• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
10
0
0

Teks penuh

(1)

“„Š 517.5+517.9

ˆ‘Š‹ž—ˆ’…‹œ›… ŒŽ†…‘’‚€ „‹Ÿ …˜…ˆ‰

Š‚€‡ˆ‹ˆ…‰›• “€‚…ˆ‰ €€Ž‹ˆ—…‘ŠŽƒŽ ’ˆ€

‚ ‚…‘Ž‚›• Ž‘’€‘’‚€• ‘ށދ…‚€

Œ. ‘. €«¡®à®¢ 

ˆáá«¥¤ã¥âá¯à®á ®¡ ãáâà ­¨¬®á⨠®á®¡¥­­®á⥩ ¤«ï ®£à ­¨ç¥­­ëåà¥è¥­¨©

í¢®«î-樮­­ëå ãà ¢­¥­¨©¯ à ¡®«¨ç¥áª®£®â¨¯ .

ãáâìQ

T

=(0;T)|®£à ­¨ç¥­­ ï 樫¨­¤à¨ç¥áª ï®¡« áâì,«¥¦ é ï

¢ ¥¢ª«¨¤®¢®¬ ¯à®áâà ­á⢥ R n +1

â®ç¥ª (x;t)=(x

1

;:::;x

n ;t).

à¥¤¯®«®¦¨¬, çâ® P(x;t;D) | ¤¨ää¥à¥­æ¨ «ì­ë© ®¯¥à â®à ¢ ç áâ­ëå

¯à®¨§¢®¤­ëå, ®¯à¥¤¥«¥­­ë© ­  ®âªàë⮬ ¬­®¦¥á⢥ Q

T R

n+1

,   e |

ª®¬-¯ ªâ ¢ Q

T

. ãáâì F(Q

T

ne) ¨ F(Q

T

) | ­¥ª®â®àë¥ ª« ááë ä㭪権 ­ 

¬­®-¦¥á⢠å Q

T

ne ¨ Q

T

ᮮ⢥âá⢥­­®. Œ­®¦¥á⢮ e ­ §ë¢ ¥âáï ãáâà ­¨¬ë¬

¤«ï ¤¨ää¥à¥­æ¨ «ì­®£® ãà ¢­¥­¨ï P(x;t;D)f = 0 ®â­®á¨â¥«ì­®

ä㭪樮-­ «ì­ëå ª« áᮢ F(Q

T

ne) ¨ F(Q

T

), ¥á«¨ ¤«ï ¢á类£® à¥è¥­¨ï f 2 F(Q

T ne)

ãà ¢­¥­¨ï P(x;t;D)f = 0 ­  Q

T

ne áãé¥áâ¢ã¥â à¥è¥­¨¥ ~

f 2 F(Q

T

) ãà ¢­¥­¨ï

P(x;t;D)f =0 ­  Q

T

â ª®¥, çâ® ~

fj

Q

T ne

=f. ¥è¥­¨¥ ~

f ­ §ë¢ ¥âáï

¯à®¤®«¦¥-­¨¥¬ à¥è¥­¨ï f ãà ¢­¥­¨ï P(x;D)f =0 áQ

T

ne ­  Q

T .

‡ ¤ ç á®á⮨⢭ å®¦¤¥­¨¨ä㭪樮­ «ì­®-£¥®¬¥âà¨ç¥áª¨å

å à ªâ¥à¨á-⨪ ¬­®¦¥á⢠ e, ª®â®àë¥ £ à ­â¨àãîâ, çâ® ¬­®¦¥á⢮ e ãáâà ­¨¬®.

“áâà ­¨¬®áâì ª®¬¯ ªâ®¢ ¤«ïà¥è¥­¨© ¯ à ¡®«¨ç¥áª¨å ãà ¢­¥­¨© å®à®è®

¨§ã祭  ¢ ª« áᥠ®£à ­¨ç¥­­ëå £¥«ì¤¥à®¢ëå ä㭪権 ¨ ¢ ­¥ª®â®àëå

¯à®áâ-à ­áâ¢ å ‘®¡®«¥¢  (á¬.,­ ¯à¨¬¥à, [1{6]). “á«®¢¨ïãáâà ­¨¬®á⨠®¯¨á뢠îâáï

¢ § ¢¨á¨¬®á⨠®â ¢¨¤  ãà ¢­¥­¨ï, ¢ â¥à¬¨­ å à ¢¥­á⢠ ­ã«î

ᮮ⢥âáâ¢ãî-é¨å ¥¬ª®á⥩ ¨ ¬¥à • ã᤮àä .

