• Tidak ada hasil yang ditemukan

ANALISA THERMAL STRESS PADA DINDING SILINDER LINIER ENGINE BERSILINDER TUNGGAL

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISA THERMAL STRESS PADA DINDING SILINDER LINIER ENGINE BERSILINDER TUNGGAL"

Copied!
6
0
0

Teks penuh

(1)

(1)

Mahasiswa Teknik Sistem Perkapalan ITS, (2),(3)Staff Pengajar Teknik Sistem Perkapalan ITS, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS)

Jl. Arief Rahman Hakim, Surabaya 60111

E-mail: syaifulwijayantara@ymail.com

Pada penelitian ini akan dilakukan analisa thermal stress pada body cylinder liner dan cylinder head dari linier engine dua tak otto 30,55 CC dengan variasi jumlah kecepatan rata-rata piston engine 1.02 m/s , 4.07 m/s , 4.58 m/s beban penuh. Hal ini dilakukan karena proses scavenging tidak terjadi secara baik sehingga performa engine tidak pada kondisi optimalnya. Pada penelitian ini menggunakan software yang berbasis finite element untuk menganalisa distribusi panas dan thermal stress. Tahapan penelitian meliputi pemasukan gambar geometry sylinder liner dan cylinder head ke dalam software dan proses analisa distribusi panas dan thermal stress analisis .Luaran dari penelitian ini berupa gambar persebaran thermal expansion, gambar dari persebaran thermal stress analysis, dan grafik perbandingan antar distribusi panas yang terjadi ketika engine berada pada kecepatan rata-rata piston engine 1.02 m/s , 4.07 m/s , 4.58 m/s. Selain grafik perbandingan antar distribusi panas pada tiap percepatan, luaran dari penelitian ini juga menyangkut grafik temperature terendah pada masing-masing percepatan.

Kata Kunci: Analisa Thermal Stress pada Cylinder Liner dan Cylinder Head

1. PENDAHULUAN

1.1 Latar Belakang

Penelitian tentang engine gerak linear sudah banyak dilakukan. Motor bakar gerak linear adalah salah satu alternatif engine inovatif karena dapat meningkatkan efisiensi mesin sekaligus dapat menghemat bahan bakar dan lebih ramah lingkungan. Gerakan liniear ini untuk mengurangi gesekan mekanis sekaligus untuk merubah menjadi daya efektif engine. Permasalahan yang terjadi dalam kajian sebelumnya yaitu Analisa Pengaruh Disain Sistem Pegas Terhadap Scavenging pada engine gerak linier bersilinder tunggal terdapat penurunan performa engine pada kecepatan rata-rata piston 1.02 m/s, 4.07 m/s , 4.58 m/s. Sehingga perlu adanya analisa pengaruhnya terhadap thermal stress pada dinding cylinder linier engine bersilinder tunggal. Maka dari itu, diperlukanlah sebuah analisa thermal stress pada dinding cylinder

linier engine bersilinder tunggal. Bila hal ini tidak dianalisa, maka tidak

diketahui seberapa besar thermal stress pada dinding cylinder linier engine bersilinder tunggal. Dampak dari thermal stress yang tinggi adalah terjadinya fatiq dan keretakan pada cylinder linier engine tersebut. Dalam mempelajari thermal stress pada cylinder linier engine bersilinder tunggal diperlukan ilmu untuk menentukan seberapa besar thermal

stress yang bisa terjadi pada linier engine. Untuk menyelesaikan permasalahan ini akan dilakukan dengan metode simulasi yaitu thermal stress analisis. CFD berbasis pada thermal stress akan digunakan untuk menganalisis thermal stress. Dengan menggunakan metode seperti tersebut diatas diharapkan dapat menyelesaikan permasalahan thermal stress pada dinding cylinder Engine Gerak Linier Bersilinder Tunggal

besarnya kalor yang masuk ke cylinder, dan temperature pada dinding cylinder liner. Dari tabel penelitian sebelumnya didapatkan grafik kenaikan temperature gas, besarnya kalor yang masuk ke dinding cylinder, dan temperature pada dinding cylinder liner. Pada penelitian sebelumnya temperature pada linier engine berkisar antara 126.89 -226.89 .

