• Tidak ada hasil yang ditemukan

perhitungan struktur

N/A
N/A
Protected

Academic year: 2021

Membagikan "perhitungan struktur"

Copied!
117
0
0

Teks penuh

(1)

REKAPITULASI PENULANGAN BALOK

Proyek :

Tump.Tul Atas Lap.Tul Atas Tump.Tul Atas Tump.Tul Atas Lap.Tul Atas Tump.Tul Atas

No balok No. Btg Mt kgm Ml kgm N kg Tump.Tul Torsi Lap.Tul Torsi Tump.Tul Torsi No balok No. Btg Mt kgm Ml kgm N kg Tump.Tul Torsi Lap.Tul Torsi Tump.Tul Torsi

Dimensi ETABS Tump.Tul Bawah Lap.Tul Bawah Tump.Tul Bawah Dimensi ETABS Tump.Tul Bawah Lap.Tul Bawah Tump.Tul Bawah

(2)

KONTROL LUAS TULANGAN

Proyek : Rumah Tinggal Bapak Ronald Manyar Surabaya

Kode KP K1a K1b K1c K1d K2a K2b

b (mm) 130 600 650 300 D 150 150 h (mm) 130 150 150 300 300 300 650 Ag (mm2) 16900 90000 97500 90000 70714.29 45000 97500 jml (bh) 4 8 8 12 6 4 8 d (mm) 10 13 13 16 13 13 13 A (mm2) 314.2857 1062.286 1062.286 2413.714 796.7143 531.1429 1062.286 % 1.86% 1.18% 1.09% 2.68% 1.13% 1.18% 1.09%

Kode K1d SLOOF B1a B1b B1c B1d B1e

b (mm) D 130 150 150 150 200 200 h (mm) 300 400 550 500 500 400 350 Ag (mm2) 70714.29 52000 82500 75000 75000 80000 70000 jml (bh) 6 6 7 7 6 8 6 d (mm) 13 13 16 13 13 13 13 A (mm2) 796.7143 796.7143 1408 929.5 796.7143 1062.286 796.7143 % 1.13% 1.53% 1.71% 1.24% 1.06% 1.33% 1.14% Kode B1f B1g B2a B2b B1c b (mm) 150 150 150 150 130 h (mm) 250 400 400 300 130 Ag (mm2) 37500 60000 60000 45000 16900 jml (bh) 5 5 5 4 4 d (mm) 13 13 12 12 10 A (mm2) 663.9286 663.9286 565.7143 452.5714 314.2857 % 1.77% 1.11% 0.94% 1.01% 1.86%

(3)

Data :

* Nama Kolom C4

* Dimensi Kolom h : 300 mm

b : 500 mm

* Selimut Beton : 65 mm

* Kualitas beton K 225 Mpa

* fy : 400 Mpa * f'c ( 0.083*K Beton ) : 25 Mpa * Diameter : Tulangan : 22 mm Sengkang : 10 mm * d' : 86 mm * d : 214 mm * d'/h : 0.28666667 * Nu : 800 kN 74535 * Mu 240 kNm 122623380 * Vu 0 kN * Ag 1500 cm2 150000 mm2 * f.Ag.0.85.fc’ 20718.75 untuk f 0.65 25500 untuk f 0.8 * f.Ag.0.5.fc’.h 478125 untuk f 0.85 * Nu 0.38612368 untuk f 0.65 f.Ag.0.85.fc’ * Nu 0.31372549 untuk f 0.8 f.Ag.0.85.fc’ * Mu 0.501960784 f.Ag.0.5.fc’.h * r : 0.0175 %

( Iterasi Kolom CUR IV )

* b : 1

( Iterasi Kolom CUR IV )

* r 0.000175 r*b * As 26.25 mm2 r*b*d * Atul 380.2857143 mm2 1/4*22/7*D2 * n Tul 0.069027047 D 22 * n Pakai 2 D 25 * Diameter sengkang : 10 mm * fy sengkang 240 Mpa * Vc 89.16666667 kN 1/6*fc’*b*d * Vn 0 kN Vu/0.6 * Vn < Vc 0 < 240

Perhitungan Kolom Dengan Daktilitas Terbatas

Perhitungan tulangan kolom

(4)

Memakai tulangan geser min * S min : 107 d/2 * S pasang 100 mm Kesimpulan * Dimensi kolom h : 300 mm b : 500 mm * Selimut beton 65 mm * Tulangan 2 D 25 * Sengkang Tumpuan 10 - 100 mm 1/4 l Lapangan 10 - 150 mm 1/2 l

(5)

3.3 REKAPITULASI PENULANGAN BALOK

Tump.Tul Atas Lap.Tul Atas No balok No. Btg Mt kgm Ml kgm N kg Tump.Tul Torsi Lap.Tul Torsi Tump.Tul Bawah Lap.Tul Bawah

Tul Begel Tul Begel

B1 52-55 3200 2305 6403 2 D13 2 D13 (15/40) - -2 D13 2 D13 d8-100 d8-200 B2 50 8810 6600 8904 4 D13 2 D13 (15/50) 2d8 2d8 2 D13 3 D13 d8-100 d8-200 B3 74 3775 3218 5316 2 D13 2 D13 (15/25) - -2 D13 2 D13 d8-75 d8-150 B4 88 2657 148 2930 2 D13 2 D13 (10/25) - -2 D13 2 D13 d8-150 d8-200 B5 56 2458 1720 4674 2 D13 2 D13 (15/30) - -2 D13 2 D13 d8-200 d8-200 B6 63 16642 15138 18505 7 D13 3 D13 (20/50) 2d8 2d8 3 D13 6 D13 d8-75 d8-100 B7 64,65 14887 9000 7512 6 D13 3 D13 (20/50) - -3 D1-3 4 D13 d8-150 d8-200 B8 76 2188 1543 3715 2 D13 2 D13 (20/50) 2 D13 2 D13 d8-200 d8-200 B9 68 1677 6708 5458 2 D13 2 D13 (20/40) 2 D13 3 D13 BAB 3 HAL. 8

(6)

d8-200 d8-200

(7)

Tump.Tul Atas Tump.Tul Torsi Tump.Tul Bawah Tul Begel 2 D13 -2 D13 d8-100 4 D13 2d8 2 D13 d8-100 2 D13 -2 D13 d8-75 2 D13 -2 D13 d8-150 2 D13 -2 D13 d8-200 7 D13 2d8 3 D13 d8-75 6 D13 -3 D1-3 d8-150 2 D13 2 D13 d8-200 2 D13 2 D13 BAB 3 HAL. 10

(8)

d8-200

(9)

DAFTAR ISI :

I. DATA-DATA BANGUNAN II. PROSEDUR PERHITUNGAN III. PERHITUNGAN PELAT IV. PERHITUNGAN BALOK V. PERHITUNGAN KOLOM VI. PERHITUNGAN PONDASI VII. LAMPIRAN

PERHITUNGAN STRUKTUR

(10)

II. PROSEDUR PERHITUNGAN

Umum :

Kombinasi beban berfaktor : U = 1.2D + 1.6L Reduksi kekuatan bahan :

- Lentur , Ø = 0.8

- Axial bersengkang (Kolom), Ø = 0.65

- Geser , Ø = 0.6

Pembebanan :

Sesuai Peraturan Pembebanan 1983 Beban pada plat lantai :

I. Beban Mati a) 1. Plat beton = 0.12 m X 2400 kg/m3 = 288 kg/m2 2. Spesi = 2 cm X 21 kg/m2/cm = 42 kg/m2 3. keramik = 24 kg/m2 = 24 kg/m2 4. Rangka plafon = 7 kg/m2 = 7 kg/m2 5. Penutup plafon = 11 kg/m2 = 11 kg/m2 + 372 kg/m2 b) 4. Dinding bata = 4.27 m X 250 kg/m2 = 1068 kg/m'

II. Beban Hidup

1. Lantai rumah = 200 kg/m2

Kombinasi pembebanan U = 1.2D + 1.6L

II.A. Perhitungan Pelat : II.A.1 Data - data :

Tebal plat = t Panjang arah x = lx Panjang arah y = ly Tebal selimut beton = 20 cm d = t - selimut - 1.2 tulangan b = 1 m

II.A.2 Gaya dalam :

Beban-beban yang bekerja : 1. Beban mati

2. Beban hidup

Wu = 1.2 * qD + 1.6 * qL lihat tabel PBI 71 : X untuk Mlx X untuk Mly X untuk Mtx X untuk Mty Didapat Momen : Mlx = 0.001 * Wu * lx2 * X Mly = 0.001 * Wu * lx2 * X Mtx = - 0.001 * Wu * lx2 * X Mty = - 0.001 * Wu * lx2 * X f = 0.8

(11)

II.A.3 Desain penulangan :

Penulangan Lapangan / Tumpuan : (Momen sesuaikan dengan hasil hitungan PBI 71) Rn perlu = Mn perlu / ( b . d^2 )

ρ balance = 0.85 . fc'/fy x 600/(600+fy) ρ max = 0.75 . ρ balance

r min u/ plat dg.Tul.fy240Mpa (altf SKSNI dan CUR) =0.0025

m = fy/0.85 . fc'

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

Coba diameter tulangan, didapat As1

Jarak tulangan (s cm) = 1000 cm / (Asperlu/As1)

II.B. Perhitungan Balok : II.B.1 Data - data :

Lebar balok = b Tinggi balok = h Tebal selimut beton = 30 cm d = h - selimut - 1.2 tulangan

II.B.2 Gaya dalam :

Beban-beban yang bekerja :

1. Beban mati (merata/m2 plat dan berat dinding bata/m'balok) a. merata/m2 plat

b. dinding bata /m' balok 2. Beban hidup

Wu = 1.2 * qD + 1.6 * qL

Dengan bantuan program SAP 2000 didapat :