‚­ áâ®ï饩 áâ âì¥ ¨áá«¥¤ã¥âáï ¢®¯à®á®¡ãáâà ­¨¬®á⨠®á®¡¥­­®á⥩ ¤«ï

®£à ­¨ç¥­­ëå à¥è¥­¨© í¢®«î樮­­ëåãà ¢­¥­¨© ¯ à ¡®«¨ç¥áª®£® ⨯ 

@u

@t

,divA(x;t;u;5

x

u)+B(x;t;u;5

x

u)=0;

£¤¥ A ¨ B | ­¥ª®â®àë¥ ä㭪樨, 㤮¢«¥â¢®àïî騥 ®¯à¥¤¥«¥­­ë¬ ãá«®¢¨ï¬

(2)

3{4

„ ­­ ï à ¡®â  á®á⮨⠨§ ¤¢ãå ¯ à £à ä®¢. ‚

x

1 ®¯à¥¤¥«¥­ë ¢¥á®¢ë¥

¯à®áâà ­á⢠ ‘®¡®«¥¢ . ‚

x

2 ä®à¬ã«¨àãîâáï ¤®áâ â®ç­ë¥ ãá«®¢¨ï

ãáâà ­¨-¬®á⨠®á®¡¥­­®á⥩ ¤«ï ®£à ­¨ç¥­­ëå à¥è¥­¨© 㯮¬ï­ã⮣® ¢ëè¥ ª« áá 

¯ -à ¡®«¨ç¥áª¨å ãà ¢­¥­¨©.

1. ”㭪樮­ «ì­®¥ ¯à®áâà ­á⢮

ãáâì

!

| «®ª «ì­® ¨­â¥£à¨à㥬 ï ­¥®âà¨æ â¥«ì­ ï äã­ªæ¨ï ­  .

ˆ§-¬¥à¨¬®¬ã ¬­®¦¥áâ¢ã

E

ᮮ⢥âáâ¢ã¥â ¢¥á®¢ ï ¬¥à 

(

E

) =

R

E

!

(

x

)

dx

. ’®£¤ 

d

(

x

) =

!

(

x

)

dx

, £¤¥

dx

| ¬¥à  ‹¥¡¥£ . ƒ®¢®àïâ, çâ®

!

¥áâì

p-¤®¯ãáâ¨¬ë© ¢¥á

(1

<p<1

), ¥á«¨ ¢ë¯®«­¥­ë á«¥¤ãî騥 ãá«®¢¨ï:

W

1.

!

(

x

)

dx

¨

dx

¢§ ¨¬­®  ¡á®«îâ­® ­¥¯à¥à뢭ë;

W

2. 0

< ! < 1

¯®ç⨠¢áî¤ã ¢ ¨ áãé¥áâ¢ã¥â ª®­áâ ­â 

C

â ª ï, çâ®

(

B

(

x;

2

r

))

C

(

B

(

x;r

)) ¤«ï «î¡®£® è à 

B

(

x;r

), £¤¥ 2

B

(ãá«®¢¨¥

㤢®-¥­¨ï);

W

3. ¥á«¨

'

i

2C

1

() | ¯®á«¥¤®¢ â¥«ì­®áâì ä㭪権 â ª ï, çâ®

Z

j'

i

j

p

d!

0 ¨

Z

j5

x

'

i

,vj

p

d!

0

¯à¨

i!1

, £¤¥

v

| ¢¥ªâ®à­®§­ ç­ ï äã­ªæ¨ï ¨§

L

p

(

;

;

R

m

), â®

v

= 0;

W

4. áãé¥áâ¢ãîâ ª®­áâ ­âë

k >

1

; r

0 ; c

3

>

0 â ª¨¥, çâ®

1

(

B

)

Z

B

j'j

kp

d

1

k p

c

3 r

R

(

B

)

Z

B

j5

x

'j

p

d

1

p

¤«ï «î¡®© ä㭪樨

'2C 1

0

(

B

) ¨ è à 

B

=

B

(

x;r

)

; x 2

;

0

<r <r 0

;

W

5. áãé¥áâ¢ãîâ ª®­áâ ­âë

r

0 ; c

4

>

0 â ª¨¥, çâ®

Z

B

j','

B

j

p

dc 4

r

p

Z

B

j5

x

'j

p

d

¤«ï «î¡®© ä㭪樨

' 2 C 1

(

B

) ¨ ¯à®¨§¢®«ì­®£® è à 

B

=

B

(

x;r

)

; x 2

;

0

<r<r

0

. ‡¤¥áì

'

B

=

1

(

B

) R

B

'd

.

