• Tidak ada hasil yang ditemukan

Macam macam dan Karakterisasi Material

N/A
N/A
Protected

Academic year: 2018

Membagikan "Macam macam dan Karakterisasi Material"

Copied!
9
0
0

Teks penuh

(1)

Review: Karakterisasi Nanomaterial

Mikrajuddin Abdullah(a) dan Khairurrijal

Laboratorium Sintesis dan Fungsionalisasi Nanomaterial Fakultas Matematika dan Ilmu Pengetahuan Alam, ITB

Jalan Ganeca 10 Bandung 40132

(a)

E-mail: din@fi.itb.ac.id

Diterima Editor : 20 Mei 2008

Diputuskan Publikasi : 2 Juni 2008

Abstrak

Pada paper ini akan dibahas sejumlah metode karakterisasi yang biasa digunakan dalam penelitian nanomaterial.

Kata Kunci: SEM, TEM, AFM, XRD, BET

1. Pendahuluan

Riset nanomaterial, khususnya bidang eksperimen, tidak bisa lepas dari kegiatan karakterisasi atau pengukuran. Dengan karakterisasi kita bisa yakin bahwa material yang disintesis sudah memenuhi kriteria nanostruktur, yaitu salah satu dimensinya berukuran nanometer. Dalam kesepakatan umum sampai saat ini, dimensi nanometer adalah ukuran yang kurang dari 100 nm. Karakterisasi juga memberikan informasi tentang sifat-sifat fisis maupun kimiawi nanomaterial tersebut. Ini sangat penting karena ketika dimensi material menuju nilai beberapa nanometer (kurang dari 10 nm), banyak sifat fisis maupun kimiawi yang bergantung pada ukuran. Ini menghasilkan sejumlah kekayaan sifat dan peluang memanipulasi atau menggenerasi sifat-sifat baru yang tidak dijumpai pada material ukuran besar (bulk).

2. Scanning electron micrsocopy (SEM)

SEM adalah salah satu jenis mikroskop elektron yang menggunakan berkas elektron untuk menggambar profil permukaan benda. Prinsip kerja SEM adalah menembakkan permukaan benda dengan berkas elektron bernergi tinggi seperti diilustrasikan pada Gbr. 1. Permukaan benda yang dikenai berkas akan memantulkan kembali berkas tersebut atau menghasilkan elektron sekunder ke segala arah. Tetapi ada satu arah di mana berkas dipantulkan dengan intensitas tertinggi. Detektor di dalam SEM mendeteksi elektron yang dipantulkan dan menentukan lokasi berkas yang dipantulkan dengan intensitas tertinggi. Arah tersebut memberi informasi profil permukaan benda seperti seberapa landai dan ke mana arah kemiringan.

Pada saat dilakukan pengamatan, lokasi permukaan benda yang ditembak dengan berkas elektron di-scan ke seluruh area daerah pengamatan. Kita dapat membatasi lokasi pengamatan dengan melakukan zoon-in atau zoom-out. Berdasarkan arah pantulan berkas pada berbagai titik pengamatan maka profil permukan benda

dapat dibangun menggunakan program pengolahan gambar yang ada dalam komputer.

ambar 1 Dalam SEM berkas elektron bernergi tinggi

EM memiliki resolusi yang lebih tinggi daripada mikros

Berkas elektron

Permukaan material Elektron

pantulan Berkas elektron

Permukaan material Elektron

pantulan

G

mengenai permukaan material. Elektron pantulan dan elektron sekunder dipancarkan kembali dengan sudut yang bergantung pada profil permukaan material.

S

kop optik. Hal ini disebabkan oleh panjang gelombang de Broglie yang dimiliki elektron lebih pendek daripada gelombang optik. Makin kecil panjang gelombang yang digunakan maka makin tinggi resolusi mikroskop. Panjang gelombang de Broglie elektron adalah

λ

=

h

/

p

, dengan h konstanta Planck dan p adalah elektron. Momentum elektron dapat ditentukan dari energi kinetik melalui hubungan

m

p

K

=

2

/

2

, dengan K energi kinetik elektron dan m ya.

Dalam SEM momentum

adalah massan

, berkas elektron keluar dari filamen panas lalu dipercepat pada potensial tinggi V. Akibat percepatan tersebut, akhirnya elekton memiliki energi

(2)

kinetik

K

=

eV

. Dengan demikian kita dapat menulis

momentum elektron sebagai

p

=

2

meV

, dan panjang

gelombang de Brogile

λ

=

h

/

2

meV

. Umumnya tegangan yang digunakan alah puluhan kilovolt. Sebagai ilutrasi, misalkan SEM dioperasikan pada tegangan 20 kV maka panjang gelombang de Broglie elektron sekitar 9 × 10-12 m.