1. Gaya dalam : Momen lapangan/tumpuan, Gaya geser tumpuan, Torsi balok, dan axial kolom 2. Desain beton bertulang

Untuk desain balok, ambil output : Momen dan geser balok. Mutu beton = fc' (Mpa)

Mutu baja = fy (Mpa)

f = 0.8

II.B.3 Desain penulangan : Lentur Balok :

Mu = momen max. di tumpuan/lapangan (sesuai SAP 2000) Mn perlu = Mu/Ø = Mu / 0.8

dimensi balok = b (lebar), h (tinggi) dan d ( h-0.5tul-cover) E (modulus elastisitas baja tul) = 200 000 Mpa

xb (garis netral kondisi seimbang) = ( ξcu / ( ξcu + ξy ) ) x d x max = 0.75 . xb

C max = 0.85 . fc' . b . β1 . xmax

utk fc' < 27.5 Mpa β1 = 0.85 …(C.K.Wang hal 46)

(12)

Penulangan Lapangan / Tumpuan : Rn perlu = Mn perlu / ( b . d^2 ) ρ balance = 0.85 . fc'/fy x 600/(600+fy) ρ max = 0.75 . ρ balance

r min = 1.4 / fy.

m = fy/0.85 . fc'

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

Coba diameter tulangan, didapat As1 Jumlah tulangan = As / As1

Geser Balok :

Kuat geser balok beton Vc = 1/6

√ (

fc' bw . d)

Reduksi kekuatan terhadap geser Ø = 0.6 jika : Vu < 0.5 ØVc ----> tidak perlu tul geser

jika : 0.5 ØVc < Vu < ØVc ----> pakai tul geser minimal Vs min = 1/3 (Mpa) . bw . d

Øvs = vu < Øvc vu = Vu / bd

Øvc = 1/6

fc'

Øvs = (vu - Øvc)

A sengk = (vu - Øvc) b y / (Øfy) A sengk min = b.y / (3 fy)

II.C. Perhitungan Kolom :

Menggunakan program desain beton bertulang dengan SAP 2000

berdasarkan desain penulangan ACI dengan modifikasi ke SKSNI

(Faktor beban dan reduksi kekuatan disesuaikan dengan SKSNI)

II.D. Perhitungan Pondasi :

Data :

Allowable soil strength

=

σ

(kg/cm2)

Kuat tekan beton

=

fc'

(kg/cm2)

Kuat leleh baja tulangan

=

fy

(kg/cm2)

C

o

n

crete

mass/vol.

=

2.4 (ton/m3)

Axial load

=

P (kg)

Moment

=

M (kg.m)

Try width of found.

=

B (cm)

Try width of column

=

b (cm)

Hitung pondasi strous :

Coba jumlah pondasi : = n buah

diameter strous = =f cm Pmax. = Axial / n + M.X1 / 2.(X1^2+X2^2)

Kekuatan geser cleaf(lekatan tanah) di kedalaman 5 m diambil 100 kg/cm

(13)

Hitung pile cap :

Thicknes of found. = t cm

Weight of foundation = w kg/cm2

2 way shear Chek

Vu = P kg

b

= 1

d = t - selimut

bo = 4 x (d + b )

f

Vc =

0,6 [

1/6 (1+2/

b 

f

c'. bo . D ]

f

Vc > Vu ..? If yes, ok tebal pilecap cukup

1 way shear Chek

f

Vc = 0,6 [1/6

f

c'. B . D ]

f

Vc > Vu ..? If yes, ok tebal pilecap cukup

Reinforcement for bending moment

Mu = M kg.m

Q pile cap

L1 P

L tebal pile cap = t (m) Lebar pile cap = B (m)

L1 = Jarak strous ke titik pusat (m) L = jarak kantilever total (m) Q (b.s. pile cap) = t.L.B (t/m) P (daya dukung strous) Mu = 1.2 x ( P.L1 - 1/2.Q.L^2)

r

min. = 1.4/fy Rn = Mu / B.d^2 m = fy / 0.85 fc'

r =

1

/m [ 1-(1-2.m.Rn)/fy ]^0.5 > (

r

min.) As =

r.

B.d.

try f didapat As1

number = As / As1 jarak tulangan (s)

Sloof :

Beban axial sloof

= 10% ax.kolom

Coba penampang sloof = b cm

= h cm

Cek tekan beton = Beban axial sloof / (b.h)< 75 kg/cm2 ?

As min. 1% beton

ambil n besi = 4 buah

f besi sloof > min 1,2 cm ?

(14)

I. DATA-DATA BANGUNAN

Data Bangunan :

Nama : Rumah Tinggal Manyar

Alamat : Kertajaya Indah Timur IX / 06 blok O-361 Jumlah Lantai : 2 (dua)

Tinggi struktur : 8.77 m Luas Bangunan : 500 m2 Perhitungan Struktur :

Sistem struktur : Rangka beton bertulang Metoda analisa : - Analisa statis by SAP 2000

- Gaya dalam pelat by PBI 71 Metoda desain : Kekuatan Batas

Standard/Ref. : - PBI 71 - PBI 83 - SKSNI 90 Data teknis : Tinggi kolom h1 : 4.27 m Tinggi kolom h2 : 4.5 m Perletakan kolom : jepit Mutu bahan beton fc' : 20 Mpa Mutu baja deform fy : 400 Mpa Mutu baja polos fy : 240 Mpa

PERHITUNGAN STRUKTUR

(15)

PERHITUNGAN PLAT

PROYEK - RUMAH MANYAR

PERHITUNGAN TANDON AIR BAWAH 1. Plat dinding tandon :

Pa (tekanan tanah aktif) = ca .w .h^2/2

ca (coefisien tekanan aktif) = 0.3

w (berat jenis tanah) = 1800 kg/m3

h (kedalaman bangunan) = 2 m

Pa = 1080 kg/m

Mu = 1,2 x Pa x 1/3h = 864 kg.m 8.4672 kN.m

2. Plat lantai tandon :

Tebal plat = 0.15 m

Panjang arah x (lx) = 2 m

Panjang arah y (ly) = 2 m

ly / lx = 1.00

Berat volume beton = 2400 kg/m3

Tebal selimut beton = 20 mm

d = t*1000 - 20 - 5 = 125 mm

b = 1 m

Beban-beban yang bekerja : 1. Beban mati

Plat = 0.15 * 2400 = 360 kg/m2

Finishing lantai (keramik) = 0 kg/m2

Plafond + instalasi = 0 kg/m2

Total = 369 kg/m2

2. Beban hidup

Beban hidup yang bekerja = 2000 kg/m2

Wu = 1.2 * qd + 1.6 * ql = 3642.8 kg/m2

lihat tabel PBI 71 :

X untuk Mlx = 44 X untuk Mly = 44 X untuk Mtx = 0 X untuk Mty = 0 Mlx = 0.001 * Wu * lx2 * X = 641.1328 kgm = 6.28 kNm Mly = 0.001 * Wu * lx2 * X = 641.1328 kgm = 6.28 kNm Mtx = - 0.001 * Wu * lx2 * X = 0 kgm = 0.00 kNm Mty = - 0.001 * Wu * lx2 * X = 0 kgm = 0.00 kNm

(16)

Mutu baja = 240 MPa

f = 0.8 Rn perlu = Mn perlu / ( b . d^2 )

ρ balance = 0.85 . fc'/fy x 600/(600+fy) = 0.050595238

ρ max = 0.75 . ρ balance = 0.037946429

r min u/ plat dg.Tul.fy240Mpa (altf SKSNI dan CUR) = 0.0025

m = fy/0.85 . fc' = 14.11765

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

Arah Mu Mn Rn=Mn/bd2 r perlu cek r As perlu

kNm kNm N/mm2 > ρmin mm2

1. Plat vertikal x ( lap ) 8.47 10.584 0.847 0.00353 0.003528 441

(17)
(18)

tul.pakai As ada As ada>Asperlu Ø (mm) s (mm)

8 100 502 ok

(19)

PERHITUNGAN PLAT

PROYEK - RUMAH MANYAR

6. TYPE PLAT KANOPI ATAS ( tebal 10 cm )

Tebal plat = 0.12 m

Panjang arah x (lx) = 3.3 m

Panjang arah y (ly) = 4 m

ly / lx = 1.21

Berat volume beton = 2400 kg/m3

Tebal selimut beton = 20 mm

d = 0.12*1000 - 20 - 5 = 95 mm

b = 1 m

Beban-beban yang bekerja : 1. Beban mati

Plat = 0.12 * 2400 = 288 kg/m2

Finishing lantai (keramik) = 0 kg/m2

Plafond + instalasi = 15 kg/m2

Total = 369 kg/m2

2. Beban hidup

Beban hidup yang bekerja = 125 kg/m2

Wu = 1.2 * qd + 1.6 * ql = 642.8 kg/m2

lihat tabel PBI 71 :

X untuk Mlx = 25 X untuk Mly = 21 X untuk Mtx = 59 X untuk Mty = 54 Mlx = 0.001 * Wu * lx2 * X = 175.0023 kgm = 1.72 kNm Mly = 0.001 * Wu * lx2 * X = 147.001932 kgm = 1.44 kNm Mtx = - 0.001 * Wu * lx2 * X = -413.005428 kgm = -4.05 kNm Mty = - 0.001 * Wu * lx2 * X = -378.004968 kgm = -3.70 kNm

Mutu beton = 20 MPa

Mutu baja = 240 MPa

f = 0.8 Rn perlu = Mn perlu / ( b . d^2 )

ρ balance = 0.85 . fc'/fy x 600/(600+fy) = 0.050595

ρ max = 0.75 . ρ balance = 0.037946

r min u/ plat dg.Tul.fy240Mpa (altf SKSNI dan CUR) = 0.0025

m = fy/0.85 . fc' = 14.11764706

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

(20)