ˆ§ ãá«®¢¨ï

W

4 ­  ¢¥á®¢ãî äã­ªæ¨î á ¯®¬®éìî ­¥à ¢¥­á⢠ ƒñ«ì¤¥à 

¯®«ãç ¥¬ ¢¥á®¢®¥ ­¥à ¢¥­á⢮ ã ­ª à¥: ¥á«¨

D

| ®£à ­¨ç¥­­®¥ ®âªàë⮥

¬­®¦¥á⢮, diam

D<

2

r 0

¨

'2C 1

0

(

D

), â®

Z

D

j'j

p

dC

(diam

D

)

p

Z

D

(3)

L

p

(;)=

f :kfjL

p

(;)k= Z

jfj

p

d

1

p

<1

:

ƒ®¢®àïâ, çâ® äã­ªæ¨ï u ¯à¨­ ¤«¥¦¨â ª« ááã W 1

p

(D;), ¥á«¨ ¨ ⮫쪮 ¥á«¨

u 2L

p

(D;) ¨ ­ ¤©¥âáï ¢¥ªâ®à­®§­ ç­ ï äã­ªæ¨ï v2 L

p

(D;;R n

) â ª ï, çâ®

¤«ï ­¥ª®â®à®© ¯®á«¥¤®¢ â¥«ì­®á⨠'

k 2C

1

(D) ('

k 2C

1

0 (D))

Z

D j'

k ,uj

p

d!0 ¨ Z

D j5

x '

k ,vj

p

d!0

¯à¨ k ! 1. ‚¥ªâ®à-äã­ªæ¨î v ­ §ë¢ îâ á㡣ࠤ¨¥­â®¬ ä㭪樨 u ¢

W 1

p

(D;) ¨ ®¡®§­ ç îâ ᨬ¢®«®¬ 5

x u.

Ÿá­®,ç⮯à®áâà ­á⢠ W 1

p

(;)¨

W 1

p

(;)|¡ ­ å®¢ë¯à®áâà ­á⢠

®â-­®á¨â¥«ì­® ­®à¬ëkuk

W 1

p (;)

=kuk

L

p (;)

+k5

x uk

L

p (;)

. Šà®¬¥ ⮣®

¯à®áâ-à ­á⢠ W 1

p

(;) ¨

W 1

p

(;)à¥ä«¥ªá¨¢­ë.

”ã­ªæ¨ïu¯à¨­ ¤«¥¦¨â¯à®áâà ­áâ¢ãW 1

p;loc

(;),¥á«¨®­ ¯à¨­ ¤«¥¦¨â

¯à®áâà ­áâ¢ã W 1

p

(D;) ¤«ï ¢á类© ®£à ­¨ç¥­­®© ®¡« á⨠D, § ¬ëª ­¨¥

ª®â®-ன ᮤ¥à¦¨âáï ¢ .

à®áâà ­á⢮

L 1

p

(;)®¯à¥¤¥«¨¬ ª ª¯®¯®«­¥­¨¥ ¯à®áâà ­á⢠ C 1

0

() ¯®

­®à¬¥

kuk

L 1

p (;)

=k5

x uk

L

p

(;):

”ã­ªæ¨ï u ¯à¨­ ¤«¥¦¨â ¯à®áâà ­áâ¢ã Lip

loc

(), ¥á«¨ ¤«ï ­¥¥ ¢ë¯®«­ï¥âáï

­¥à ¢¥­á⢮

ju(x),u(y)jjx,yj

¤«ï «î¡®© ¯®¤®¡« á⨠D;

D . ‡¤¥áì jj | ¥¢ª«¨¤®¢  ­®à¬ . ‚ à ¡®â¥ [8]

¤®ª § ­®,çâ® ¯à®áâà ­á⢮ W 1

p;lip

(;)=W 1

p

()\Lip

loc

()¯«®â­®¢W 1

p

(;).

Šà®¬¥ ⮣® W 1

p;lip

(;) ¥áâì ¢¥ªâ®à­ ï à¥è¥âª .

Žâ¬¥â¨¬, çâ® ¯à¨¢¥¤¥­­ë¥ ¢ëè¥ ¢¥á®¢ë¥ ¯à®áâà ­á⢠

¤¨ää¥à¥­æ¨àã¥-¬ëå ä㭪権 å®à®è® ¨§ãç¥­ë ¢ à ¡®â å ‘. Š. ‚®¤®¯ìï­®¢  [7{11] ¨ ¤à㣨å

 ¢â®à®¢. (á¬., ­ ¯à¨¬¥à, [12{14]).

ãáâì t | ¯¥à¥¬¥­­ ï ¢à¥¬¥­¨. Œë ¡ã¤¥¬ ¯à¥¤¯®« £ âì, çâ® t 2 (0;T),

£¤¥ T ª®­¥ç­® ¨«¨ à ¢­®+1. ãáâì B | ¡ ­ å®¢®¯à®áâà ­á⢮. Ž¡®§­ ç¨¬

(4)

3{6

¨§¬¥à¨¬ëå ­  (0

;T

) (®â­®á¨â¥«ì­® ¬¥àë ‹¥¡¥£ 

dt

­  (0

;T

)). à®áâà ­á⢮

L

p

(0

;T

;

B

) ï¥âáï ¡ ­ å®¢ë¬ ¯à®áâà ­á⢮¬ ¯® ®â­®è¥­¨î ª ­®à¬¥

kf

;

L

p

(0

;T

;

B

)

k

=

8

<

: f

R

T

0

kf

(

t

)

k p

B dtg

1

p

¯à¨ 1

p1;

esssup

t2(0;T)

kf

(

t

)

k

B

¯à¨

p

=

1:

Ž¡®§­ ç¨¬

W 1;0

p

(

Q

T

;

) =

L p

(0

;T

;

W 1

p

(

;

)) ¨ ¯ãáâì

W 1;0

p

(

Q

T

;

) | § ¬ëª ­¨¥

C

1

0

(

Q

T

) =

fu2C 1

(

Q

T

) :

u

= 0 ­  ,

T

g

¯® ­®à¬¥

kk W

1;0

p

(

Q

T

;

), £¤¥

kuk

W 1;0

p (Q

T ;)

=

kuk p

p;p;Q

T ;

+

k5

x uk

p

p;p;Q

T ;

;

kuk

p;q;Q

T ;

=

ku

;

L p

(0

;T

;

L q

(;

)

k:

‚ ¤ «ì­¥©è¥¬

kuk p;p;Q

T

;

¡ã¤¥¬ ®¡®§­ ç âì ª ª

kuk

p;p;Q

T ;

=

kuk

p;Q

T ;

¨

ZZ

Q

T juj

p

dxdt

1

p

=

kuk p;Q

T ;

L

p

(0

;T

;

L

q

(;

)) =

L p;q;Q

T ;

;

L

p

(0

;T

;

L

p

(;

)) =

L p;Q

T ;

;

L

p

(0

;T

;

L

q

()) =

L

p;q;Q

T ;

kuk

1;

= vraimax

juj:

ã¤¥¬ £®¢®à¨âì, çâ® äã­ªæ¨ï

u 2L p;Q

T

;

¨¬¥¥â

áâண¨© á㡣ࠤ¨¥­â v

, ¥á«¨

­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì

' k

2C 1

(

Q

T

) â ª ï, çâ®

ZZ

Q

T j'

k ,uj

p

ddt!

0 ¨

ZZ

Q

T j5

x '

k ,vj

p

ddt!

0

:

(2)

„«ï «î¡®£® ª®¬¯ ªâ­®£® ¬­®¦¥á⢠

e2Q

T

®¯à¥¤¥«¨¬ ª« áá ä㭪権

V

(

e;Q

T

) =

fu2C 1

0

(

Q

T

) :

u

1 ¢ ®ªà¥áâ­®áâ¨

e;

0

u

1 ¢

Q T

g

¨ ­ §®¢¥¬ (

p;

)

-¥¬ª®áâìî

ª®¬¯ ªâ 

e

ç¨á«®

cap(

e

) = inf

'2V(e;Q

T )

Z

Z

Q j5

x 'j

p

ddt

+

ZZ

Q j'

t jdxdt

(5)

…¬ª®áâì ª ª äã­ªæ¨ï ¬­®¦¥á⢠ ¥áâ¥á⢥­­ë¬ ®¡à §®¬ à á¯à®áâà ­ï¥âáï

­  ¯à®¨§¢®«ì­ë¥ ¬­®¦¥á⢠.

’¥à¬¨­ ýª¢ §¨¢áî¤ãþ ®§­ ç ¥â, çâ® ¤ ­­®¥ ᢮©á⢮ ¢ë¯®«­ï¥âáï ¢áî¤ã,

§  ¨áª«î祭¨¥¬ ¬­®¦¥á⢠, ¨¬¥î饣® ¥¬ª®áâì ­®«ì.

‹¥¬¬  1. ãáâì e |ª®¬¯ ªâ­®¥¬­®¦¥á⢮

(

p;

)

-¥¬ª®á⨭®«ì

(1

< p< 1

)

. ’®£¤  áãé¥áâ¢ã¥â ¯®á«¥¤®¢ â¥«ì­®áâì f

k

g â ª ï, çâ® k 2 C 1 0

(

Q T

)

;

0

k

1

;

k

= 1

¢ ®ªà¥áâ­®á⨠e; k

!

0

¯. ¢. ¢ Q T

¨ k 5

x k k p;Q T ; !

0

; k k

t k

1;Q

T !

0

.

C

’ ª ª ª ¥¬ª®áâì cap(

e

) = 0, â® áãé¥áâ¢ã¥â ¯®á«¥¤®¢ â¥«ì­®áâì

f' k

g 2

V

(

e;Q

T

) â ª ï, çâ®

k5 x ' k k p;Q T ;

!

0 ¨

k' k

t k

1;Q

T

!

0. ˆá¯®«ì§ãï â¥å­¨ªã

„¦. ‘¥àਭ  [15], à áᬮâਬ äã­ªæ¨î

k

= max(min(

'

k

;

1)

;

0). ’®£¤ 

k

|

äã­ªæ¨ï á ª®¬¯ ªâ­ë¬ ­®á¨â¥«¥¬ ¢

Q T

;

0

k

1

;

k

= 1 ¢ ®ªà¥áâ­®áâ¨

e

¨

k5 x

k k p;Q T ;

!

0

; k

k t k 1;Q T !

0.