Syarat agar SEM dapat men pada SEM ad

ghasilkan citra yang tajam

gam dapat diamati dengan

ambar 2 Permukaan isolator perlu dilapisi logam agar

Pada metode evaporasi, material yang akan diamat

proses ini dapat berlangsung efisien maka logam pelapis

Gamb rtikel, (b)

anotube, dan (c) partikel yang terorganisasi [1-3].

Prinsip kerja sputtering mirip dengan evaporasi. Namun sputtering dapat berlangsung pada suhu rendah (suhu k

Elektro adalah permukaan benda harus bersifat sebagai

pemantul elektron atau dapat melepaskan elektron sekunder ketika ditembak dengan berkas elektron. Material yang memiliki sifat demikian adalah logam. Jika permukaan logam diamati di bawah SEM maka profil permukaan akan tampak dengan jelas. Bagaimana dengan material bukan logam seperti isolator?

Agar profil permukaan bukan lo

jelas dengan SEM maka permukaan material tersebut harus dilapisi dengan logam seperti diilustrasikan pada Gbr. 2 [1-3]. Film tipis logam dibuat pada permukaan material tersebut sehingga dapat memantulkan berkas elektron. Metode pelapisan yang umumnya dilakukan adalah evaporasi dan sputtering

G

dapat diamati dengan jelas di bawah SEM.

i permukaanya ditempatkan dalam satu ruang (chamber) dengan logam pelapis. Ruang tersebut dapat divakumkan dan logam pelapis dapat dipanaskan hingga mendekati titik leleh. Logam pelapis diletakkan di atas filamen pemanas. Mula-mula chamber divakumkan yang dikuti dengan pemanasan logam pelapis. Atom-atom menguap pada permukaan logam. Ketika sampai pada permukaan material yang memiliki suhu lebih renda, atom-atom logam terkondensasi dan membetuk lapisan film tipis di permukaan material. Ketebalan lapisan dapat dikontrol dengan mengatur lama waktu evaporasi. Agar

yang digunakan harus yang memiliki titik lebur rendah. Logam pelapis yang umumnya digunakan adalah emas.

300 nm

3 µ

m

3

µ

m

a

1

µ

m

b

c

300 nm

3 µ

m

3 µ

m

3

µ

m

a

1

µ

m

b

c

Permukaan material

Permukaan material

Lapisan tipis logam Pelapisan (coating)

Lapisan tipis logam Pelapisan (coating)

ar 3 Foto SEM sejumlah sampel: (a) pa n

(3)

permukaan sample akan menguap dan kembali menjadi isolator. Akhirnya bayangan yang terekam tiba-tiba menjadi hitam.

Gambar 3 adalah beberapa contoh bayangan material yang diamati dengan SEM. Seperti pada Gbr. 3(a) ta

enjadi acuan

Gam

an teliti maka f to SEM difoto copy perbesar beberapa kali lipat seperti

lah titik tengah jangkauan

dan su

Jangkauan diameter (nm) Jumlah partikel mpak jelas bahwa ukuran partikel yang dibuat tidak

seragam, tetapi bervariasi. Pernyataan selanjutnya adalah bagaimana menentukan distribusi ukuran partikel?

Perhatikan, setiap foto SEM memiliki bar skala yang panjangnya sudah tertentu. Bar tersebut m

penentuan ukuran partikel. Contohnya ada bar yang tertulis panjangnya 0,5 µm. Jika diukur dengan penggaris misalkan panjang bar tersebut adalah 1 cm maka 1 cm pada gambar bersesuaian dengan panjang 0,5 µm ukuran sebenarnya. Jika kita mengukur diameter partikel pada gambar dengan menggunakan penggaris adalag 2,2 cm maka diameter riil partikel tersebut adalah (2,2 cm/1 cm) × 0,5 µm = 1,1 µm.

bar 4 Foto SEM yang difoto copy perbesar.

Agar pengukuran dapat dilakukan deng o

ilustrasi pada Gbr. 4. Kita lakukan pengukuran pada gambar hasil foto copy. Kita lakukan pengukuran diameter ratusan partikel kemudian membuat tabulasi misalkan seperti pada Tabel 1.