Arah Mu Mn Rn=Mn/bd2 r perlu cek r As perlu kNm kNm N/mm2 > ρmin mm2 Ø (mm) x ( lap ) 1.72 2.143778175 0.297 0.00124 0.0025 238 8 y ( lap ) 1.44 1.800773667 0.200 0.00083 0.0025 238 8 x ( tump ) 4.05 5.059316493 0.561 0.00234 0.0025 238 8 y ( tump ) 3.70 4.630560858 0.513 0.00214 0.0025 238 8 ket. :

s max < 1.5 tebal plat (CUR) s max < 250 mm (CUR) s min > 40 mm (PBI)

(21)
(22)

As ada As ada>Asperlu s (mm) 175 287 ok 175 287 ok 175 287 ok 175 287 ok tul.pakai

(23)

ATAP U672 -

tinggi gel. 4.1 cm

Debit hujan Q = lbr. Eff X pjg.atap X Intensitas hujan

Debit hujan Q = 10.08 m3/jam

Tinggi basah H (cm) Area basah A (m2) Keliling bsh S (m') Data :

4.1 0.02463075 0.83769 - Panjang atap 30m

3.5 0.02087685 0.79983 - Sudut kemiringan atap 3 derajat

3 0.017802 0.7683 - Air hujan maks. = 500 mm/jam

2.5 0.014775 0.73675 1.4 0.00815684 0.6562194 Rumus : 1 0.00577736 0.6303 Rumus Kutter A S R (A/S) V = C  (R.i) 0.02463075 0.83769 0.02940318 C = 23 + 1/n + 0.0015/i 0.02087685 0.79983 0.026101609 1 + ( 23 + 0.0015/I ) n/( R) 0.017802 0.7683 0.023170636 0.014775 0.73675 0.020054293 0.00815684 0.6562194 0.01243005 0.00577736 0.6303 0.009166048

sudut i (derajat) kemiringan tgn i

3 0.052407779

Tinggi basah H (cm) n Kutter i R C-atas C-bwh C V (m/dt) Q (m3/jam)

4.1 0.02 0.052407779 0.0294032 73.0286217 3.685968 19.8126 0.77774389 68.96309516 3.5 0.02 0.052407779 0.0261016 73.0286217 3.850784 18.96461 0.701415686 52.7160602 3 0.02 0.052407779 0.0231706 73.0286217 4.025722 18.1405 0.632144307 40.51235865 2.5 0.02 0.052407779 0.0200543 73.0286217 4.252327 17.1738 0.556759905 29.61405936 1.4 0.02 0.052407779 0.0124301 73.0286217 5.13106 14.23266 0.363262301 10.66706087 1 0.02 0.052407779 0.009166 73.0286217 5.810685 12.56799 0.275457591 5.729103609 KESIMPULAN :

(24)

4.1 3.5 3 2.5 1.4 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 20 40 60 80 tin gg i basah

kapasitas debit air

KAPASITAS DEBIT AIR

(25)

ATAP U500 -

tinggi gel. 16 cm

Tinggi air hujan H (cm) Area basah A (m2) Keliling bsh S (m')

3.5 0.0078 0.285

3.4 0.0076 0.282

A S R (A/S)

0.0078 0.285 0.027368421

0.0076 0.282 0.026950355

sudut (derajat) kemiringan tgn i

0.05

Tinggi air hujan H (cm) n Kutter i R

3.5 0.02 0.05 0.027368

(26)

C-atas C-bwh C V (m/dt) Q hujan = IA V hujan = Q/A

73.03 3.784191 19.29871 0.713901 0.0034375 0.440705128

(27)

PERHITUNGAN STRUKTUR BAJA KMR SONI

BERHUBUNG SEMUA ANALISA DAN DESIGN RANGKA SUDAH DIHITUNG DENGAN SAP2000,

JADI KITA HANYA TINGGAL MENGHITUNG BAUT DAN PONDASI SAJA.

I. DATA-DATA PERENCANAAN

I.1. DATA UMUM BANGUNAN NAMA =

LUAS LANTAI = 24 m X 41 m

JARAK PORTAL = m

TINGGI KOLOM = m

SUDUT ATAP = degree =

III.2.4. Design of Bolt Connection :

Beam to beam connect. :

a. Loading :

Geser vertical (Pv)

=

5184.00

kg

Moment (Mu)

=

8530.00

kgm

fy

=

240.00 Mpa =

2400.00

Force due to Mu/l

=

426.50 kg

Resultante geser

=

5201.51 kg

b. shear check :

Resultan of shear

=

5201.51 kg

Allow. Shear = 0,6 (fy/1.5) =

950.40 kg/cm2

Allow. Shear Load 1

f1,2

=

1074.33 kg

(28)
(29)

PERHITUNGAN STRUKTUR BAJA GUDANG

I. DATA-DATA PERENCANAAN

I.1. DATA UMUM BANGUNAN NAMA =

LUAS LANTAI = 24 m X 41 m

JARAK PORTAL = 6.00 m

TINGGI KOLOM = 10.00 m

SUDUT ATAP = 25.00 degree = 0.44 radian

II. DESIGN STRUKTUR SKUNDER :

2.1. DESIGN GORDING COBA = C 125x50x20x4,5 Wx = 38.00 cm3 Wy = 10.10 cm3 JARAK GORDING (Jg) = 125.00 cm a. BEBAN TETAP TEKANAN HUJAN = 20.00 kg/m2 t ATAP = 0.40 mm = 3.14 m2 BERAT ATAP = 3.93 kg/m' BERAT GORDING = 8.32 kg/m' BERAT HUJAN = 25.00 kg/m' +

TOTAL BEBAN TETAP = 37.25 kg/m'

MtetapX =1/8 Q.cos25 L^2 = 151.90 kg.m

MtetapY =1/8 Q.sin25 Ly^2 = 17.71 kg.m

b. BEBAN HIDUP = 100.00 kg

MhidupX =1/4 P.cos25 Lx = 135.95 kg.m

MhidupY =1/4 P.sin25 Ly = 31.70 kg.m

c. BEBAN ANGIN , SUDUT ATAP = 25 derajat

TEKANAN ANGIN = 25.00 kg/m2

KOF. TEKAN ANGIN ATAP = 0,02(SUDUT ATAP) - 0,4 = 0.10

KOF. TEKAN HISAP ATAP = - 0,4 = -0.40

KOF. TEKAN ANGIN DINDING = + 0,9 = 0.90

KOF. TEKAN HISAP DINDING = - 0,4 = -0.40

UNTUK GORDING, AMBIL TEKAN ATAP :

Q angin = [0,02(SUDUT ATAP) - 0,4 ] *P*Jg = 3.13 kg/m

M angin= 1/8 * Q*L^2 = 14.06 kg.m

d. TOTAL TEGANGAN :

Mx = MtetapX + MhidupX + Mangin = 301.91

My = MtetapY + MhidupY = 49.40

TEGANGAN = Mx/Wx + My/Wy = 1283.65 < 1600 ? OK !

(30)

III. DESIGN STRUKTUR UTAMA :

III.1. PEMBEBANAN KUDA-KUDA a. PEMBEBANAN GRAVITASI

BERAT ATAP = 18.84 kg/m

BERAT GORDING = 41.60 kg/m +

60.44 kg/m

b. BEBAN HIDUP TERPUSAT = 100.00 kg

c. BEBAN ANGIN , SUDUT ATAP = 25 derajat

TEKANAN ANGIN = 25.00 kg/m2

KOF. TEKAN ANGIN ATAP = 0,02(SUDUT ATAP) - 0,4 = 0.10

KOF. TEKAN HISAP ATAP = - 0,4 = -0.40

KOF. TEKAN ANGIN DINDING = + 0,9 = 0.90

KOF. TEKAN HISAP DINDING = - 0,4 = -0.40

BEBAN AKIBAT ANGIN :

Q tekan atap = [0,02(SUDUT ATAP) - 0,4 ] *P*Jk = 15.00 kg/m

Q hisap atap = - 0,4 *P*Jk = -60.00 kg/m Q tekan dinding = 0,9 *P*Jk = 135.00 kg/m Q hisap dinding = - 0,4 *P*Jk = -60.00 kg/m BEBAN DI RAK : Q = BETON + HIDUP = 2400 kg/m3 * 12cm*Jk + 400kg/m2 = 4128.00 kg/m sehingga :

Q di batang kuda2 = GRAV. + ANGIN = 75.44 kg/m + P 100 kg.

Q di kolom kiri = ANGIN tekan = 135.00 kg/m

Q di kolom kanan = ANGIN hisap = -60.00 kg/m

Q di balok rak = 4128.00 kg/m

c. ANALISA STRUKTUR

Dengan bantuan program komputer SAP90 didapat :

Elemen kuda2 = Moment = 2539.00 kg.m

Axial = 1634.00 kg

Elemen balok = Moment = 6985.00 kg.m

Axial = 458.00 kg Pondasi utama = Fx = 2136.00 kg Fy = 11690.00 kg Mz = 3016.00 kg.m Pondasi rak = Fx = 1574.00 kg Fy = 8094.00 kg Mz = 1257.00 kg.m d. DESIGN ELEMEN Elemen kuda2 = WF 300x150x9x6.5 Elemen kolom = WF 300x150x9x6.5

Elemen balok rak = WF 300x150x9x6.5

Elemen kokok & cantilever = WF 150x75

(31)

1. Standart and Reference :

- Peraturan Pembebanan Indonesia utk. Gedung 1983

- AISC

2. Material

- Steel fy

=

2400.00 kg/cm2

- Concrete fc'

=

240.00 kg/cm2

3. Design metode

- Elastic design :

for steel structure

- Ultimate design :

for concrete structure

4. Structure analysis

- Manual

:

for structure

- SAP 90

:

for structure

- COSMIC

:

for roof

III.2.1. Design balok rak :

Try :

Beam

=

WF 300x150x6.5x9

fy

=

240.00 Mpa

Weight

=

36.70 kg/m

Ix

=

7210.00 cm4

flens width (bf)

=

150.00 mm

flens thickness (tf)

=

9.00 mm

web deepth (d)

=

300.00 mm

web thickness (tw)

=

6.50 mm

radius of giration ('r)

=

12.40 cm

Sect. Area (A)

=

46.78 cm2

Span (L)

=

600.00

cm

a. Loading :

Roof panel 0.3x0.001x30 m3

Roof weight / panel

=

141.30

kg

number of panels

=

20.00

panels

Roof length

=

30.00

m

Total roof weight

=

2826.00

kg

Total Beam weight

=

220.20

kg

Live load

=

25.00

kg/m2

Total Weight

=

647.20

kg/m

Max. moment

=

1/8.Q.L^2

=

6985.00 kg.cm

b. Lateral support check :

(32)

76.08 (in.)