ãáâì

2 C 1

0

(

R

n+ 1

) | äã­ªæ¨ï á ª®¬¯ ªâ­ë¬ ­®á¨â¥«¥¬ â ª ï, çâ®

0

;

R

R n+1

(

x;t

)

dxdt

= 1. „«ï

" 2

(0

;

1) ¯ãáâì

"

®¡®§­ ç ¥â äã­ªæ¨î

x! 1 " n+1 ;

(

x " ; t

"

). „«ï ¤®áâ â®ç­® ¬ «ëå

"

ᢥà⪠

k

=

"

k 2C 1 0

(

Q

T

). ’ ª

ª ª

k5 x k k p;Q T ; k5 x

k k p;Q T ;

¨

k k t k 1;Q T k

k t k 1;Q

T

, â®

k5 x k k p;Q T ; !

0

¨

k k t k 1;Q T !

0.

ãáâì

k;t

(

x

) =

k

(

x;t

). ’®£¤ 

k;t 2C 1 0

()

;

supp

x;t

; Q T

=

(0

;T

).

ˆá¯®«ì§ãï ¢¥á®¢®¥ ­¥à ¢¥­á⢮ ã ­ª à¥ (1), ¨¬¥¥¬

Z

D j

k;t

(

x

)

j

p

dC Z D j5 x k;t j p d

¤«ï «î¡®£® ®âªàë⮣® ®£à ­¨ç¥­­®£® ¬­®¦¥á⢠

D

.

‘ ¯®¬®éìî ­¥à ¢¥­á⢠ ƒ¥«ì¤¥à  ®ç¥¢¨¤­®

j

(

D

)

j 1,p Z D j k;t jd p C Z D j5 x k;t j p d:

„ «¥¥ ¯®«ã稬

j

(

D

)

j 1,p jTj 1,p T Z 0 Z D j k jddt 1 p C T Z 0 Z D j5 x k j p ddt:

Žç¥¢¨¤­®,

T R 0 R D j k

jddt!

0 ¤«ï «î¡®£® ®âªàë⮣® ®£à ­¨ç¥­­®£®

¬­®¦¥áâ-¢ 

D

¨§ . ‘«¥¤®¢ â¥«ì­®, ­ ©¤¥âáï ¯®¤¯®á«¥¤®¢ â¥«ì­®áâì

f k

g

â ª ï, çâ®

k 2 C 1 0

(

Q T

)

;

0

k

1

;

k

= 1 ¢ ®ªà¥áâ­®áâ¨

e;

k

!

0 ¯. ¢. ¢

Q T

¨

k5 x k k p;Q T ;

!

0

; k k

t k

1;Q

T

(6)

2. “áâà ­¥­¨¥ ®á®¡¥­­®á⥩

ãáâì|®£à ­¨ç¥­­ ï ®¡« áâì¢R n

; n1; Q

T

=(0;T]¤«ï

­¥ª®â®-ண® 䨪á¨à®¢ ­­®£® T >0 ¨ S

T

=@(0;T]; ,

T =S

T

[(ft =0g)(,

T |

¯ à ¡®«¨ç¥áª ï £à ­¨æ æ¨«¨­¤à  Q

T ).

 áᬮâਬ ¢ Q

T

ãà ¢­¥­¨¥ ¢¨¤ 

@u

@t

,divA(x;t;u;5

x

u)+B(x;t;u;5

x

u)=0; (3)

£¤¥ 5

x u =(

@u

@x1 ;:::;

@u

@xn

), A=(A 1

;:::;A n

), ä㭪樨 A(x;t;;) ¨ B(x;t;;)

㤮¢«¥â¢®àïîâ ãá«®¢¨î Š à â¥®¤®à¨.

à¥¤¯®«®¦¨¬,ç⮯ਢá¥å(x;t)2Q

T

¨ 2R nf0g; 2R n

¤«ï­¥ª®â®à®£®

p2(1;1)áãé¥áâ¢ã¥âª®­áâ ­â >0¨¨§¬¥à¨¬ë¥ä㭪樨 f

1 ;f

2 ;f

3 ;g

2 ;g

3 ;h

3

â ª¨¥, çâ® ¢ë¯®«­¥­ë á«¥¤ãî騥 ãá«®¢¨ï:

jA(x;t;;)jjj p,1

!(x)+g

2 jj

p,1

!(x)+g

3

!(x); (4)

jB(x;t;;)jf

1 jj

p,1

!(x)+f

2 jj

p,1

!(x)+f

3

!(x); (5)

A(x;t;;) jj p

!(x),f

2 jj

p

!(x),h

3

!(x); (6)

¤«ï ¯®ç⨠¢á¥å x 2 ¨ ¢á¥å 2 R , 2 R n

, £¤¥ !(x) | p-¤®¯ãáâ¨¬ë© ¢¥á,

f

1 2L

p;Q

T ;

, f

2 ;f

3 ;h

3 2L

1;Q

T ;

, g

2 ;g

3 2L

p

p,1 ;Q

T ;

.