(Tabel 2.1 Hasil Analisa Heat Transfer dan Temperature dari Penelitian Sebelumnya)

kecepatan rata-rata piston Total Gas-Head Heat Transfer (WATT) Total Gas-Cylinder liner Heat Transfer (WATT) Cylinder Head Gas Tempera ture ( ) Cylinder Liner Gas Tempera ture ( ) 1.02 m/s 99.83 35.485 1552 872 4.07 m/s 93 52.29 11414.5 1354.91 4.58 m/s 38.41 25.84 1099.45 1054.68

(2)

2

2

2.2

Penentuan

Ambient

Temperature dan Daya Hantar

Kalor pada Udara

Pada penelitian ini nilai hantar kalor pada udara di asumsikan sebesar 1 W/ . .

2.2

Penentuan

Material

dari

Cylinder Head dan Cylinder

Liner

Pada penelitian ini engine yang di pakai adalah engine otto dua tak 30.55 CC.

Engine ini mempunyai material head dan cylinder liner yang sama yaitu berupa material aluminium Si alloy (campuran antara aluminium dengan silicon). Berikut ini adalah gambar geometry cylinder dari engine tersebut.

(Gambar 2.1 Gambar Geometry dari Cylinder Engine)

2.3

Pendefinisian Jenis dan Sifat

Material

pada

Geometry

Cylinder Head

Pada subab sebelumnya telah diterangkan mengenai jenis material yang akan di gunakan untuk mendefinisikan jenis material pada geometry.

Pendefinisian jenis material pada geometry dapat dilakukan pada software di bagian engineering data. Propertis material dapat dilihat pada table 2.1

2.4

Pendefinisian

Jenis

Meshing

yang Akan di Gunakan

Mesh yang di gunakan adalah Hexagonal berikut ini adalah spesifikasi dari mesh yang akan digunakan untuk mengenalisa

Tabel 2.2 Tabel Propertis dari Mesh Relevance Center Coarse

Element size 3 mm

Smoothing Low

Transition Fast

Span Angle Center medium

Minimum Edge Length 3.0728e-003 mm

2.5

Inisialisasi Temperature Awal

pada Geometry

Pada penelitian ini temperature mula-mula ditentukan sebesar 22 derajat celcius.

2.5.1 Inisialisasi Heat Convection pada

Geometry ke udara luar

Besarnya daya hantar kalor pada convection bebas udara berkisar antara 1-25 W/m^2.C . pada penelitian ini diambil nilai daya hantar sebesar 1 W/m^2.C .

2.5.2 Inisialisasi Wall Temperature

pada Cylinder Liner

Wall temperature telah ditentukan terlebih dahulu. Hal ini dikarenakan untuk menentukan wall temperature yang ideal pada engine 2 tak otto 30,55 CC. Pada cylinder head dibagi menjadi empat zona yaitu inlet, outlet, cylinder liner, dan cylinder head. Masing-masing zona mempunyai temperature yang berbeda. Untuk kecepatan rata-rata piston 1.02 m/s , 4.07 m/s , 4.58 m/s mempunyai wall temperature yang sama

(3)

3 Mulai

Penentuan Besarnya Kalor dan Temperatur pada Cylinder Liner

Penentuan Ambient Temperature dan Daya Hantar Kalor pada Udara

Penentuan Material dari Cylinder Head dan Cylinder Liner

Penentuan Parameter Untuk Inputan Steady State Thermal Analysis

Pos Processor Thermal Expansion

Thermal Stress Analysis

Pos Processor Thermal Stress Analysis

Selesai

2.5.3 Inisialisasi Besarnya Kalor yang

mengalir pada Cylinder Liner

Besarnya kalor yang masuk ke cylinder liner dan cylinder head dapat di lihat pada table 2.1

TIDAK

YA

YA TIDAK

Gambar 2.2 Flow Chart Langkah Pengerjaan penelitian

Dari perhitungan finite element pada software dan simulasi software di dapatkan gambaran persebaran temperature pada geometry. Setelah mengetahui hasil dari perhitungan dan simulasi software maka didapatkan table perbandingan antara kenaikan kecepatan rata-rata piston engine, temperature terendah, dan temperature tertinggi. Berikut ini adalah table dari kenaikan temperature terendah dan tertinggi.

