah disampling maka dilakukan penggambarran sinyal dengan melakukan ploting pada tiap nada gitar, seperti pada gambar 4.3

(6)

Gambar 4.3 Plot hasil sampling nada gitar

Berikut adalah contoh sebagian deretan nilai diskrit hasil dari sampling menggunakan matlab.

0.0010 -0.0014 -0.0030 -0.0033 -0.0021 -0.0002 0.0016 0.0027 0.0027 0.0018 0.0001 -0.0016 -0.0028 -0.0031 -0.0023 -0.0005 0.0017 0.0032 0.0033 0.0020

4.1.4 Feature extraction

Pada tahap ini sinyal digital hasil dari proses sampling kemudian akan di transformasi mengunakan teknik pemfilteran digital discrete wavelet transform, dengan melakukan dekomposisi sinyal dimana sinyal dilewatkan pada rangkaian AC (Low Pass Filter) dan DC (High Pass Filter ) yang selanjutnya keluaran dari AC tadi akan disegmentasi menggunakan fungsi dari MIRToolbox untuk mencari sinyal asli dari suara gitar dan dicari datanya untuk menghasilkan nilai frekuensi dari sinyal masukan, hasil segmentasi sinyal seperti terlihat pada gambar 4.4 berikut.

(7)

Gambar 4.4 Plot hasil segmentasi sinyal masukkan

Pada gambar di atas terlihat hasil dari segmentasi sinyal masukan dimana bagian kecil merupakan noise yang didapat dari proses perekaman dan sinyal yang tampak besar merupakan sinyal dominan yang selanjutnya akan di ekstraksi untuk menghasilan nilai frekuensi sinyal. Berikut adalah sebagian kecil dari sampel sinyal diskrit yang didapat dari proses sampling dimana x adalah sinyal hasil sampling:

x = 0.0319 0.0357 0.0392 0.0414

(8)

Kemudian sinyal ini akan diekstraksi menggunakan wavelet transform yang kemudian akan dilewatkan pada rangkaian filter High Pass dan Low Pass yang disebut dengan proses dekomposisi.

A0 = [

] L= [

] A1 = [ ]

H=[ ] D1 = [ ]

Nilai dari A1 adalah hasil aproksimasi dari nilai A0 sedangkan untuk D1

merupakan koefisien detail dari A0 dalam penelitian ini melakukan 1 tingkat dekomposisi dengan mengambil nilai sinyal dari hasil Low Pass Filter.

4.1.5 Pencocokan Sinyal

Pada proses pencocokan ini digunakan metode euclidean distance untuk menghitung jarak dari frekuensi sinyal masukan dan sinyal database, dengan penjabaran rumus sebagai berikut

( ) ‖ ‖ √∑| |

Dimana:

= titik pertama (pitch yang didapat) = titik kedua (pitch acuan)

(9)

Misalnya ingin menghitung jarak antara dua sampel dari hasil uji coba, nilai frekuensi untuk senar enam adalah 82,407 Hz dan nilai frekuensi sinyal dari hasil penalaan adalah 80,502 Hz. Caranya kurangkan 80,502 dengan 82,407 sehingga menghasilkan -1,905. kemudian untuk mencari nilai absolutnya maka dipangkatkan dan menghasilkan 3,629, kemudian nilai tersebut diakarkan sehingga menghasilkan 1,905. maka jarak euclidean antara kedua sinyal adalah 1,905.

Dapat dijabarkan sebagai berikut.

ED = √( )

= √( )

= √ = 1,905

(10)

4.1.6 Hasil Pencocokan

a. Tuning terdasarkan feeling

Berikut adalah hasil perbandingan tuning berdasarkan feeling dengan aplikasi pada penelitian ini.