Dari Tabel 1 kita buatkan diagram titik dengan menggunakan sumbu datar ada

mbu vertical adalah jumlah partikel. Diagram yang kita peroleh tampak pada Gbr. 5.

Tabel 1 Tabulasi ukuran partikel

0 0 200 4 400 20

600 100

800 150 1000 140 1200 120 1400 80 1600 10 1800 10

si istrubusi log-normal.

fungsi log-normal. Kita pilih arameter distribusi σ dan

Gambar 5 Diagram sebaran ukuran partikel.

Gambar 6 Fitting hasil pengukuran dengan fung d

Selanjutnya kita fiting titik-titik pada diagram dengan menggunakan

p g

fitting yang paling dekat dengan data pengamatan. Contoh

r

yang memberikan kurva

3

3

µ

µ

m

m

3

µ

m

3

3

µ

µ

m

m

0 500 1000 1500 2000

0 40 80 120 160

Diameter partikel (nm)

Ju

m

lah part

ik

el

0 500 1000 1500 2000

0 40 80 120 160

Diameter partikel (nm)

Ju

m

lah part

ik

el

0 500 1000 1500 2000

0 40 80 120

Diameter partikel (nm)

Ju

m

lah

p

art

ik

el

160

0 500 1000 1500 2000

0 40 80 120

Diameter partikel (nm)

Ju

m

lah

p

art

ik

el

(4)

kurva tampak pada Gbr 6. Da nilai parameter kita dapat menentukan diameter rata-rata partikel.

SEM yang paling canggih pun yang ada saat ini tidak sanggup mengamati ukuran partikel dalam orde beberapa nanometer. Bayangan jelas yang

ri

adalah alat yang paling teliti yang digunakan usinya

Gam anotube.

Gam ngan

. Atomic Force Microscopy (AFM)

h yang sederhana FM juga sangat sederhana dan dapat dipahami hanya dengan dapat diperoleh

SEM minimal hanya sekitar 50 nm. Gambar ini pun biasanya diamati dengan field emission SEM (FE-SEM). Di bawah ukuran tersebut SEM memberikan bayangan yang kabur.

3. Transmission Electron Microscopy (TEM) TEM

untuk enentukan ukuran partikel karena resol yang sangat tinggi. Partikel dengan ukuran

m

beberapa nanometer dapat diamati dengan jelas menggunakan TEM. Bahkan dengan high resolution TEM (HR-TEM) kita dapat mengamati posisi atom-atom dalam partikel.

Prinsip kerja TEM sangat mirip dengan prinsip kerja peralatan rontgen di rumah. Pada peralatan roentgen, gelombang sinar-X menembus bagian lunak tubuh (daging) tetapi ditahan oleh bagian keras tubuh (tulang). Film yang diletakkan di belakang tubuh hanya menangkap berkas sinar-X yang lolos bagian lunak tubuh. Akibatnya, film menghasilkan bayangan tulang.

Pada TEM, sample yang sangat tipis ditembak dengan berkas electron yang berenergi sangat tinggi (dipercepat pada tegangan ratusan kV). Berkas electron dapat menenbus bagian yang “lunak” sample tetapi ditahan oleh bagian keras sample (seperti partikel). Detektor yang berada di belakang sample menangkap berkas electron yang lolos dari bagian lunak sample. Akibatnya detector menangkap bayangan yang bentuknya sama dengan bentuk bagian keras sample (bentuk partikel).

Dalam pengoperasian TEM yang paling sulit dilakukan adalah mempersiapkan sample. Sampel harus setipis m

bar 7 Foto TEM partikel dan multi wall carbon

ungkin sehingga dapat ditembus electron. Sampel ditempatkan di atas grid TEM yang terbuat dari tembaga atau karbon. Jika sample berbentuk partikel, biasanya partikel didispersi di dalam zat cair yang mudah menguap seperti etanol lalu diteteskan ke atas grid TEM. Jika sample berupa komposit partikel di dalam material lunak seperti polimer, komposit tersebut harus diiris tipis (beberapa nanometer). Alat pengiris yang digunakan adalah microtome.

Gambar 7 adalah contoh foto TEM sample partikel dan carbon nanotube. Dari citra CNT tampak garis-garis adalah barisan atom-atom karbon yang membentuk dinding multiwall carbon nanotube. Jumlah lapisan kulit dapat ditentukan dengan mudah hanya dengan menghitung jumlah garis pada dinding.