>

193.25 cm

Use Fb = [ 2/3 - ( fy(L/r)^2 )/(1530e3.Cb) ] fy

Fb

=

0.61 fy

=

145.62 Mpa

c. Compact check :

- Flens

bf / 2.tf

<

65 / fy^0,5

8.33 <

11.02

OK

- Web

d / tw

<

640 / fy^0,5

46.15 <

108.49

OK

d. Stress check

fb = Mu c / I

=

14.53 kg/cm2

fb / Fb

=

0.01

OK

III.2.2. Design of Column :

Try :

Column

=

WF 300x150x6.5x9

fy

=

240.00 Mpa

Weight

=

36.70 kg/m

I

=

7210.00 cm4

flens width (bf)

=

150.00 mm

flens thickness (tf)

=

9.00 mm

web deepth (d)

=

300.00 mm

web thickness (tw)

=

6.50 mm

radius of giration ('r)

=

12.40 cm

Sect. Area (A)

=

46.78 cm2

Length (L)

=

900.00

cm

a. Loading :

Axial (Pu)

=

2009.00

kg

Moment (Mu)

=

3864.00

kg.m

=

b. Beam - column check :

b.1. Lateral support check :

L

<

76. Bf / fy^0.5

(in.)

76.08 (in.)

>

193.25 cm

Use Fb = [ 2/3 - ( fy(L/r)^2 )/(1530e3.Cb) ] fy

Fb =

0.54 fy

=

129.64 Mpa

(33)

- Flens

bf / 2.tf

<

65 / fy^0,5

8.33 <

11.02

OK

- Web

d / tw

<

640 / fy^0,5

46.15 <

108.49

OK

c. Stress check

fb = Mu c / I

=

803.88 kg/cm2

fb / Fb

=

0.62

OK

fa = Pu / A

=

42.95 kg/cm2

k factor

=

0.80

k l /r

=

58.06

From tab. AISC , Fa

=

17.62 (ksi)

1214.90 kg/cm2

fa / Fa

=

0.04

<

0.15

OK

Total stress ratio :

fa/Fa + fb/Fb

=

0.04

+

0.62

=

0.66

OK

III.2.3. Design kuda-kuda :

Try :

Column

=

WF 300x150x6.5x9

fy

=

240.00 Mpa

Weight

=

36.70 kg/m

I

=

7210.00 cm4

flens width (bf)

=

150.00 mm

flens thickness (tf)

=

9.00 mm

web deepth (d)

=

300.00 mm

web thickness (tw)

=

6.50 mm

radius of giration ('r)

=

12.40 cm

Sect. Area (A)

=

46.78 cm2

Length (L)

=

900.00

cm

a. Loading :

Axial (Pu)

=

1634.00

kg

Moment (Mu)

=

2539.00

kg.m

=

b. Beam - column check :

b.1. Lateral support check :

L

<

76. Bf / fy^0.5

(in.)

(34)

>

193.25 cm

Use Fb = [ 2/3 - ( fy(L/r)^2 )/(1530e3.Cb) ] fy

Fb

=

0.54 fy

=

129.64 Mpa

b.2. Compact check :

- Flens

bf / 2.tf

<

65 / fy^0,5

8.33 <

11.02

OK

- Web

d / tw

<

640 / fy^0,5

46.15 <

108.49

OK

c. Stress check

fb = Mu c / I

=

528.22 kg/cm2

fb / Fb

=

0.41

OK

fa = Pu / A

=

34.93 kg/cm2

k factor

=

0.80

k l /r

=

58.06

From tab. AISC , Fa

=

17.62 (ksi)

1214.90 kg/cm2

fa / Fa

=

0.03

<

0.15

OK

Total stress ratio :

fa/Fa + fb/Fb

=

0.03

+

0.41

=

0.44

OK

III.2.4. Design of Bolt Connection :

Beam to beam connect. :

a. Loading :

Geser vertical (Pv)

=

1634.00

kg

Moment (Mu)

=

2539.00

kgm

Force due to Mu/l

=

126.95 kg

Resultante geser

=

1638.92 kg

b. shear check :

Resultan of shear

=

1638.92 kg

Allow. Shear = 0,6 (fy/1.5) =

950.40 kg/cm2

Allow. Shear Load 1

f1,2

=

1074.33 kg

(35)

( I M B )

PERHITUNGAN STRUKTUR

RUMAH

PONDOK WISATA

(36)

A. PERHITUNGAN STRUKTUR BAJA

I. DATA-DATA PERENCANAAN

I.1. DATA UMUM BANGUNAN

NAMA = Rumah & Pondok Wisata ,Jl. Bratang Binangun VI/49, Sby. LUAS LANTAI =

JARAK PORTAL = 3.00 m JUMLAH LANTAI = 3 TINGGI KOLOM TOTAL = 10.05 m

SUDUT ATAP = 30.00 degree = 0.52 radian

II. DESIGN STRUKTUR UTAMA :

II.1. Referensi Analisa & Design Struktur

1. Standart and Reference :

- Peraturan Pembebanan Indonesia utk. Gedung 1983 - AISC

- Peraturan Baja Indonesia

- Pedoman Perencanaan Ketahanan Gempa untuk Rumah dan Gedung 2. Material

- Steel fy = 2400.00 kg/cm2

- Concrete fc' = 240.00 kg/cm2

3. Design metode

- Elastic design : for steel structure - Ultimate design : for concrete structure 4. Structure analysis

- SAP 2000 : for structure

II.2. PEMBEBANAN

II. 2. 1. GEMPA

Fi (geser tingkat) = Wi hi V S Wi hi dimana :

V (geser dasar akibat gempa) = Cd. Wt = ( C . I . K ) Wt

T (waktu getar alami) = 0.085 H ^ 3/4 (Baja)

H = 10.05 m T = 0.48 detik Surabaya : zona 4

kondisi tanah di lokasi : lunak

C = 0.05 (lihat grafik) I (keutamaan struktur) = 1.00

K (jenis struktur) = 1.00

Lti. Atap : n panjang (m) lebar (m) berat (kg/m) total (kg) kolom WF 300 15.00 3.35 - 36.70 1,844.18 balok WF 250 - 100.00 - 29.60 2,960.00 atap 11.70 11.00 65.00 8,365.50 kuda2 WF 250 50.00 29.60 1,480.00

14,649.68

Lti. III : n panjang (m) lebar (m) berat (kg/m) total (kg) kolom WF 300 15.00 3.35 - 36.70 1,844.18 balok WF 300 - 100.00 - 36.70 3,670.00 pelat t=0.12 m - 11.70 8.00 2400.00 26,956.80 dinding 200.00 3.20 250.00 160,000.00

192,470.98

Lti. II : n panjang (m) lebar (m) berat (kg/m) total (kg) kolom WF 400 15.00 3.35 - 66.00 3,316.50

(37)

balok WF 300 - 100.00 - 36.70 3,670.00 pelat t=0.12 m - 11.70 8.00 2400.00 26,956.80 dinding 140.00 3.20 250.00 112,000.00

145,943.30

TOTAL = 353,063.95 so : V (gaya geser dasar) = 17,653.20 kg

Gaya geser tingkat (Fi) : Fi = Wi hi V S Wi hi Wi (kg) hi (m) Wi hi Fi (kg) atap 14,649.68 10.05 147,229.23 1,349.68 lti. III 192,470.98 6.70 1,289,555.53 11,821.59 lti. II 145,943.30 3.35 488,910.06 4,481.93 S Wi hi = 1,925,694.82 17,653.20

II. 2. 2. BEBAN GRAVITASI LANTAI BEBAN MATI

Q ekv. Trap = 1/2. Qu. Ly. (1 - 1/3. (Ly/Lx)^2 )

Qu mati lti : plat beton t=12cm = 288.00 kg/m2 plafon = 18.00 kg/m2 tegel = 24.00 kg/m2 adukan semen 2cm = 42.00 kg/m2 372.00 kg/m2 Qu dinding bata = 250.00 kg/m2 h = 3.1 m, Q dinding = 775.00 kg/m 9.55 3.18 Qu hidup lti : = 250.00 kg/m2

Ly Lx Qmati Qhidup Q ekv. Mati (kg/m)Q ekv. Hidup (kg/m)

3.40 1.10 372.00 250.00 -1,379.51 -927.09

3.75 3.40 372.00 250.00 414.95 278.87

4.20 3.00 372.00 250.00 271.33 182.34

3.20 2.45 372.00 250.00 257.08 172.77

(tangga ) 2.00 1.50 372.00 250.00 151.78 102.00 Q mati total balok tengah = 1,604.9 kg/m

Q mati total balok pinggir = 1,190.0 kg/m Q mati total balok tangga = 151.8 kg/m Q hidup total balok tengah = 557.7 kg/m Q hidup total balok pinggir = 278.9 kg/m II.2.3. BEBAN GRAVITASI PADA ATAP

Beban - beban mati pada atap :

1. Genteng, reng, usuk = 50.00 kg/m2 jarak kuda2 = 6.3 m, maka Q = 315.00 kg/m' 2. Gording 7 bh. X 11 kg/m = 77.00 kg/m' + Q mati total = 392.00kg/m'

Beban hidup pada atap :

Beban hidup (hujan) = 25.00 kg/m2 jarak kuda2 = 3 m, maka Q = 157.50kg/m'

II.3. ANALISA DAN DESAIN STRUKTUR UTAMA

Struktur Baja ini dianalisa dengan bantuan program SAP 2000.