Tabel 4.5 Perbandingan tuning berdasarkan feeling No Snare Frekuensi

Hasil tuning

Nada Frekuensi Standar

Nada standar

ED

1 2 3 4 5 6

Satu Dua Tiga Empat

Lima Enam

571,6166 Hz 438,5042 Hz 347,8403 Hz 260,5786 Hz 197,1019 Hz 150,924 Hz

Tdk diketahui Tdk diketahui Tdk diketahui Tdk diketahui Tdk diketahui Tdk diketahui

659,0493 Hz 494.6489 Hz 392,4689 Hz 292,6624 Hz 221,8312 Hz 165,5622 Hz

E5 B4 G4 D4 A3 E3

87,4327 56,1447 44.6286 131,8903

24.7293 14,076 Berdasarkan tabel 4.5 dari hasil penalaan yang telah dilakukan dapat diasumsikan bahwa objek mampu melakukan penalaan gitar yang bisa dimainkan tetapi tidak sesuai dengan nada standar dari masing-masing senar, terlihat dari jarak hasil ED yang jauh dari nilai 0.

b. Tuning dengan effect gitar

Untuk mengukur keakuratan aplikasi dilakukan perbandingan tuning antara effect gitar dengan aplikasi pada penelitian ini. maka selanjutnya akan dibandingkan dengan tuner pada efek ZOOM 505II, terlihat pada tabel 4.6 dibawah.

(11)

Tabel 4.6 Perbandingan Tuning Menggunakan efek ZOOM 505II

No Senar Frekuensi ZOOM

505II

Jarak ED

1 2 3 4 5 6

1 E5 659,0493 Hz 2 B4 494.6489 Hz 3 G4 392,4689 Hz 4 D4 292,6624 Hz 5 A3 221,8312 Hz 6 E3 165,5622 Hz

662,833 Hz 495,1438 Hz 393,1168 Hz 292,425 Hz 221,9204 Hz 164,6767 Hz

3,7837 0,49495 0,64791 0,043924

0,08919 0,32333 Hasil pada perbandingan diatas terlihat jarak antara efek ZOOM 505II tidak jauh berbeda dengan frekuensi standar pada database, untuk perbedaan jarak diatas dapat ditoleransi karena proses penalaan tidak selalu tepat pada titik yang ditentukan.

4.1.7 Tes Kedekatan Sistem

Setelah dilakukan uji coba maka selanjutnya untuk mengetahui tingkat kedekatan dari ekstraksi sinyal sistem maka dilakukan percobaan tuning satu nada yang sama sebanyak 20 kali, nada yang akan di tes adalah E3 yang merupakan nada pada senar 6, hasil uji coba terlihat pada tabel 4.7 dibawah.

(12)

Tabel 4.7 Tes kedekatan sistem Pengujian

nomor

Nilai frekuensi Jarak ED Ket

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

165,5894 Hz 165,6034 Hz 165,8222 Hz 165,7092 Hz 165,6055 Hz 167,0482 Hz 165,2065 Hz 165,1794 Hz 165,0516 Hz 164,9968 Hz 165,1375 Hz 164,9292 Hz 165,32 Hz 164,9028 Hz 164,9265 Hz 164,9532 Hz 165,0693 Hz 165,0499 Hz 165,0839 Hz 165,5622 Hz

0,58939 0,60337 0,82224 0,70922 0,60554 2,0482 0,20653 0,17939 0,051605 0,0031639

0,13749 0,070768

0,31999 0,097182

0,0735 0,04675

0,4928 0,51234 0,47831 0,44312

Akurat Akurat Akurat Akurat Akurat Kurang akurat

Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Akurat Dari hasil pengujian diatas terdapat 1 kali tuning yang kurang akurat dan 19 kali akurat dengan jarak ED rata-rata dibawah angka 1.

(13)

4.2 Implementasi Sistem

Gambar 4.5 Diagram rancangan sistem START

Menekan snare guide yang akan di tuning

Input suara gitar

Melakukan sampling sinyal suara

Discrete Wavelet Transform

Segmentasi untuk mendapatkan pitch

Menampilkan plot sinyal beserta informasi frekuensi dengan jarak ED sinyal masukan

dan database ke layar Nada

sesuai?