Dengan menggunakan high resolution TEM (HR-TEM) kita dapat menentukan lokasi atom-atom dalam sample seperti tampak pada Gbr. 8. Titik-titik pada gambar tersebut adalah atom-atom penyusun partikel. Dari citra tersebut maka susunan kristal partikel dapat ditentukan. Jika sample yang diamati dengan TEM berbentuk partikel maka distribusi ukuran partikel dapat ditentukan dengan cara yang sama dengan menentukn distribusi ukuran partikel hasil foto SEM.

n

bar 8 Foto semuah nanopartikel de menggunakan HR-TEM.

4

(5)

konsp

pada Gbr. 9. Cantilever beserta tip digerak

.

Gam diamati

den n nanotube

ang ditempatkan di atas substrat.

an. Perubahan sudut antilever menyebabkan perubahan arah sinar pantul. Ke dua su

sudut cantlever dapat di ketahui, dan pada akhirnya

tentang dimensi tekstur arah normal (tegak lurus p

sifat fisis semikonduktor tersebut. Bebera a besaran yang bergantung pada lebar celah pita energi adalah mobilitas pembawa muatan dalam

pektrum absorp

an.

p foton. Radiasi yang diberik

s. fisika dasar. AFM tidak memerlukan sistem vakum,

tegangan tinggi, maupun fasilitas pendingin seperti pada SEM dan TEM.

Perangkat utama sebuah AFM adalah sebuah tip yang sangat tajam yang ditempatkan di ujung cantilever, seperti tampak

an sepanjang permukaan benda yang diamati. Dengan adanya tekstur permukaan benda yang tidak rata maka selama mengerakkan tip sudut kemiringan cantilever berubah-ubah. Perubahan sudut tersebut memberikan informasi kealaman tekstur permukaan benda.

Gambar 9 Contoh tip AFM yang difoto dengan SEM

bar 10 Contoh profil permukaan sample yang gan AFM. Sampel berupa single wall carbo y

Sudut yang dibentuk cantilever ditentukan dengan mengarahkan berkas tipis sinar laser ke arah cantilever dan sudut sinar pantul ditentuk

c

dut tersebut berkaitan satu dengan lainnya. Dengan kata lain, dengan mengetahui sudut sinar pantul maka

kedalaman tekstur permukaan benda dapat dketahui. Sudut pantul sinar laser pada berbagai titik scan ditentukan. Selanjutnya dengan program pengolahan citra yang ada dalam computer, prfil permukaan sample dapat dibangun.

Gambar 10 adalah contoh profil permukaan sample yang diamati dengan AFM. Sampel berupa sebuah carbon nanotube yang dipuntir. Luas permukaan sample yang diamati adalah 4 µm × 4 µm. AFM memberikan informasi yang teliti

ermukaan) tetapi sering kurang teliti untuk dimensi tekstur arah tangensial (sejajar permukaan).

Pergeseran posisi cantilever arah normal sedikit saja (puluhan nanometer) dapat direkam dengan baik. Kesalahan pengamatan arah sejajar sample sering terjadi jika ada perubahan tekstur pada ukuran yang lebih kecil daripada ukuran tip.

5. Karakterisasi Lebar Celah Pita Energi

Lebar celah pita energi semikonduktor menentukan sejumlah

p

semikonduktor, kerapatan pembawa muatan, s

si, dan spectrum luminisensi. Ketika digunakan untuk membuat divais mikroelektronik, lebar celah pita energi menentukan tegangan cut off persambungan semikonduktor, arus yang mengalir dalam devais, kebergantungan arus pada suhu, dan sebagainya.

Bagaimana cara menentukan lebar celah pita energi dalam semikonduktor? Caranya adalah melaui pengamatan spektrometri ultraviolet-visible (UV-Vis). Alat yang digunakan adalah spectrometer UV-Vis. Bagaimana metode ini bekerja? Mari kita diskusik

Dasar pemikiran metode tersebut cukup sederhana. Jika material disinari dengan gelombang elektromagnetik maka foton akan diserap oleh elektron dalam material. Setelah menyerap foton, elektron akan berusaha meloncat ke tingkat energi yang lebih tinggi.