Ž¡®¡é¥­­ë¬à¥è¥­¨¥¬ ãà ¢­¥­¨ï(3)¯à¨ãá«®¢¨ïå(4){(6)­ §®¢¥¬

äã­ª-æ¨î u 2W 1;0

p;loc (Q

T

;),¥á«¨

ZZ

Q

T

f,u'

t

+A(x;t;u;5

x u)5

x

',B(x;t;u;5

x

u)'gdxdt =0

¤«ï ¢á¥å '2C 1

0 (Q

T ).

ˆá¯®«ì§ãïâ¥å­¨ªã,¯à¥¤«®¦¥­­ã.‘¥à¨­ë¬ [15],  ­ «®£¨ç­®

१ã«ì-â â ¬ ‹. Œ. . ‘ à ¨¢ë [4] ¤®ª §ë¢ ¥âáï

‹¥¬¬  2. ãáâì Q

T

| ®âªàë⮥ ¬­®¦¥á⢮ ¢ R n+1

¨ b2 R nf0g. ãáâì

u ï¥âáï à¥è¥­¨¥¬ ãà ¢­¥­¨ï (3) ¢Q

T

¨ ¯ãáâì | ¯à®¨§¢®«ì­ ïäã­ªæ¨ï

á ª®¬¯ ªâ­ë¬ ­®á¨â¥«¥¬ ¢ Q

T

â ª ï, çâ® 2L

1 (Q

T

) ¨ 2W 1;0

p (Q

T

;); p

1;

t 2L

1 (Q

T

). ’®£¤  ¨¬¥¥â ¬¥áâ® à ¢¥­á⢮

ZZ

Q

T

A(x;t;u;5

x u)5

x ( e

bu

),B(x;t;u;5

x u) e

bu

, e

bu

b t

(7)

p;loc

z 2W 1

p (Q

T

;)\C

0 (Q

T ) ¨ z

t 2L 1;Q T , ¯à¨ç¥¬ kuk 1;Q T +kzk 1;Q T

+k5

x zk p p;QT; +kz t k 1;Q T M:

’®£¤  áãé¥áâ¢ã¥â ¯®áâ®ï­­ ï C =C(M;f

1 ;f 2 ;f 3 ;g 2 ;g 3 ;h 3 ) â ª ï, çâ® ZZ QT jz 5 x uj p

ddtC:

C ”ã­ªæ¨ï =jzj p 2W 1;0 p (Q T

;)\C

0 (Q

T

). ˆá¯®«ì§ãï«¥¬¬ã 2, ¨¬¥¥¬

ZZ Q T ,e ,bu @jzj p @t

+A5

x (jzj

p

e bu

),B(jzj p

e bu

)

dxdt=0:

‘ ãç¥â®¬ ãá«®¢¨©(4){(6) ¯®«ã稬

(8)

I

3 pe

bkuk1

kg

3 k

p

p,1 ;QT;

k5

x zk

p;Q

T ;

;

I

4 e

bkuk

1

kzk

1

kz5

x uk

p,1

p;QT; kf

1 k

p;Q

T ;

;

I

5 e

bkuk

1

kuk p,1

1

kzk p

1 kf

2 k

1;Q

T ;

;

I

6 e

bkuk

1

kzk p

1 kf

3 k

1;Q

T ;

;

I

7 +I

8

C(M;f

2 ;h

3 );

I

9 e

bkuk

1

kzk p,1

1 kz

t k

1;Q

T :

Žæ¥­¨¬ ⥯¥àì «¥¢ãîç áâì

ZZ

Q

T j5

x uj

p

jzj p

e bu

ddte ,kuk1

ZZ

Q

T j5

x uj

p

jzj p

ddt:

‘®¡¨à ï ¢¬¥á⥠®æ¥­ª¨ «¥¢®© ¨ ¯à ¢®© ç á⥩ ­¥à ¢¥­á⢠ (7), ®ª®­ç â¥«ì­®

¨¬¥¥¬

kz5

x uk

p

p;Q

T ;

kz5

x uk

p,1

p;Q

T ;

C

3 (M;f

1 )+C

6 (M;f

2 ;f

3 ;g

2 ;g

3 ;h

3 ):

‹¥¬¬  ¤®ª § ­ . B

’¥®à¥¬  1. ãáâì Q

T

| ®âªàë⮥ ®£à ­¨ç¥­­®¥ ¬­®¦¥á⢮ ¢ R n +1

, e |

ª®¬¯ ªâ ¢ Q

T

­ã«¥¢®© (p;)-¥¬ª®áâ¨. …᫨ äã­ªæ¨ï u 2 W 1;0

p;loc (Q

T

;ne;)\

L

1 (Q

T

) 㤮¢«¥â¢®àï¥â ãà ¢­¥­¨î (2) ­  ¬­®¦¥á⢥ Q

T

ne, â® áãé¥áâ¢ã¥â

¥¤¨­á⢥­­®¥ ¯à®¤®«¦¥­¨¥ u~ 2 W 1;0

loc ;p (Q

T

;) à¥è¥­¨ï u â ª®¥, çâ® u~ ¥áâì

à¥-襭¨¥ ãà ¢­¥­¨ï (3) ­  Q

T .