Dengan memasukan input data geometry struktur, beban-beban yang terjadi, termasuk kombinasi beban, akan didapat hasil analisa struktur berupa : gaya-gaya dalam, defleksi dan reaksi pada pondasi.

Sekaligus bisa diketahui desain penampang elemen-elemen struktur utama : Balok dan kolom.

III. DESIGN STRUKTUR SKUNDER :

III..1. DESIGN GORDING

COBA = C 150x75x20x4,5 Wx = 65.20 cm3 Wy = 19.80 cm3

(38)

JARAK GORDING (Jg) = 125.00 cm a. BEBAN TETAP TEKANAN HUJAN = 20.00 kg/m2 t ATAP = 0.40 mm = 3.14 m2 BERAT ATAP = 3.93 kg/m' BERAT GORDING = 8.32 kg/m' BERAT HUJAN = 25.00 kg/m' + TOTAL BEBAN TETAP = 37.25 kg/m' MtetapX =1/8 Q.cos25 L^2 = 36.29 kg.m MtetapY =1/8 Q.sin25 Ly^2 = 5.24 kg.m b. BEBAN HIDUP = 100.00 kg

MhidupX =1/4 P.cos25 Lx = 64.95 kg.m MhidupY =1/4 P.sin25 Ly = 18.75 kg.m c. BEBAN ANGIN

TEKANAN ANGIN = 25.00 kg/m2 KOF. TEKAN ANGIN ATAP = 0,02(SUDUT ATAP) - 0,4 = 0.20 KOF. TEKAN HISAP ATAP = - 0,4 = -0.40 KOF. TEKAN ANGIN DINDING = + 0,9 = 0.90 KOF. TEKAN HISAP DINDING = - 0,4 = -0.40 UNTUK GORDING, AMBIL TEKAN ATAP :

Q angin = [0,02(SUDUT ATAP) - 0,4 ] *P*Jg = 6.25 kg/m M angin= 1/8 * Q*L^2 = 7.03 kg.m

d. TOTAL TEGANGAN :

Mx = MtetapX + MhidupX + Mangin = 108.27 My = MtetapY + MhidupY = 23.99

TEGANGAN = Mx/Wx + My/Wy = 287.21 < 1600 ? OK !

GORDING BISA DIPAKAI !

III. 2. PERHITUNGAN BAUT SAMBUNGAN BALOK-KOLOM SAMBUNGAN - I (WF400X200) alternatif 1 V = 10960.00 kg M= 11850.00 kg.m no spasi hi hi^2 (cm) (cm) (cm2) 1.00 8.00 6.00 36.00 2.00 8.00 14.00 196.00 3.00 8.00 22.00 484.00 4.00 12.00 34.00 1156.00 5.00 9.00 43.00 1849.00 6.00 9.00 52.00 2704.00 7.00 9.00 61.00 3721.00 sigma = 10146.00 gaya tarik max. akibat M (1 baut atas) = 3562.24 kg

coba baut = 2.00 cm so, luas 1 baut = 3.14 cm2

Tegangan akibat M = 1134.47 kg/cm2 Jumlah baut total = 16.00 buah gaya akibat V ( I baut ) = 685.00 kg

Tegangan akibat V = 218.15 kg/cm2 TEGANGAN KOMB. = 1195.74 kg/cm2 < OK ! 1600.00kg/cm2 SAMBUNGAN - I (WF 400X200) alternatif 2 V = 10960.00 kg M= 11850.00 kg.m no spasi hi hi^2 (cm) (cm) (cm2) 1.00 10.00 6.00 36.00 2.00 10.00 16.00 256.00 3.00 15.00 31.00 961.00 4.00 10.00 41.00 1681.00 5.00 10.00 51.00 2601.00 sigma = 5535.00 h1 h2 h3 h4 h5 h6 h7

(39)

gaya tarik max. akibat M (1 baut atas) = 5459.35 kg coba baut = 2.40 cm so, luas 1 baut = 4.52 cm2

Tegangan akibat M = 1207.39 kg/cm2 Jumlah baut total = 12.00 buah gaya akibat V ( I baut ) = 913.33 kg

Tegangan akibat V = 201.99 kg/cm2 TEGANGAN KOMB. = 1257.06 kg/cm2 < OK ! 1600.00kg/cm2 SAMBUNGAN - II (WF TANGGA) V = 1500.00 kg M= 800.00 kg.m no spasi hi hi^2 (cm) (cm) (cm2) 1.00 5.00 5.00 25.00 2.00 10.00 15.00 225.00 3.00 5.00 20.00 400.00 4.00 5.00 25.00 625.00 sigma = 1275.00 gaya tarik max. akibat M (1 baut atas) = 784.31 kg

coba baut = 1.20 cm so, luas 1 baut = 1.13 cm2

Tegangan akibat M = 693.84 kg/cm2 Jumlah baut total = 10.00 buah gaya akibat V ( I baut ) = 150.00 kg

Tegangan akibat V = 132.70 kg/cm2 TEGANGAN KOMB. = 730.91 kg/cm2 < OK ! 1600.00kg/cm2 SAMBUNGAN - III (WF 300X150) V = 7500.00 kg M= 7300.00 kg.m no spasi hi hi^2 (cm) (cm) (cm2) 1.00 7.00 6.00 36.00 2.00 7.00 13.00 169.00 3.00 15.00 28.00 784.00 4.00 7.00 35.00 1225.00 5.00 7.00 42.00 1764.00 sigma = 3978.00 gaya tarik max. akibat M (1 baut atas) = 3853.70 kg

coba baut = 2.00 cm so, luas 1 baut = 3.14 cm2

Tegangan akibat M = 1227.29 kg/cm2 Jumlah baut total = 12.00 buah gaya akibat V ( I baut ) = 625.00 kg

Tegangan akibat V = 199.04 kg/cm2

(40)
(41)

B . PONDASI

1. Design of Main Foundation I P-1 :

Data :

Allowable soil strength = 1.00kg/cm2

fc' = 250.00 kg/cm2

fy = 4000.00 kg/cm2

Concrete mass/vol. = 2.40 ton/m3

Axial load (P) = 17500.00 kg

Moment (M) = 1531.00 kg.m

Try width of found. (B) = 170.00 cm

Try width of column (b) = 50.00 cm

Try deepth of WF (l) = 40.00 cm

a. Foundation Plan

Thicknes of found. = 50.00 cm

Weight of foundation = 0.12 kg/cm2

Allowable soil strength net. = 0.88 kg/cm2

Extrem soil stress = P/A + M / (1/6 B^3)

= 0.61 + 0.19

= 0.79 kg/cm2

Extrem soil stress < Allw. Soil strength nett. ?

= 0.79 < 0.88 ?

...YES

b. 2 way shear Chek

Vu = 17500.00 kg b = 1.00 d = 44.00 cm bo = 4 x (d + b ) = 376.00 cm fVc = 0,6 [ 1/6 (1+2/b fc'. bo . D ] = 2481600.00 N. = 248160.00 kg. fVc > Vu ..? = 248160.00 > 17500.00 ..? YES

c. 1 way shear Chek

fVc = 0,6 [1/6  fc'. B . D ]

= 374000.00 N.

37400.00 kg.

fVc > Vu ..? = 37400.00 > 17500.00 ..?

YES

d. Reinforcement for bending moment

Mu = 1531.00 kg.m r min. = 1.4/fy = 0.0035 Rn = Mu / B.d^2 = 0.05 m = fy / 0.85 fc' = 18.82 1/m = 0.05 (1-2.m.Rn/fy)^0,5 = 1.00 r = 1/m [ 1-(1-2.m.Rn)/fy ]^0.5 = 0.0001 < 0.0035 (r min.) Use = 0.0035 As = r.B.d. = 2618.00 mm2 try f = 16.00 mm number = 20.00 As = 4019.20 > 2618.00 OK

(42)

Use : B = 170.00 cm b = 50.00 cm t = 50.00 cm f = 16.00 mm n = 20.00 pcs g. Sloof :

Beban axial sloof = = 1750.00 kg = 10% ax.kolom ? Ok !

Coba penampang sloof = b 20.00 cm

= h 30.00 cm

Cek tekan beton = 2.92 kg/cm2 < 75 kg/cm2 ? Ok !

As min. 1% beton = 6.00 cm2

ambil n besi = 6.00 buah

f besi sloof = 1.13 cm > min 1,2 cm ? No !

f besi begel sloof minimum = 8 mm

h. Strous :

Coba n = 4.00 buah

f strous = 50.00 cm

Pmax. = Axial / n + M.X1 / 2.(X1^2+X2^2) = 4375.00 + 900.59

= 5275.59 kg

Kekuatan geser cleaf(lekatan tanah) di kedalaman 6 m diambil 100 kg/cm Maka kekuatan ijin strous = Keliling x geser cleaf

= 15700.00 kg > P max ? Ok !