3.

ANALISA DAN PEMBAHASAN

Dari perhitungan finite element pada software dan simulasi software di dapatkan gambaran persebaran temperature pada geometry. Setelah mengetahui hasil dari perhitungan dan simulasi software maka didapatkan table perbandingan antara kenaikan kecepatan rata-rata piston engine, temperature terendah, dan temperature tertinggi. Berikut ini adalah table dari kenaikan temperature terendah dan tertinggi.

Grafik 3.1 Grafik Perbandingan Temperature Terendah dan Tertinggi Pada Masing-Masing

Percepatan Piston Engine

Gambar Hasil Simulasi Distribusi Panas pada Body Cylinder 0 50 100 150 200 250 1.02 m/s 4.07 m/s 4.58 m/s Tem per at ure (C )

kecepatan rata-rata piston engine Temperature per RPM

Temperature Terendah Temperature Tertinggi

(4)

4

4 Gambar Distribusi Panas Terbesar pada

Cylinder Head

Dari hasil analisa thermal stress intensity, maka di dapatkan table thermal intensity terhadap kenaikan percepatan. Berikut ini adalah table dan grafik hasil analisa thermal stress intensity terhadap geometry dan grafik thermal stress terhadap kalor pada cylinder head dan cylinder liner.

Grafik Perbandingan Thermal Stress Tertinggi, Terendah, dan Percepatan engine

Grafik diatas menunjukan bahwa besarnya thermal stress tergantung dari kenaikan heat flow pada cylinder liner dan cylinder head. Thermal stress tertinggi terjadi pada saat kecepatan rata-rata piston engine berada pada kecepatan rata-rata piston engine 4.07 m/s, karena heat flow pada cylinder liner dan cylinder head lebih besar daripada engine kecepatan rata-rata piston engine 1.02 m/s dan 4.58 m/s. Hal ini dapat di tunjukan pada table Perbandingan besarnya total heat flow pada

cylinder liner dan cylinder head terhadap thermal stress tertinggi

Grafik Perbandingan Total Heat Flow pada Cylinder Liner dan Cylinder Head Terhadap

Thermal Stress Tertinggi

Total heat flow adalah total kalor yang masuk ke dinding cylinder. Besarnya tergantung dari penjumlahan kalor yang masuk ke cylinder liner dan cylinder head

Gambar Hasil Simulasi Thermal Stress intensity pada Body Cylinder Engine

Gambar Thermal Stress Terbesar pada Geometry 142 144 146 135.315 145.29 64.25 Ther m al S tre ss (M P a)

Total Heat Flow (WATT) Grafik Perbandingan antara Thermal Stress Tertinggi Dengan Total Heat Flow

(5)

5 Gambar Thermal Stress Terendah pada

Geometry

4.

KESIMPULAN DAN SARAN

Kesimpulan

Thermal stress terbesar pada saat kecepatan rata-rata piston engine 1.02 m/s

sebesar 145.8 MPa,

thermal stress terbesar pada saat kecepatan rata-rata piston engine 4.07 m/s

sebesar

145.9

MPa, dan

thermal stress terbesar pada saat kecepatan rata-rata piston engine 4.58 m/s

sebesar

144.6

MPa.

Thermal stress tertinggi berada pada permukaan cylinder head bagian luar. Hal ini terjadi karena perbedaan temperatur permukaan cylinder head bagian luar dengan udara sekelilingnya besar.

Saran

Dalam kenyataannya stress yang terjadi pada ruang bakar adalah akibat tingginya temperature dan tekanan. Untuk itu perlu kajian tentang stress total yang diakibatkan karena tekanan dan temperature ruang bakar.