Melanjutkan tuning ke senar lain

Semua senar sudah tertala?

Ya

END Ya

Tidak

Tidak

(14)

Rancangan pembangunan sistem ini mengikuti alur diagram yang ditunjukan pada gambar 4.5, perancangan ini adalah tahap yang penting dalam pembuatan program, sebab perancangan sistem diperlukan agar pada saat pembuatan program lebih terstruktur rapi dan hasil sesuai dengan yang direncanakan.

Setelah dilakukan perancangan maka selanjutnya implementasi sistem, dalam penelitian ini menerapkan metode ekstraksi sinyal discrete wavelet transform, penerapan metode ini diaplikasikan pada bahasa pemograman

MATLAB 7.9.0 (R2009b) dengan menggunakan fungsi MIR toolbox. Tampilan interface program seperti pada gambar 4.6

Gambar 4.6 Tampilan form utama

(15)

Pada saat program dijalankan maka akan muncul tampilan form utama seperti pada gambar 4.6, disini terlihat informasi dari nama aplikasi yaitu G-Tuner dan standar nilai frekuensi nada sebagai acuan penalaan terletak sebelah kanan, selain itu terdapat pula informasi cara pemakaian program ini yang terletak di kiri bawah. Untuk melakukan penalaan pertama-tama pengguna harus menekan tombol senar yang nantinya akan mengeluarkan suara nada standar dari masing- masing senar, tombol ini bertujuan sebagai acuan pendengaran pengguna untuk penalaan. Setelah itu pengguna bisa melakukan proses penalaan dengan menekan tombol yang terletak pada kolom tuning gitar seperti pada gambar 4.7 dibawah

Gambar 4.7 Tombol tuning

Setelah menekan tombol tuning pada menu maka akan muncul kotak dialog yang memberitahukan agar senar dipetik dengan mode open string atau tanpa menekan pada grip gitar seperti terlihat pada gambar 4.8.

Gambar 4.8 Kotak dialog penalaan

Selanjutnya tunggu proses recording selama 5 detik, setelah proses perekaman selesai maka suara yang tadi direkam akan diputar kembali agar

(16)

pengguna mengetahui jika suara gitar yang akan ditala benar-benar telah direkam.

Setelah itu suara yang direkam tadi akan di plot sinyalnya untuk mengetahui gambaran sinyal suara yang dimasukkan, seperti terlihat pada gambar 4.9 dibawah.

Gambar 4.9 Plot sinyal

Plot sinyal diatas akan muncul bersamaan dengan informasi frekuensi, standar frekuensi nada yang akan ditala, dan jarak ED sinyal masukan dengan titik acuan nada, selain itu juga ada informasi untuk mengencangkan senar dan mengendurkan senar untuk membantu pengguna dalam menyetem gitar. Terlihat pada gambar dibawah.

(17)

Gambar 4.10 Hasil Tuning

Setelah proses tuning selesai pengguna bisa langsung keluar dari program dengan menekan tombol keluar pada form utama.

4.3 Pembahasan

Penelitian ini menerapkan metode wavelet transform dalam mengekstraksi sinyal untuk mendapatkan informasi dalam bentuk frekuensi dengan menggunakan discrete wavelet transform yang merupakan salah satu dari dua bagian wavelet, dimana dalam hal ini untuk proses dekomposisi sinyal dilewatkan pada low pass filter dan keluarannya akan disegmentasi menggunakan MIR toolbox. Wavelet transform sendiri mempunyai keunggulan dari metode pada penelitian sebelumnya yang menggunakan Fast Fourier Transform, metode FFT memiliki kelemahan dalam mengkompersi sinyal yaitu hanya dapat memberikan informasi frekuensi sedangkan informasi waktu dari sinyal awal hilang khususnya untuk sinyal non-stationer sehingga untuk penggambaran sinyal FFT juga tidak mampu menggambarkan bentuk asli dari sinyal yang telah terkompersi, berbeda dengan wavelet yang mampu mengekstrak sinyal non-stationer tanpa kehilangan informasi waktu sehingga untuk penggambaran sinyal wavelet mampu menggambarkan bentuk asli sinyal masukan yang telah dikompersi.

