• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
7
0
0

Teks penuh

(1)

An Extension of Witzgall’s Result

on Convex Metrics

Una Extensi´

on del Resultado de Witzgall

sobre M´

etricas Convexas

Luca Guerrini (

[email protected]

)

Universit`a degli Studi di Bologna

Dipartimento di Matematica per le Scienze Economiche e Sociali Viale Filopanti 5, 40126 - Bologna, Italy

Abstract

In [5] Witzgall proved that any weak metric defined on a real vector space, which is convex in each of the arguments, is determined by a weak gauge. In this paper we extend this result to any continuous weak metric defined on the positive cone in a totally ordered vector space, which is convex in each of the arguments.

Key words and phrases: Weak metric, weak gauge, convex metric.

Resumen

En [5] Witzgall prob´o que cualquier m´etrica d´ebil definida sobre un espacio vectorial real que sea convexa en cada uno de sus argumento, est´a determinada por una gauge d´ebil. En este trabajo se extiende ese resultado a cualquier m´etrica d´ebil continua definida sobre el cono po-sitivo en un espacio vectorial totalmente ordenado, que sea convexa en cada uno de sus argumentos.

Palabras y frases clave:m´etrica d´ebil, gauge d´ebil, m´etrica convexa.

1

Introduction

In continuous location theory the concept of distance is of fundamental impor-tance and many different metrics may be of interest according to the applica-tions. Witzgall was the first to point out the fact that practical distances are

(2)

seldom symmetric [6]. Let E be a real vector space. A weak gauge onE is a the derived distancedis a convex function. This implies that, for anyx∈E, each of the functionsd(x,·) andd(·, x) is convex onE. In [5] Witzgall proved that the converse holds (see e.g. [2],[3],[4] for asymmetric distance problems concerning distances derived from gauges). The aim of this paper is to show that this is also true for any continuous convex weak metric defined on the positive cone Cin a totally ordered vector spaceE.

2

Main results

Let us recall some definitions [1]. An ordered set (E,≤) is a non-empty setE equipped with a relation ≤ which is reflexive, antisymmetric and transitive. If, in addition, for any two elements x, y ∈ E either x ≤ y or y ≤x, then (E,≤) is called a totally ordered set. A lattice is an ordered set (E,≤) such that any two elements have a least upper bound and a greatest lower bound. Any totally ordered set is clearly a lattice. A real vector space E which is also an ordered set is called an ordered vector space if the order and the vector space structure are compatible. This means that if x, y ∈ E, x ≤ y implies x+z ≤ y+z for all z ∈ E and αx ≤ αy for all real α≥ 0. If, in addition, E is a lattice, then we speak of a Riesz space or a vector lattice.

R is clearly an example of a totally ordered vector space. Another example is given by Rn (n2) equipped with the so-called lexicographical order, i.e.

x= (x1, . . . , xn)<(y1, . . . , yn) =y, if there existsk∈ {0,1, . . . , n}such that next result says the converse also holds when the weak metric is continuous.

Main Theorem. Let E be a topological totally ordered vector space and let

C be its positive cone. Any continuous weak metric d: C×C → R+

on C

that is convex in each of the arguments comes from a weak gaugeγ:E→R+

.

(3)

Proposition. LetE be a totally ordered vector space and letC be its positive cone. Let dbe a weak metric on C convex in each of the arguments.

(i) Let z∈C. For w≥ −z,0≤β ≤1, and for w≥ −z/β,β >1 :

d(z+βw, z) =βd(z+w, z); (1)

d(z, z+βw) =βd(z, z+w). (2)

In particular, forw≥0,β≥0 :

d(βw,0) =βd(w,0), d(0, βw) =βd(0, w).

(ii) Let x∗, yC. For min{x, y} ≤umin{x, y}:

d(x∗, y)d(x+u, y+u). (3)

(iii) Let x, y∈C. For−min{x, y}/2≤u≤min{x, y}:

d(x+u, y+u) =d(x, y). (4)

Proof. (i) Let start proving (1). If β = 0,1, the result is immediate. Let β ∈(0,1). By the convexity ofdin the first argument

d(z+βw, z) = d((1−β)z+β(z+w), z)

≤ (1−β)d(z, z) +βd(z+w, z) =βd(z+w, z)

and by that in the second argument

d(z+w, z) ≤ d(z+w, β(z+w) + (1−β)z) +d(z+βw, z)

≤ βd(z+w, z+w) + (1−β)d(z+w, z) +d(z+βw, z)

= (1−β)d(z+w, z) +d(z+βw, z)

i.e. the inequality in the opposite direction. Let β ∈(1,+∞). As a conse-quence of the previous case

d(z+βw, z) =β 1

βd(z+βw, z).=βd(z+w, z).