Perhatikan ilustrasi pada Gbr. 11. Jika energi foton yang diberikan kurang dari lebar celah pita energi maka elektron tidak sangggup meloncat ke pita valensi. Elektron tetap berada opada pita valensi. Dalam keadaan ini dikatakan elektron tidak menyera

an pada material diteruskan melewati material (transmisi). Elektron baru akan meloncat ke pita konduksi hanya jika energi foton yang diberikan lebih besar daruipada lebar celah pita energi. Elektron menyerap energi foton tersebut. Dalam hal ini kita katakana terjadi absorpsi gelombang oleh material. Ketika kita mengubah-ubah frekuensi gelombang elektromagnetik yang dijatuhkan ke material maka energi gelombang di mana mulai terjadi penyerapan oleh material bersesuaian dengan lebar celah pita energi material.

(6)

EM aka iri). erial iradiasi dengan gelombang EM dengan energi foton

bih besar daripada lebar celah energi.

Gambar 11 Jika semikonduktor diradiase dengan dengan energi foton kurang dari lebar celah energi m elektron tidak sanggup meloncat ke pita konduksi (k Elektron dapat mencapai pita konduksi jika mat d

le

Misalkan semikonduktor diradiasi dengan gelombang elektromagnetik dengan frekuensi ω dan intensitas

I

o

(

ω

)

. Sebagian energi gelombang dibasorpsi

leh material dan sebagian ditransmisikan. Intensitas

cahaya

o

yang ditransmisikan memenuhi persamaan atenuasi

[

x

]

I

I

T

(

ω

)

=

o

(

ω

)

exp

σ

(

ω

)

(1)

dengan

σ

(

ω

)

adalah koefisien absorpsi yang bergantung pada frekuensi foton dan x adalah ketebalan material. Persamaan di atas dapat ditulis ulang sebagai

Spektrometer UV-Vis memungkinakan kita menentukan intensitas absorpsi s

atau panjang gelombang. Gam

spektru absorpsi UV-Vis partikel CdSe yang dambil dengan

ikel

ari kurva tersebut kita dapat menentukan

ebagai fungsi frekuensi bar 12 adalah contoh m

spektroskop UV-Vis [4].

Gambar 12 Contoh spektrum absorpsi UV-Vis part CdSe.

D

σ

(

ω

)

sebagai fungsi ω dari daerah tampak hingga ultraviolet. Untuk material semikonduktor dengan celah pita energi langsung (direct band gap) ada hubungan yang sederhana antara

σ

(

ω

)

dan ω, khususnya pada foton berdekatan dengan nilai celah pita ener semiko

energi gi nduktor. Pada jangkauan energi tersebut koefisien absorpsi memenuhi persamaan

[

σ

(

ω

)

h

ω

]

2

=

A

(

h

ω

E

g

)

(3)

dengan

E

g adalah lebar celah pita energi dan A sebuah konstanta.

Dari fungsi

σ

(

ω

)

yang diper

kita pl t nilai tersebut di daerah sekitar celah energi duk

adalah

oleh dari eksperimen o

semikon tor dalam sebuah grafik yang sumbu

vertikalnya

[

σ

(

ω

)

h

ω

]

2 dan sumbu datar adalah

ω

h

. Kurva yang diperoleh tampak seperti Gbr. 13 [4]. Pita konduksi

Pita konduksi Pita konduksi

Pita valensi Pita konduksi

Radiasi EM dengan energi lebih dari lebar celah energi

Pita valensi Radiasi

EM dengan energi kurang dari lebar celah energi

Pita valensi Pita konduksi

Radiasi EM dengan energi lebih dari lebar celah energi

Pita valensi Pita konduksi

Radiasi EM dengan energi lebih dari lebar celah energi

Pita valensi Radiasi

EM dengan energi kurang dari lebar celah energi

Pita valensi Radiasi

EM dengan energi kurang dari lebar celah energi

400 500 600 700 800

2 4 6

Panjang gelombang (nm)

In

Sekitar band gap

400 500 600 700 800

2

Panjang gelombang (nm)

In

(7)

Perpotongan kurva dengan sumbu datar tidak lain daripada lebar celah pita energi bahan.

ton ang

kuansi ahaya dapat didekati dengan persamaan

dengan adalah konstanta.

6. Metode Scherrer

sangat mahal, baik dari segi harga, biaya operasional, maupun pemeliharaan. Tidak semua universitas di dunia memiliki fasilitas ini termasuk

-negara maju. Di beberapa negara maju,

orang sebagai alternatif adalah metode Scherr

satu orientasi menghasilkan puncak

ecil daripada ukuran kristallites yang menghasilkan pola

i bidang pantul sinar-X yang terbatas. uncak difraksi dihasilkan oleh interferensi secara konstru

Gambar 13 Kurva

[

σ

(

ω

)

h

ω

]

2 terhadap energi fo untuk nanopartikel PbS. Kurva kiri untuk partikel y besar dan kurva kanan untuk partikel yang kecil.