(18)

Dari hasil uji coba, tuning menggunakan feeling jauh dari standar nada gitar yang sebenarnya sedangkan tuning menggunan efek ZOOM 505II dapat mendekati titik acuan standar gitar dengan jarak rata-rata ED dibawah angka 1, untuk mengetahui kedekatan sistem maka telah dilakukan percobaan tuning sebanyak 20 kali dengan nada senar gitar yang sama, hasilnya rata-rata ED dibawah angka 1 dan terdapat 1 kali tuning yang mencapai angka 2, dapat diasumsikan aplikasi akurat dalam melakukan tuning.

Adanya noise pada saat penalaan dapat mempengaruhi hasil ekstraksi sinyal, noise dapat berasal dari aliran listrik yang berlebihan, kualitas sound card yang kurang baik, dan jack gitar yang buruk.

Untuk toleransi nada digunakan ½ nada karena jarak antara nada yang paling dekat adalah setengah, ini mengacu pada jarak standar nada mayor yaitu 1 - 1 – ½ - 1 – 1 – 1 – ½ , tetapi untuk jarak ED ditoleransi 1 angka karena untuk penalaan akan dicari frekuensi terdekat dengan titik acuan.

Nada gitar dimulai dari E3 yang merupakan nada senar 6 dengan melangkahi 2 oktav nada sampai pada E5 sebagai nada senar 1, makin tinggi nada yang dihasilkan gitar maka makin tinggi pula hasil frekuensinya begitu juga sebaliknya, sehingga dapat diasumsikan nilai frekuensi sinyal ditentukan oleh tinggi rendahnya nada.

Gambar

Tabel 4.1 Frekuensi Database
Tabel 4.3 Hasil tuning berdasarkan feeling
Tabel 4.4 Hasil Tuning dengan efek ZOOM 505II
Gambar 4.2 Sampel Nada Gitar
+7

Referensi

Dokumen terkait

Karena penyakit diabetes mellitus (variabel dependen) disebabkan oleh berbagai macam faktor seperti usia, jenis kelamin, riwayat keluarga, pekerjaan, pendidikan

368.641.000,00, sedangkan keuntungan perusahaan jika membuat produk sesuai dengan solusi optimal dari model goal programming, maka keuntungan yang diperoleh perusahaan adalah

Konsep perancangan media promosi Il Mondo Pizza adalah mengaplikasikan ide dasar dari citarasa Il Mondo Pizza yang renyah dan gurih, yang dipadukan

Pada metoda perata-rataan, intensitas setiap piksel pada posisi yang sama dari sejumlah citra dirata-ratakan guna menghasilkan citra baru.. Hasil pengolahan dengan metoda

These positive samples were subsequently tested with a test targeting the ompA gene region (ompA-rtPCR) specifi c for Chlamydophila abortus.. abortus ), the causative agent of

Dalam keadaan tertentu Jual beli se- cara di bawah tangan atau jual beli tanpa menggunakan akta Pejabat Pembuat Akta dapat didaftarkan ke Kantor Pertanahan, hal ini disebutkan

Perencanaan pelabuhan laut dan pelabuhan perikanan pada Kawasan Terpadu Pelabuhan Sikakap, Kabupaten Mentawai, Sumatera Barat mengacu pada peraturan-peraturan

Titi panen merupakan jembatan yang terbuat dari papan kayu tebal > 5 cm dengan kontruksi yang sangat sederhana pada parit yang memotong pasar rintis. Titi panen merupakan