2. Design of Main Foundation II P-2 :

Data :

Allowable soil strength = 1.00kg/cm2

fc' = 300.00 kg/cm2

fy = 2400.00 kg/cm2

Concrete mass/vol. = 2.40 ton/m3

Axial load (P) = 26899.00 kg

Moment (M) = 1961.00 kg.m

Try width of found. (B) = 200.00 cm

Try width of column (b) = 50.00 cm

Try deepth of WF (l) = 40.00 cm

a. Foundation Plan

Thicknes of found. = 35.00 cm

Weight of foundation = 0.08 kg/cm2

Allowable soil strength net. = 0.92 kg/cm2

Extrem soil stress = P/A + M / (1/6 B^3)

= 0.67 + 0.15

= 0.82 kg/cm2

Extrem soil stress < Allw. Soil strength nett. ?

= 0.82 < 0.92 ?

...YES

b. 2 way shear Chek

Vu = 26899.00 kg b = 1.00 d = 29.00 cm bo = 4 x (d + b ) = 316.00 cm fVc = 0,6 [ 1/6 (1+2/b fc'. bo . D ] = 1505798.86 N. = 150579.89 kg. fVc > Vu ..? = 150579.89 > 26899.00 ..? YES

c. 1 way shear Chek

(43)

= 317679.08 N.

31767.91 kg.

fVc > Vu ..? = 31767.91 > 26899.00 ..?

YES

d. Reinforcement for bending moment

Mu = 1961.00 kg.m r min. = 1.4/fy = 0.01 Rn = Mu / B.d^2 = 0.12 m = fy / 0.85 fc' = 9.41 1/m = 0.11 (1-2.m.Rn/fy)^0,5 = 1.00 r = 1/m [ 1-(1-2.m.Rn)/fy ]^0.5 = 0.0005 < 0.0058 (r min.) Use = 0.0058 As = r.B.d. = 3383.33 mm2 try f = 18.00 mm number = 16.00 As = 4069.44 > 3383.33 OK Use : B = 200.00 cm b = 50.00 cm t = 35.00 cm f = 18.00 mm n = 16.00 pcs

e. Design of Base Plat :

Width of base plat (w) = 50.00 cm

Critical cantilv.length (m) = 5.00 cm

Conc. Bearing stress (fp) = 105.00 kg/cm2

Thickness of base plat (t) = 2.m (fp / fy)^0.5

= 2.09 cm

f. Anker Bolt (6 bolt) :

Geser ijin beton K300 = 6.50 kg/cm2

Jarak baut terjauh dari as = 20.00 cm

jumlah baut angker (n) = 6.00

Gaya akibat Momen (P1) = 4902.50 kg

1 baut memikul (P1 / 2) (tarik) = 2451.25 kg

Gaya akibat Normal (tekan) = 4483.17 kg

A 1 baut = 4.33 cm2

f = 2.35 cm

L = 144.60 cm

g. Sloof :

Beban axial sloof = = 3000.00 kg > 10% ax.kolom ? Ok !

Coba penampang sloof = b 20.00 cm

= h 30.00 cm

Cek tekan beton = 5.00 kg/cm2 < 75 kg/cm2 ? Ok !

As min. 1% beton = 6.00 cm2

ambil n besi = 6.00 buah

f besi sloof = 1.13 cm > min 1,2 cm ? No !

f besi begel sloof minimum = 8 mm

h. Strous :

Coba n = 2.00 buah

f strous = 50.00 cm

Pmax. = Axial / n + M.X1 / 2.(X1^2+X2^2) = 13449.50 + 980.50

= 14430.00 kg

Kekuatan geser cleaf(lekatan tanah) di kedalaman 6 m diambil 100 kg/cm Maka kekuatan ijin strous = Keliling x geser cleaf

(44)

3. Design of Main Foundation III (tangga) P-3 :

Data :

Allowable soil strength = 1.00kg/cm2

fc' = 300.00 kg/cm2

fy = 2400.00 kg/cm2

Concrete mass/vol. = 2.40 ton/m3

Axial load (P) = 4832.00 kg

Moment (M) = 571.00 kg.m

Try width of found. (B) = 120.00 cm

Try width of column (b) = 30.00 cm

Try deepth of WF (l) = 20.00 cm

a. Foundation Plan

Thicknes of found. = 25.00 cm

Weight of foundation = 0.06 kg/cm2

Allowable soil strength net. = 0.94 kg/cm2

Extrem soil stress = P/A + M / (1/6 B^3)

= 0.34 + 0.20

= 0.53 kg/cm2

Extrem soil stress < Allw. Soil strength nett. ?

= 0.53 < 0.94 ?

...YES

b. 2 way shear Chek

Vu = 4832.00 kg b = 1.00 d = 19.00 cm bo = 4 x (d + b ) = 196.00 cm fVc = 0,6 [ 1/6 (1+2/b fc'. bo . D ] = 611915.64 N. = 61191.56 kg. fVc > Vu ..? = 61191.56 > 4832.00 ..? YES

c. 1 way shear Chek

fVc = 0,6 [1/6  fc'. B . D ]

= 124880.74 N.

12488.07 kg.

fVc > Vu ..? = 12488.07 > 4832.00 ..?

YES

d. Reinforcement for bending moment

Mu = 571.00 kg.m r min. = 1.4/fy = 0.01 Rn = Mu / B.d^2 = 0.13 m = fy / 0.85 fc' = 9.41 1/m = 0.11 (1-2.m.Rn/fy)^0,5 = 0.99 r = 1/m [ 1-(1-2.m.Rn)/fy ]^0.5 = 0.0006 < 0.0058 (r min.) Use = 0.0058 As = r.B.d. = 1330.00 mm2 try f = 16.00 mm number = 8.00 As = 1607.68 > 1330.00 OK

(45)

Use : B = 120.00 cm

b = 30.00 cm

t = 25.00 cm

f = 16.00 mm

n = 8.00 pcs

e. Design of Base Plat :

Width of base plat (w) = 30.00 cm

Critical cantilv.length (m) = 5.00 cm

Conc. Bearing stress (fp) = 105.00 kg/cm2

Thickness of base plat (t) = 2.m (fp / fy)^0.5

= 2.09 cm

f. Anker Bolt (6 bolt) :

Geser ijin beton K300 = 6.50 kg/cm2

Jarak baut terjauh dari as = 17.00 cm

jumlah baut angker (n) = 6.00

Gaya akibat Momen (P1) = 1679.41 kg

1 baut memikul (P1 / 2) (tarik) = 839.71 kg

Gaya akibat Normal (tekan) = 805.33 kg

A 1 baut = 1.03 cm2

f = 1.14 cm

L = 70.43 cm

g. Sloof :

Beban axial sloof = = 3000.00 kg > 10% ax.kolom ? Ok !

Coba penampang sloof = b 15.00 cm

= h 20.00 cm

Cek tekan beton = 10.00 kg/cm2 < 75 kg/cm2 ? Ok !

As min. 1% beton = 3.00 cm2

ambil n besi = 6.00 buah

f besi sloof = 0.80 cm > min 1,2 cm ? No !

f besi begel sloof minimum = 8 mm

4. Design of Main Foundation Gabungan P-4 :

Data :

Allowable soil strength = 1.00kg/cm2

fc' = 300.00 kg/cm2

fy = 2400.00 kg/cm2

Concrete mass/vol. = 2.40 ton/m3

Axial load (P)kiri = 5476.00 kg

Moment (M)kiri = 1287.00 kg.m

Axial load (P)kanan = 12348.00 kg

Moment (M)kanan = 1355.00 kg.m

P total = 17824.00 kg

Try width of found. (B) = 150.00 cm Try width of found. (L) = 300.00 cm

Try width of column (b) = 40.00 cm

Try deepth of WF (l) = 30.00 cm

a. Foundation Plan

Thicknes of found. = 35.00 cm

Weight of foundation = 0.08 kg/cm2

Allowable soil strength net. = 0.92 kg/cm2

Extrem soil stress = P total /A

= 0.40

(46)

Extrem soil stress < Allw. Soil strength nett. ?

= 0.40 < 0.92 ?

...YES

b. 2 way shear Chek

Vu = 5476.00 kg b = 1.00 d = 29.00 cm bo = 4 x (d + b ) = 276.00 cm fVc = 0,6 [ 1/6 (1+2/b fc'. bo . D ] = 1315191.41 N. = 131519.14 kg. fVc > Vu ..? = 131519.14 > 5476.00 ..? YES

c. 1 way shear Chek

fVc = 0,6 [1/6  fc'. B . d ]

= 238259.31 N.

23825.93 kg.

fVc > Vu ..? = 23825.93 > 5476.00 ..?

YES

d. Reinforcement for bending moment

Mu max. (dari SAP2000) = 4000.00 kg.m

r min. = 1.4/fy = 0.01 Rn = Mu / B.d^2 = 0.32 m = fy / 0.85 fc' = 9.41 1/m = 0.11 (1-2.m.Rn/fy)^0,5 = 0.99 r = 1/m [ 1-(1-2.m.Rn)/fy ]^0.5 = 0.0013 < 0.0058 (r min.) Use = 0.0058 As = r.B.d. = 2537.50 mm2 try f = 18.00 mm number = 10.00 As = 2543.40 > 2537.50 OK Use : B = 150.00 cm b = 40.00 cm t = 35.00 cm f = 18.00 mm n = 10.00 pcs

e. Design of Base Plat :

Width of base plat (w) = 40.00 cm

Critical cantilv.length (m) = 5.00 cm

Conc. Bearing stress (fp) = 105.00 kg/cm2

Thickness of base plat (t) = 2.m (fp / fy)^0.5

= 2.09 cm

f. Anker Bolt (6 bolt) :

Geser ijin beton K300 = 6.50 kg/cm2

Jarak baut terjauh dari as = 12.00 cm

jumlah baut angker (n) = 6.00

Gaya akibat Momen (P1) = 5362.50 kg

1 baut memikul (P1 / 2) (tarik) = 2681.25 kg

Gaya akibat Normal (tekan) = 912.67 kg

A 1 baut = 2.25 cm2

f = 1.69 cm

L = 104.10 cm

g. Sloof :

(47)

Coba penampang sloof = b 15.00 cm

= h 30.00 cm

Cek tekan beton = 3.33 kg/cm2 < 75 kg/cm2 ? Ok !