Untuk semikonduktor yang memiliki indirect-band gap, hubungan antara koesisien absorpsi dengan fre c

TEM adalah alat yang

universitas di negara

TEM banyak yang ditempatkan di pusat penelitiaan yang digunakan secara bersama-sama oleh beberapa universitas atau lembaga riset. Bagaimana kita menentukan ukuran partikel nanoi jika TEM tidak tersedia?

Ketiadaan TEM tidak menghalangi kita untuk menentukan ukuran partikel nano meskipun dengan pendekatan yang tidak terlalu akurat. Metode yang sering digunakan

er. Ukuran kristallin ditentukan berdasarkan pelebaran puncak difraksi sinar-X yang muncul. Metode ini sebenarnya memprediksi ukuran kristallin dalam material, bukan ukuran partikel. Jika satu partikel mengandung sejumlah kritallites yang kecil-kecil maka informasi yang diberikan metiode Schrerrer adalah ukuran kristallin tersebut, bukan ukuran partikel. Untuk partikel berukuran nanometer, biasanya satu partikel hanya mengandung satu kristallites. Dengan demikian, ukuran kristallinitas yang diprediksi dengan metode Schreer juga merupakan ukuran partikel.

Berdasarkan metode ini, makin kecil ukuran kristallites maka makin lebar puncak difraksi yang

dihasilkan, seperti diilustrasikan pada Gbr. 14. Kristal yang berukuran besar dengan

difraksi yang mendekati sebuah garis vertikal. Kristallites yang sangat kecil menghasilkan puncak difraksi yang sangat lebar. Lebar puncak difraksi tersebut memberikan informasi tentang ukuran kristallites

0,4 0,6 0,8 1,0 1,2

Gambar 14 Makin lebar puncak difraksi sinar-X maka makin kecil ukuran kristallites. Ukuran kristallites yang menghasilkan pola difraksi pada gambar bawah lebih k

difraksi atas.

Mengapa kristallites yang kecil menghasilkan puncak yang lebar? Penyebabnya karena kristallites yang kecil memilik

P

ktif cahaya yang dipantulkan oleh bidang-bidang kristal. Dalam kuliah tentang interferensi gelombang kita mendapatkankan bahwa makin banyak jumlah celah interferensi maka makin sempit ukuran garis frinji pada layar. Interferensi celah banyak dengan jumlah celah tak berhingga menghasilkan frinji yang sangat tipis tetapi sangat terang. Jumlah celah yang sangat banyak identik dengan kirtallites yang ukuran besar. Karena difraksi sinar-X pada dasarnya adalah interferensi oleh sejumlah sumber maka kita dapat memprediksi hubungan antara lebar pucak difraksi dengan ukuran kristallites berdasarkan perumusan interferensi celah banyak.

Hubungan antara ukuran ksirtallites dengan lebar puncal difraksi sinar-X dapat diproksimasi dengan persamaan Schrerer [5-7],

B

dengan D adalah ukuran (diameter) kristallites, λ adalah panjang gelombang si

(8)

Bentuk yang lebih umum lagi adalah menggunakan parameter B bukan sebagai FWHM dari puncak difraksi, tetampi menggunakan B dari persamaan Warren, yaitu

dengan FWHMsp adalah lebar punca

pada setengah maksimum dan FWHMst adalah lebar puncak difraksi kristal yang sangat besar yang lokasi

-X untuk sample tersebut pada ja

Bagaimana menentukan ukuran kristallin. Yang FWHM. Untuk maksud ini kita pilih satu puncak yang paluing jelas. D

dut antara 28,0o sampai 30,5º.

na dapat tersebut yang kan digunakan untuk memprediksi ukuran kristall

eori BET diperkenalkan tahun 1938 oleh Stephen Brunauer, Paul Hugh Emmett, dan Edward Teller. BET dari nama ketiga ilmuwan tersebut.

20 30 40 50 60 70 80

k difraksi sample

puncaknya berada di sekitar lokasi puncak sample yang akan kita hitung. Tetapi, umumnya FWHMst sangat kecil sehingga persamaan (5) dapat diangap sebagai aproksimasi yang cukup baik.