C ãáâì k

| ¯®á«¥¤®¢ â¥«ì­®áâì ä㭪権 ¨§ «¥¬¬ë 1. ãáâì äã­ªæ¨ï

2 C 1

0 (Q

T

) á ª®¬¯ ªâ­ë¬ ­®á¨â¥«¥¬ S Q

T

; 0 1; = 1 ¢

®ªà¥áâ-­®á⨠! ¬­®¦¥á⢠e. Ž¯à¥¤¥«¨¬ ¯®á«¥¤®¢ â¥«ì­®áâì ä㭪権 z k

= (1, k

).

Žç¥¢¨¤­® z k

2 C 1

0 (Q

T

ne). ‹¥£ª® ¢¨¤¥âì, çâ® k5

x z

k

k

p;QT;

C, £¤¥ C |

¯®áâ®ï­­ ï, ­¥ § ¢¨áïé ï ®â k. ’ ª ª ª u 2 W 1;0

p;loc (Q

T

;ne;), = 1 ­  !, ¨

¬¥à  ¬­®¦¥á⢠ e à ¢­  ­ã«î, â®

Z

! juj

p

j1, k

j p

ddt

®áâ ¥âáï ®£à ­¨ç¥­­ë¬ ¯à¨k !1. ’ ª ª ª k

!0 ¯. ¢., â®u 2L

p;Q

T ;;loc

.

„ «¥¥ ¯® «¥¬¬¥ 2 kz k

5

x uk

p;QT;

C, ¨ â. ª. z k

! ¯®ç⨠¢áî¤ã, â®

k 5

x uk

p;Q ;

C ¨ 5

x u2L

(9)

„ «¥¥  ­ «®£¨ç­ë¬ à áá㦤¥­¨¥¬ ¤®ª §ë¢ ¥¬, çâ®

x

ï¥âáï

áâà®-£¨¬ á㡣ࠤ¨¥­â®¬, â. ¥. ­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì ä㭪権

' i

2 C 1

(

Q

T

)

â ª¨å, çâ® ¢ë¯®«­ïîâáï ãá«®¢¨ï (2).

’¥¯¥àì ¤®ª ¦¥¬, çâ®

u

ï¥âáï à¥è¥­¨¥¬ (3) ¢

Q

T

. ãáâì

'2 C 1

0

(

Q

T

),

¨¬¥¥¬

ZZ

Q

T

[

A5 x

((1

, k

)

'

)

,B

(1

, k

)

',u

(1

, k

)

'

)

t

]

dxdt

= 0

:

‘«¥¤®¢ â¥«ì­®,

ZZ

Q

T

(1

, k

)[

A5

x

',B',u'

t

] =

ZZ

Q

T

'

[

u

(

k

)

t

,A

(

k

)

x

]

dxdt:

‚¢¨¤ã ⮣®, çâ®

k

!

0 ¯. ¢., ¯¥à¢ë© ¨­â¥£à « áâ६¨âáï ª

ZZ

Q

T

(

A5 x

',B',u'

t

)

dxdt:

‚â®à®© ¨­â¥£à « ¢ ᨫã ãá«®¢¨© (4){(6) ­¥ ¯à¥¢®á室¨â ¢¥«¨ç¨­ë

kuk

1 k'k

p k

jt k

p

+

k5

x

k

k

p;Q

T ;

k'k

1 ,

k5

x uk

p,1

p;Q

T ;

+

kuk p,1

1 kg

2 k

p

p,1 ;Q

T ;

+

kg

3 k

p

p,1 ;Q

T ;

:

’ ª ª ª

k k

t k

p

!

0

; k5 x

k

k

p;Q

T ;

!

0, â® ¯®á«¥¤­¥¥ ¢ëà ¦¥­¨¥ ¬®¦­® ᤥ« âì

ª ª 㣮¤­® ¬ «ë¬. ‘«¥¤®¢ â¥«ì­®,

ZZ

Q

T

(

A5 x

',B',u'

t

)

dxdt

= 0

:

’ ª¨¬ ®¡à §®¬

u

| ï¥âáï à¥è¥­¨¥¬ (3) ¢

Q

T

¨ ⥮६  ¤®ª § ­ .

B

‹¨â¥à âãà 

1. Aronson D. G. Removable singularities for linear parabolic equations // Arch.

Rational Mech. Anal.|1964.|V. 17.|P. 79{84.

(10)

3{12

Œ. ‘. €«¡®à®¢ 

3. Gariepy R., Ziemer W. P. Removable sets for parabolic equations // J. London

Math. Soc.|1981.|V. 21, No. 2.|P. 311{318.