As min. 1% beton = 4.50 cm2

ambil n besi = 6.00 buah

f besi sloof = 0.98 cm > min 1,2 cm ? No !

f besi begel sloof minimum = 8 mm

h. Strous :

Coba n = 2.00 buah

f strous = 30.00 cm

Pmax. = Axial / n + M.X1 / 2.(X1^2+X2^2) = 8912.00 + 0.00

= 8912.00 kg

Kekuatan geser cleaf(lekatan tanah) di kedalaman 6 m diambil 100 kg/cm Maka kekuatan ijin strous = Keliling x geser cleaf

= 9420.00 kg > P max ? Ok !

14.17

5. Design of Main Foundation Gabungan P-5

Data :

Allowable soil strength = 1.00kg/cm2

fc' = 300.00 kg/cm2

fy = 2400.00 kg/cm2

Concrete mass/vol. = 2.40 ton/m3

Axial load (P)kiri = 43900.00 kg

Moment (M)kiri = 1235.00 kg.m

Axial load (P)kanan = 38250.00 kg

Moment (M)kanan = 1888.00 kg.m

P total = 82150.00 kg

Try width of found. (B) = 200.00 cm Try width of found. (L) = 490.00 cm

Try width of column (b) = 50.00 cm

Try deepth of WF (l) = 40.00 cm

a. Foundation Plan

Thicknes of found. = 50.00 cm

Weight of foundation = 0.12 kg/cm2

Allowable soil strength net. = 0.88 kg/cm2

Extrem soil stress = P total /A

= 0.84

= 0.84 kg/cm2

Extrem soil stress < Allw. Soil strength nett. ?

= 0.84 < 0.88 ?

...YES

b. 2 way shear Chek

Vu = 43900.00 kg b = 1.00 d = 44.00 cm bo = 4 x (d + b ) = 376.00 cm fVc = 0,6 [ 1/6 (1+2/b fc'. bo . D ] = 2718456.60 N. = 271845.66 kg. fVc > Vu ..? = 271845.66 > 43900.00 ..? YES

c. 1 way shear Chek

fVc = 0,6 [1/6  fc'. B . d ]

= 481995.85 N.

48199.59 kg.

fVc > Vu ..? = 48199.59 > 43900.00 ..?

(48)

d. Reinforcement for bending moment

Mu max. (dari SAP2000) = 24300.00 kg.m

r min. = 1.4/fy = 0.01 Rn = Mu / B.d^2 = 0.63 m = fy / 0.85 fc' = 9.41 1/m = 0.11 (1-2.m.Rn/fy)^0,5 = 0.98 r = 1/m [ 1-(1-2.m.Rn)/fy ]^0.5 = 0.0026 < 0.0058 (r min.) Use = 0.0058 As = r.B.d. = 5133.33 mm2 try f = 20.00 mm number = 18.00 As = 5652.00 > 5133.33 OK Use : B = 200.00 cm b = 50.00 cm t = 50.00 cm f = 20.00 mm n = 18.00 pcs

e. Design of Base Plat :

Width of base plat (w) = 50.00 cm

Critical cantilv.length (m) = 5.00 cm

Conc. Bearing stress (fp) = 105.00 kg/cm2

Thickness of base plat (t) = 2.m (fp / fy)^0.5

= 2.09 cm

f. Anker Bolt (6 bolt) :

Geser ijin beton K300 = 6.50 kg/cm2

Jarak baut terjauh dari as = 12.00 cm

jumlah baut angker (n) = 6.00

Gaya akibat Momen (P1) = 5145.83 kg

1 baut memikul (P1 / 2) (tarik) = 2572.92 kg

Gaya akibat Normal (tekan) = 7316.67 kg

A 1 baut = 6.18 cm2

f = 2.81 cm

L = 172.68 cm

g. Sloof :

Beban axial sloof = = 4500.00 kg > 10% ax.kolom ? Ok !

Coba penampang sloof = b 15.00 cm

= h 30.00 cm

Cek tekan beton = 10.00 kg/cm2 < 75 kg/cm2 ? Ok !

As min. 1% beton = 4.50 cm2

ambil n besi = 6.00 buah

f besi sloof = 0.98 cm > min 1,2 cm ? No !

f besi begel sloof minimum = 8 mm

h. Strous :

Coba n = 5.00 buah

f strous = 55.00 cm

Pmax. = Axial / n + M.X1 / 2.(X1^2+X2^2) = 16430.00 + 0.00

= 16430.00 kg

Kekuatan geser cleaf(lekatan tanah) di kedalaman 6 m diambil 100 kg/cm Maka kekuatan ijin strous = Keliling x geser cleaf

(49)

KESIMPULAN :

NAMA PONDASIP(kg) M(kg.m) B(cm) t(cm) f (mm) n (pcs) t base plat (cm)n angker (pcs f (cm)

P-1 17500.00 1531.00 170.00 50.00 16.00 20.00 #REF! #REF! #REF!

P-2 26899.00 1961.00 200.00 35.00 18.00 16.00 2.09 6.00 2.35

P-3 4832.00 571.00 120.00 25.00 16.00 8.00 2.09 6.00 1.14

P-4 150.00 35.00 18.00 10.00 2.09 6.00 1.69

(50)

PERHITUNGAN STRUKTUR BANGUNAN

HOTEL S O N N Y

(51)

C . LAMPIRAN

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)

L (cm) n strous f beton(cm) #REF! 4.00 50.00 144.60 2.00 50.00 70.43 -104.10 2.00 30.00 172.68 5.00 55.00

(61)

PERHITUNGAN STRUKTUR BANGUNAN

HOTEL S O N N Y

(62)
(63)

I. Design of skunder Foundation :

Data :

Allowable soil strength

=

0.40

kg/cm2

fc'

=

300.00 kg/cm2

fy

=

2400.00 kg/cm2

C

o

n

crete

mass/vol.

=

2.40 ton/m3

Axial load (P)

=

8093.00 kg

Moment (M)

=

1257.00 kg.m

Try width of found. (B)

=

200.00 cm

Try width of column (b)

=

40.00 cm

Try deepth of WF (l)

=

30.00 cm

a. Foundation Plan

Thicknes of found. = 25.00 cm

Weight of foundation = 0.06 kg/cm2

Allowable soil strength net. = 0.34 kg/cm2

Extrem soil stress = P/A + M / (1/6 B^3)

= 0.20 + 0.09

= 0.30 kg/cm2

Extrem soil stress < Allw. Soil strength nett. ?

= 0.30 < 0.34 ?

...YES

b. 2 way shear Chek

Vu = 8093.00 kg

b

= 1.00 d = 19.00 cm bo = 4 x (d + b ) = 236.00 cm

f

Vc =

0,6 [

1/6 (1+2/

b 

f

c'. bo . D ] = 736796.38 N. = 73679.64 kg.

f

Vc > Vu ..? = 73679.64 > 8093.00 ..?

YES

c. 1 way shear Chek

f

Vc = 0,6 [1/6

f

c'. B . D ]

= 208134.57 N.

20813.46 kg.

f

Vc > Vu ..? = 20813.46 > 8093.00 ..?

YES

d. Reinforcement for bending moment

Mu = 1257.00 kg.m

r

min. = 1.4/fy = 0.01

(64)

m = fy / 0.85 fc' = 9.41 1/m = 0.11 (1-2.m.Rn/fy)^0,5 = 0.99

r =

1

/m [ 1-(1-2.m.Rn)/fy ]^0.5 = 0.0007 < 0.0058 (

r

min.) Use = 0.0058 As =

r.

B.d. = 2216.67 mm2 try

f

= 14.00 mm number = 16.00 As = 2461.76 > 2216.67

OK

Use : B = 200.00 cm b = 40.00 cm t = 25.00 cm

f

= 14.00 mm n = 16.00 pcs

II. Design of Base Plat :

Width of base plat (w) = 40.00 cm

Critical cantilv.length (m) = 5.00 cm

Conc. Bearing stress (fp) = 105.00 kg/cm2

Thickness of base plat (t) = 2.m (fp / fy)^0.5

= 2.09 cm

III. Anker Bolt (6 bolt) :

Geser ijin beton K300

= 6.50 kg/cm2

Jarak baut terjauh dari as = 15.00 cm

jumlah baut angker (n) = 6.00

Gaya akibat Momen (P1) = 4190.00 kg

1 baut memikul (P1 / 2) (tarik)= 2095.00 kg

Gaya akibat Normal (tekan) = 1348.83 kg

A 1 baut = 2.15 cm2

f

= 1.66 cm

L = 101.90 cm

IV. Sloof :

Beban axial sloof =

= 2136.00 kg > 10% ax.kolom ?Ok !

Coba penampang sloof = b 25.00 cm

= h 40.00 cm

Cek tekan beton = 2.14 kg/cm2 < 75 kg/cm2 ? Ok !