Sekarang kita coba melihat aplikasi rumus ini untuk mencari ukuran kristallin suatu sample. Pertama kita amati pola difraksi sinar

ngkauan sudut yang cukup luas (antara 0o sampai 90o). Gambar 15 adalah contoh pola difraksi sinar-X sample yttrium oksida (Y2O3) yang dibuat dengan pemanasan dalam larutan polimer. Berdasarkan foto SEM ukuran partikel beberapa ratus nanometer. Kita ingin menentukan ukuran kristallin sehingga kita dapat mengertahui apakah partikel tersebut adalah single kristallin atau polikristallin. Kita melihat sejumlah puncak difraksi. Dengan membandingkan dengan referensi dalam powder diffraction file kita meyakini bahwa material yang dibuat benar-benar merupakan Y2O3.

700

Gambar 15 Difraksi sinar-X untuk partikel Y2O3

pertama yang dilakukan adalah menentukan

i sini kita memilih puncak yang lokasinya sekitar sudut 30o. Kita gambar ulang pola difraksi hanya dengan melibatkan data sekitar sudut 30o. Gambar 16 adalah pola difraksi yang kita peroleh dengan mengambil jangkauan sudut antara 28o sampai 30,5o. Umumnya bentuk puncak difraksi dianggap memenuhi fungsi Lorentzian. Dengan fiiiting Lorentzian menggunakan software Origin Microcal, kita dapatkan hasil seperti pada Gbr 17. Data yang diperoleh dari fitting tersebut adalah luas kurva =

616,83, pusat kurva = 29,205o, FWHM = 0,72371o, offset = 391,91, dan tinggi = 542,60.

Gambar 16 Difraksi sinar-X pada jangkauan sudut yang sangat sempit, yaitu sekitar puncak yang berada pada su

Gambar 17 Fitting Lorentzian untuk puncak difraksi sekitar sudut antara 28,0o hingga 30,5º.

Yang terpenting bagi kita adalah data lokasi puncak dan lebar puncak difraksi kare

a

ing dengan menggunakan persamaan Schreerer. Karena sumbu datar adalah sudut dinyatakan dalam 2θ maka yang digunakan sebagai B adalah setengahnya yaitu

B = 0,72371o/2 = 0,361855o = 0,361855×π/180 rad =

0,006312 rad. Panjang gelombang sinar-X yang digunakan dalam eksperimen adalah 0,1540598 nm. Dengan dmikian, perkiraan ukuran kristallin adalah D ≈ 0,1540598/(0,006312 × cos(29,205º) ≈ 26 nm.

28.0 28.5 29.0 29.5 30.0 30.5 100

28.0 28.5 29.0 29.5 30.0 30.5 100

28.0 28.5 29.0 29.5 30.0 30.5 100

(9)

Teori i

kel makuin kecil. Dengan mende

si satu la

ni menjelaskan fenomena adsorpsi molekul gas di permukaan zat padat (melekatnya molekul gas di permukaan zat padat). Kuantitas molekul gas yang diadsorsi sangat bergantung pada luas permukaan yang dimiliki zat pada tersebut. Dengan demikian, secara tidak langsung teori ini dapat dipergunakan untuk menentukan luas permukaan zat padat.

Jika zat padat berupa partikel-partikel maka luas permukaan untuk zat padat dengan massa tertentu makin besar jika ukuran parti

finisikan luas permukaan spesifik sebagai perbandingan luas total pemukaan zat padat terhadap massanya maka luas permukaan spesifik makin besr jika ukuran partikel makin kecil. Metode BET memberikan informasi tentang luas permukaan spesifik zat padat. Dengan demikian metode ini dapat digunakan untuk memperkirakan ukuran rata-rata partikel zat padat. Untuk material berpori, luas permukaan spesifik ditentukan oleh porositas zat padat. Dengan demikian metode BET juga dapat digunakan untuk menentukan porositas zat padat.