4. Saraiva L. M. R. Removable singularities and quasilinear parabolic equations //

Proc. London Math. Soc.|1984.|V. 48, No. 3.|P. 385{400.

5. Šà ©§¥à ‚., Œî««¥à . “áâà ­¨¬ë¥ ¬­®¦¥á⢠ ¤«ï ãà ¢­¥­¨ï

⥯«®¯à®-¢®¤­®á⨠// ‚¥áâ. Œƒ“.|1973.|ü 3.|C. 26{32.

6. Ziemer W. P. Regularity at the boundary and removable singularities for

so-lutions of quasilinear parabolic equations // Proc. Center for Math. Anal.

Australia Nat. Univ.|1982.|V. 1.|P. 17{25.

7. ‚®¤®¯ìï­®¢ ‘. Š.  §à殮­­ë¥ ¬­®¦¥á⢠ ¢ ¢¥á®¢®© ⥮ਨ ¯®â¥­æ¨ « 

¨ ¢ë஦¤ î騥áï í««¨¯â¨ç¥áª¨¥ ãà ¢­¥­¨ï // ‘¨¡. ¬ â. ¦ãà­.|1995.|

T. 36, ü 1.|C. 28{36.

8. ‚®¤®¯ìï­®¢ ‘. Š. ‚¥á®¢ë¥ ¯à®áâà ­á⢠ ‘®¡®«¥¢  ¨ £à ­¨ç­®¥

¯®¢¥¤¥-­¨¥ à¥è¥­¨© ¢ë஦¤ îé¨åáï £¨¯®í««¨¯â¨ç¥áª¨å ãà ¢­¥­¨© // ‘¨¡. ¬ â.

¦ãà­.|1995.|T. 36, ü 2.|C. 278{300.

9. ‚®¤®¯ìï­®¢ ‘. Š. ‚¥á®¢ ï

L

p

-⥮à¨ï ¯®â¥­æ¨ «  ­  ®¤­®à®¤­ëå £à㯯 å //

‘¨¡. ¬ â. ¦ãà­.|1992.|T. 33, ü 2.|C. 29{48.

10. ‚®¤®¯ìï­®¢ ‘. Š., Œ àª¨­  ˆ. ƒ. ˆáª«îç¨â¥«ì­ë¥ ¬­®¦¥á⢠ ¤«ï

à¥-襭¨© áã¡í««¨¯â¨ç¥áª¨å ãà ¢­¥­¨© // ‘¨¡. ¬ â. ¦ãà­.|1995.|T. 36,

ü 4.|C. 805{818.

11. ‚®¤®¯ìï­®¢ ‘. Š., —¥à­¨ª®¢ ‚. Œ. à®áâà ­á⢠ ‘®¡®«¥¢  ¨

£¨¯®í««¨¯-â¨ç¥áª¨¥ ãà ¢­¥­¨ï // ‹¨­¥©­ë¥ ®¯¥à â®àë, ᮣ« á®¢ ­­ë¥ á ¯®à浪®¬.|

®¢®á¨¡¨àáª: ˆ§¤-¢® ˆ­-â  ¬ â-ª¨ ‘Ž €,|1995.|C. 3{64.

12. Lu G. Weigthed Poincare and Sobolev inequalities for vector elds

sat-isfying Hormander's condition and applications // Revista Matematica

Iberoamericana.|1992.|V. 8, No. 4.|P. 367{439.

13. Fabes E. B., Kenig C. E., and Serapioni R. R. The local regularity of solutions

of degenerate elliptic equations // Comm. in P. D. E.|1982.|V. 7, No. 1.|

P. 77{116.

14. Jerison D. The Poincare inequality for vector elds satisfying Hormander's

condition // Duke Math. J.|1986.|V. 53, No. 2,|P. 503{523.

15. Serrin J. Introduction to dierentiation theory.|University of Minnesota,

1965.

Referensi

Dokumen terkait

The Internet (including local area networks (LANS), wide area networks (WAN) and all electronic platforms for communication) is the primary means of data communications in

A sample of 336 Asian and Pacific Island students from a range of faculties at the University of Wollongong reported their per- ceptions of prejudice in the local and

The robustness vector is a measure of how much the performance alters with respect to ITAE and noise bandwidth for all combinations of production lead time at 50%, 100%, and 150% of

&#34; nding ` good solutions a of the machine sequencing problem, the GJS algorithm is embedded in a local search concept : starting with a feasible solution (ful &#34; lling

f autonomous agent architectures: 1 in the last years manufacturing research started to study possible applications of autonomous agent the- ory to production planning and

a customer and the manufacturer is in a service centre, therefore service centres are most suitable for collecting information about the behaviour of products in real

That is, the Farrell proportional distance function projects an input}output vector onto the weak e$cient subset and not necessarily onto the graph e$cient subset, generally

supported by the findings in Choueke, 1992; 1996) that the g rowth of the learning organisation model through the development of action learning is a social process and is organic..