(4)

(ii) Let x∗ y. Let α1. Takingz =y, w=xyand β =αin (1)

(5)

We would like to chooseu∗=uin (6). This can be done ifyu≤ −u y+u, i.e. if−y≤0≤y+ 2u. Hence

d(x+u, y+u)≤d(x, y), −y/2≤u. (7)

The statement follows from (5) and (7). Similarly the case x≤y.

Remark. In all of the proof of the previous Proposition we have left to the reader to check that with the inequalities assumed in the hypotheses all uses of d(·,·)are only applied to elements of C. For example, ifx∗y, then as

−y∗uy, it follows that0xyx+u. Hence,x+uC.

Corollary. Let the assumptions be as in the previous Proposition. Letx, y∈

C. For eachn≥0 :

This map is a weak gauge onE. (G1) is immediate, (G2) is a consequence of 2.1 (i). (G3) is as follows. Letu, v ∈E and supposeu≥v. Nowu+v ∈C or u+v /∈C. Letu+v∈C. Ifu∈C,v∈C, by (3) withx∗=u+v,y=v andu∗=v:

(6)

Instead, ifu∈C,v /∈C, by (3) withx∗,yas before andu=uv:

γ(u+v) =d(u+v,0)≤d(u+v, u)+d(u,0)≤d(0,−v)+d(u,0) =γ(v)+γ(u).

The case u /∈C,v /∈C cannot happen because thenu+v /∈C. Similarly the caseu /∈C,v∈C because thenuv. Next, letu+v /∈C. Ifu∈C,v /∈C, forx∗=v,y=uv andu=u+v in (3):

d(0,−u−v)≤d(0,−v) +d(−v,−u−v)≤d(0,−v) +d(u,0).

Ifu /∈C,v /∈C, by (3) withx∗,yas before andu=v:

d(0,−u−v)≤d(0,−v) +d(−v,−u−v)≤d(0,−v) +d(0,−u).

The caseu∈C,v∈Ccannot happen because then u+v∈C, as well as the case u /∈C, v ∈C because then uv. Finally, d: C×C →R+

is derived fromγ. Indeed, asn→+∞in (8) and (9), we can conclude by the continuity ofdthat

γ(x−y) =d(x−y,0) =d(x, y), ifx≥y;

γ(x−y) =d(0, y−x) =d(x, y), ifx≤y.

Acknowledgements

I would like to express my gratitude to P. L. Papini for suggesting the problem and for time spent in discussions.

References

[1] Luxemburg, W. A., Zaanen, A. C., Riesz spaces I, North-Holland, Ams-terdam, 1971.

[2] Plastria, F.,On the destination optimality in asymmetric distance Fermat-Weber problems, Annals of Operations Research, vol. 40, 1992, 355–369.

(7)

[4] Plastria, F., Asymmetric distances, semidirected networks, and majority in Fermat-Weber problems, Locator: ePublication of Location Analysis, vol. 2, No. 1, 2001, 15–62.

[5] Witzgall, C.,On convex metrics, Journal of Research of the National Bu-reau of Standards B. Mathematics and Mathematical Physics, vol. 69B, No. 3, 1965, 175–177.

Referensi

Dokumen terkait

Dari pengujian beta yang dilakukan yaitu dengan pengujian perhitungan kategori jawaban dari kuesioner yang telah dibagikan, dapat diambil kesimpulan bahwa perangkat

Hasil penelitian menunjukkan responden astigmatisma yang mengeluh silau berjumlah 28 orang (82,4%) dan yang tidak mengeluh silau berjumlah 6 orang (17,6%), sedangkan

PSBN “ Tan Miyat ” Bekasi telah melakukan evaluasi dokumen kualifikasi Pekerjaan Pengadaan Bahan Permakanan Penerima Manfaat Panti Sosial Bina Netra ″ Tan Miyat

Sehubungan butir 1 (satu) diatas, maka Saudara diundang untuk mengadakan verifikasi Dokumen untuk Pengadaan Pekerjaan Pengadaan Suku Cadang Kapal dan Pemeliharaan Mesin

Pokja Pemilihan Penyedia Barang/Jasa Pekerjaan pada Satker Peningkatan Keselamatan Lalu Lintas Angkutan Laut Pusat akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk

DIREKTORAT JENDERAL PERHUBUNGAN UDARA KANTOR UNIT PENYELENGGARA BANDAR UDARA KELAS I H.AS.. Masa sanggah selama 3 (Tiga) hari kerja terhitung mulai tanggal

Demikian pula dengan perusahaan ALPA SPAREPART yang memerlukan suatu sistem informasi yang dapat mengatasi keterlambatan dalam memperoleh informasi stok barang,

maka perjanjian ini berlaku untuk PT. Wahana Makmur Sejati dengan PT. Abelindo Jaya Samudera. Ini be- rarti bahwa setiap perjanjian yang buat oleh kedua perusahaan