DAFTAR PUSTAKA

Borman, G., & Nishiwaki, K. (1987). Transient Heat Transfer Analysis of a Diesel Engine Piston. fatiq,crack,growth analysis, 2-3.

Hutton, D. (2004). Fundamentals of Finite Element Analysis . McGraw-Hill. USA: McGraw-Hill.

Lee, M. (1973). Cylinder Wall Temperature Measurement In An Air Cooled Two Stroke Cycle S.I Engine. Ottawa university journal, 150.

Martinez, I. (2013). Heat and Mass Convection Boundary Layer Flow. Heat transfer journal, 5.

Mikalsen, R., & Roskilly, A. (2007). A review of free piston engine history and application. Applied Therm, 7.

Nagalingam, B., & Gopalakrishnan, K. (1994). Performance of Thin-Ceranic-Coated Combustion Chamber With Gasoline and Methanol as Fuels in a Two-Stroke SI Engine. Madras University, 8.

Starink, M. (2007). Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys. National University of Malaysia, 14.

UCAPAN TERIMAKASIH

Syukur Alhamdulillah penulis panjatkan kepada Allah SWT, karena berkat rahmat, karunia dan pertolonganNya. Penulis dapat menyelesaikan tugas akhir yang berjudul “Analisa thermal stress pada dinding

cylinder linier engine bersilinder tunggal”

digunakan untuk memenuhi syarat akademis yang harus di tempuh di jurusan Teknik Sistem Perkapalan. Penulis juga mengucapkan terimakasih yang sebesar-besarnya kepada : 1. Bapak Dr. Ir. Agoes A. Masroeri,

M.Eng selaku Ketua Jurusan Teknik Sistem Perkapalan FTK ITS

2. Bapak Dr. I Made Ariana, ST, M.T selaku Sekretaris Jurusan Teknik Sistem Perkapalan FTK ITS

3. Bapak Trika Pitana, ST. M.Sc. selaku Koordinator Tugas Akhir

4. Bapak Ir. Tjoek Soeprajitno selaku Dosen Pembimbing satu

5. Bapak Dr. Ir. Aguk Zuhdi M.F, M.Eng selaku Dosen Pembimbing dua

(6)

Gambar

Tabel 2.2 Tabel Propertis dari Mesh  Relevance Center  Coarse
Gambar 2.2 Flow Chart Langkah Pengerjaan  penelitian
Grafik Perbandingan Thermal Stress Tertinggi,  Terendah, dan Percepatan engine

Referensi

Dokumen terkait

4.Faktor-Faktor Yang Mempengaruhi Pengembangan Karir ... Pegawai Negeri Sipil ... Pengaruh Persepsi Pengembangan Karir terhadap Work Engagement Pada Pegawai Negeri Sipil

Berdasarkan pembahasan tersebut, maka diambil kesimpulan bahwa BPPKAD Kabupaten Sampang yang termasuk Instansi Pemerintah, dalam melakukan pengelolaan aset tetap tanah

Selanjutnya, dilaporkan bahwa itik-itik yang tidak mengalami rontok bulu memiliki produksi telur yang sangat nyata lebih tinggi daripada itik yang mengalami rontok bulu

Pada penelitian ini dilakukan sintesis membran kitosan tercetak ion pada permukaan karbon (KTI-C) untuk pemisahan ion logam Fe(III).. Parameter yang dipelajari adalah

Asuransi Jiwa Syariah Bumiputera Cabang Banda Aceh agar terus berupaya untuk meningkatkan kualitas produknya serta kedepannya diharapkan para pemasar di Asuransi Jiwa

Dio suka menyimpan SMS-SMS dari ceweknya yang sekarang sudah jadi mantan. "Soalnya, dia pacar pertamaku, jadi

Dalam membangun jaringan wireless dibutuhkan sebuah accsess point untuk memancarkan sinyal wifinya akan tetapi accsess point juga mempunyai batas jangkauan untuk

Tingkat pencapaian Sasaran-1.1 dapat tercapai sesuai target yang diharapkan dengan terlaksananya penyajian data dan informasi secara periodik sesuai dengan jadwal