Landasan utama teori BET adalah (a) molekul dapat teradsoprsi pada permukaan zat padat hingga beberapa lapis. Teori ini lebih umum dari teori adsorp

pis molekul dari Langmuir. (b) Juga dianggap bahwa tidak ada interaksi antar molekul gas yang teradsorpsi pada permukaan zat padat. (c) Lalu, teori adsorpsi satu lapis dari Langmuir dapat diterapkan untuk masing-masing lapis gas. Dengan asumsi di atas, BET mendapatkan persmaan umum yang menerangkan keadaan molekul yang teradsorpsi pada permukaan zat padat.

dengan P adalah tekanan keseimbangan,

tekanan saturasi, υ adalah jumlah gas yang teradsopsi, υm adalah mlah gas yang teradsoprsi pada satu lapis, dan c

Po adalah

ju

adalah konstanta BET yang memenuhi

dengan E1 adalah kalor adso adalah kalor lebur

lot BET adalah kurva dengan sumbu datar P/Po

pada Gbr. 18. Dengan memperhatikan persam

adro, s adalah penampang lintang adsorp

Sejumlah metode karakterisasi nanomaterial telah ijelaskan. Karakterisasi sangat diperlukan untuk

eyakinan bahwa kita telah berhasil mensintesis materi

[1] M bdullah, T. Isakndar, S. Shibamoto, T. Ogi, and uyama, Acta Materialia, 52, 5151 (2004).

dullah, F. iskandar, and K. Okuyama, Proc.

[3] Adv.

dan sumbu tegak 1/υ[(Po/P)-1]. Kurva tersebut berbentuk garis lurus seperti

aan (7) maka kemiringan kurva sama dengan

(c-1)/υmc, dan titik potong kurva dengan sumbe tegak sama

dengan 1/υmc. Dari dua nilai tersebut kita dapat menentukan c dan υm.

Berdasarkan nilai υm maka dapat dihitung luas permukaan total sample yang diukur, yaitu Stot = υmNs/V, dengan N bilangan Avog

si, dan V adalah volum satu mol gas yang diadsorpsi (volum molar). Nilai V dan s ada di referensi sehingga berdasarkan nilai υm dari plot BET maka luas

permukaan total sample dapat dihitung. Luas permukaan spesifik sama dengan luas permukaan total dibagi massa sample. Jadi luas pemukaan spesifik adalah S = Stot/m, dengan m adalah massa sample.

P

o

/

P

Gambar 18 Tipikal kurva BET.

Penutup d

memberi k

al dengan struktur nanometer. Karakterisasi juga akan memberikan informasi sifat-sifat material. Informasi sifat-sifat tersebut memberi peluang rekayasa material dalam skala nanometer untuk menghasilkan sifat khas yang berguna.

Referensi . A K. Ok [2] M. Ab

ITB. Eng. Sci. 36B, 125 (2004).

M. Abdullah, F. Iskandar, and K. okuyama, Mater. 14, 930 (2002).

Y. Wang and N. Herron, J. Ph (1991).

M. Abdullah, F. Isakndar J. Appl. Phys. 89, 6431 (2001). Y. Itoh,

19, 1077 (2004).

Gambar

gambar yang ada dalam komputer.
Gambar 4 Foto SEM yang difoto copy perbesar.
Gambar 7 Foto TEM partikel dan multi wall carbon
Gambar 10 Contoh profil permukaan sample yang
+4

Referensi

Dokumen terkait

Redding dalam buku Arni Muhammad mengemukakan lima dimensi penting dari iklim komunikasi, yaitu adalah; Supportiveness, atau bawahan mengamati bahwa hubungan

Bimbingan dan konseling relijius dan etis serta semua bidang konseling secara umum membutuhkan konselor yang memiliki ketajaman matahati dan kemampuan

(1) Aktivitas guru selama proses pembelajaran dengan menggunakan media blok pecahan pada siklus II diperoleh presentase 92,5% ini menunjukkan bahwa aktivitas guru

Bajidoran merupakan sebuah kesenian yang dalam memainkannya hampir sama Bajidoran merupakan sebuah kesenian yang dalam memainkannya hampir sama dengan permainan

Penelitian ini bertujuan untuk mendapatkan prototipe kompor bertekanan (tipe semawar, spiral, dan tabung) yang sebelumnya hanya bisa digunakan dengan bahan bakar

Pendekatan klarifikasi nilai ini juga sangat dekat dengan apa yang telah dilakukan Dewey mengenai perkembangan moral subyek didik. Walaupun pendekatan belum memuaikan Dewey,

Dengan ini menyatakan bahwa proposal Program Kreativitas Mahasiswa Pengabdian Masyarakat saya dengan judul:” Pelatihan Penulisan Karya Ilmiah Guna Meningkatkan Keterampilan

Pada penelitian yang dilakukan, evaluasi meliputi pengukuran dari kualitas VOIP yaitu penggunaan bandwidth , Jitter dan MOS ( Mean Opinion Score ).. Tujuannya adalah