As min. 1% beton = 10.00 cm2

ambil n besi = 6.00 buah

f besi sloof = 1.46 cm > min 1,2 cm ? Ok !

f besi begel sloof minimum = 8 mm

(65)

Coba n =2.00 buah

f strous = 30.00 cm

Pmax. = Axial / n + M.X1 /1.(X1^2+X2^2) = 4046.50 + 1257.00

= 5303.50 kg

Kekuatan geser cleaf(lekatan tanah) di kedalaman 6 m diambil 100 kg/cm

Maka kekuatan ijin strous =Keliling x geser cleaf

(66)

PERHITUNGAN PLAT

PROYEK - RUMAH MANYAR

1. TYPE PLAT TANGGA UTAMA-a ( tebal 14 cm )

Tebal plat = 0.14 m

Panjang arah x (lx) = 1 m

Panjang datar = 4.3 m

Berat volume beton = 2400 kg/m3

Tebal selimut beton = 20 mm t bordes = 170

d = 0.14*1000 - 20 - 5 = 115 mm d bordes = 145

b = 1 m

L miring = 4.41474801 m

Beban-beban yang bekerja : 1. Beban mati

Plat = t * 2400 = 336 kg/m2

Finishing lantai (keramik) = 66 kg/m2

Anak tgga = 12 = 166.3515 kg/m2

Total = 568 kg/m2

2. Beban hidup

Beban hidup yang bekerja = 200 kg/m2

Wu = 1.2 * qd + 1.6 * ql = 1002.02181 kg/m2 (plat tangga)

Wu = 1.2 * qd + 1.6 * ql = 802.4 kg/m2 (plat bordes)

Dari SAP (dianalisa sebagai balok) didapat :

Mu lap.plat tangga = 3944 kgm = 38.65 kNm

Mu tump.plat bordes = 8656 kgm = 84.83 kNm

Mutu beton = 20 MPa

(67)

Mutu baja = 400 MPa

f = 0.8 Rn perlu = Mn perlu / ( b . d^2 )

ρ balance = 0.85 . fc'/fy x 600/(600+fy) = 0.0255

ρ max = 0.75 . ρ balance = 0.019125

r min u/ plat dg.Tul.fy240Mpa (altf SKSNI dan CUR) = 0.0025

m = fy/0.85 . fc' = 23.5294118

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

Arah Mu Mn Rn=Mn/bd2 r perlu cek r As perlu tul.pakai

kNm kNm N/mm2 > ρmin mm2 Ø (mm) utama di plat 38.65 48.314 4.567 0.01142 0.011416 1313 16 utama di bordes 84.83 106.036 5.043 0.01261 0.012608 1828 19 pembagi 263 10 pembagi 366 10 tangga pakai t = 140 mm bordes pakai t = 170 mm tulangan utama : Ø 16 - s = 150 mm tulangan bordes : Ø 19 - s = 150 mm tulangan pembagi : Ø 10 - s = 200 mm

PERHITUNGAN GESER PADA PLAT TANGGA

Vc = 1/6

√ (

fc' bw . d)

Ø = 0.6

jika : Vu < 0.5 ØVc ----> tidak tul geser

jika : 0.5 ØVc < Vu < ØVc ----> pakai tul geser minimal Vs min = 1/3 (Mpa) . bw . d

Øvs = vu < Øvc vu = Vu / bd

(68)

Øvc = 1/6

fc' Øvs = (vu - Øvc)

A sengk = (vu - Øvc) b y / (Øfy) A sengk min = b.y / (3 fy)

fc' = 20 Mpa

fy sengk = 240 Mpa

Vu b h d vu Øvc Øvc > vu ?

kg mm mm Mpa Mpa

PLAT TANGGA 3,369 1,000 140 105 0.320857 0.447214 ok, tdk perlu tul gsr

BORDES 5,963 1,000 170 135 0.441704 0.447214 ok, tdk perlu tul gsr

DESAIN BALOK TANGGA

I. LENTUR : Mu = 1/8 Q . L^2 Mn perlu = Mu/Ø = Mu / 0.8 qU bordes = 802.4 kg/m2 qU plat = 1002.0 / 2 = 501 kg/m2 Mu =

dimensi balok = b (lebar), h (tinggi) dan d ( h-0.5tul-cover) E (modulus elastisitas baja tul) = 200 000 Mpa

xb (garis netral kondisi seimbang) = ( ξcu / ( ξcu + ξy ) ) x d x max = 0.75 . xb

(69)

utk fc' < 27.5 Mpa β1 = 0.85 …(C.K.Wang hal 46)

Mn max = Cmax ( d - β1 . x/2) ---> jika Mn max > Mn perlu, tdk perlu tul tekan

Rn perlu = Mn perlu / ( b . d^2 )

ρ balance = 0.85 . fc'/fy x 600/(600+fy) ρ max = 0.75 . ρ balance

ρ min = 1.4 / fy

ρ perlu = 1/m [ 1-

1- (2.m.Rn perlu)/fy ]

m = fy/0.85 . fc'

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

E baja = 200,000 Mpa

fc' = 20 Mpa perhitungan ini hanya berlaku utuk fc' < 27.5 Mpa, diatas itu nilai β1 hrs diganti

fy = 400 Mpa Mu Mu Mn perlu b h d xb. (kg.m) (N.mm) (N.mm) (mm) (mm) (mm) (mm) La nta i -1

B1a lt-1 tumpu 11,727.00 1.17E+08 1.47E+08 150 550 485 #VALUE!

lt-1 lap. 9,982.00 9.98E+07 1.25E+08 150 550 485 #VALUE!

B1b lt-1 tumpu 6,590.00 6.59E+07 8.24E+07 150 500 435 #VALUE!

lt-1 lap. 2,842.00 2.84E+07 3.55E+07 150 500 435 #VALUE!

B1c lt-1 tumpu 5,375.00 5.38E+07 6.72E+07 150 500 435 #VALUE!

lt-1 lap. 3,027.00 3.03E+07 3.78E+07 150 500 435 #VALUE!

A

tap B2a atap tumpu 1397 1.40E+07 1.75E+07 150 400 335 #VALUE!

atap lap 2860 2.86E+07 3.58E+07 150 400 335 #VALUE!

B2b atap tumpu 681 6.81E+06 8.51E+06 150 300 235 #VALUE!

atap lap 346 3.46E+06 4.33E+06 150 300 235 #VALUE!

blk.tangga 648 6.48E+06 8.10E+06 150 400 335 #VALUE!

(70)

G

aras

i

B-utamatepi tumpu 2,690.00 2.69E+07 3.36E+07 150 400 335 #VALUE!

lap 5,491.00 5.49E+07 6.86E+07 200 400 335 #VALUE!

B-utama-dlm tumpu 400.00 4.00E+06 5.00E+06 200 350 285 #VALUE!

lap 2,027.00 2.03E+07 2.53E+07 200 350 285 #VALUE!

B-anak tumpu 400.00 4.00E+06 5.00E+06 150 250 185 #VALUE!

lap 1,930.00 1.93E+07 2.41E+07 150 250 185 #VALUE!

macam tul. :

polos 6,8,10

(71)

mm

Wu bordes Wu plat

(72)

As ada As ada>Asperlu s (mm) 150 1340 ok 150 1889 ok 200 393 ok 20% tul.utama 200 393 ok 20% tul.utama

(73)
(74)

xmax Cmax Mn max beton Mn max betonRn perlu ρ balance ρ max ρ min m ρ perlu ρ perlu > ρ min

(mm) (N) (N.mm) > Mn perlu

#VALUE! #VALUE! #VALUE! #VALUE! 4.154533 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 3.53633 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 2.902189 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 1.251596 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 2.367111 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 1.333069 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 1.037351 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 2.12371 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 1.027614 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 0.522107 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 0.481176 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

(75)

#VALUE! #VALUE! #VALUE! #VALUE! 1.997475 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 3.058031 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 0.307787 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 1.559711 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

#VALUE! #VALUE! #VALUE! #VALUE! 0.973947 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

(76)
(77)
(78)
(79)

ρ perlu < ρ maxAs perlu tul pakai As ada > As perlu

mm2 jml Ф (mm) mm2

#VALUE! #VALUE! 5 16 1004.8 #VALUE!

#VALUE! #VALUE! 4 16 803.84 #VALUE!

#VALUE! #VALUE! 4 13 530.66 #VALUE!

#VALUE! #VALUE! 3 13 397.995 #VALUE!

#VALUE! #VALUE! 4 13 530.66 #VALUE!

#VALUE! #VALUE! 3 13 397.995 #VALUE!

#VALUE! #VALUE! 2 12 226.08 #VALUE!

#VALUE! #VALUE! 3 12 339.12 #VALUE!

#VALUE! #VALUE! 2 12 226.08 #VALUE!

#VALUE! #VALUE! 2 12 226.08 #VALUE!

#VALUE! #VALUE! 2 12 226.08 #VALUE!

(80)

#VALUE! #VALUE! 3 13 397.995 #VALUE!

#VALUE! #VALUE! 4 16 803.84 #VALUE!

#VALUE! #VALUE! 2 13 265.33 #VALUE!

#VALUE! #VALUE! 3 13 397.995 #VALUE!

#VALUE! #VALUE! 2 13 265.33 #VALUE!

(81)

PERHITUNGAN PLAT

PROYEK - RUMAH MANYAR

1. TYPE PLAT TANGGA UTAMA-a bagian atas ( tebal 14 cm )

Tebal plat = 0.14 m

Panjang arah x (lx) = 1 m

Panjang datar = 3.88 m

Berat volume beton = 2400 kg/m3

Tebal selimut beton = 20 mm

d = 0.14*1000 - 20 - 5 = 115 mm

b = 1 m

L miring = 4.00679423 m

Beban-beban yang bekerja : 1. Beban mati

Plat = t * 2400 = 336 kg/m2

Finishing lantai (keramik) = 66 kg/m2

Anak tgga = 12 = 183.2887 kg/m2

Total = 585 kg/m2

2. Beban hidup

Beban hidup yang bekerja = 200 kg/m2

Wu = 1.2 * qd + 1.6 * ql = 1022.346408 kg/m2 (plat tangga)

Dari SAP (dianalisa sebagai balok) didapat :

Mu lap.plat tangga = 869 kgm = 8.52

Mu tump.plat tangga = 1800 kgm = 17.64

Mutu beton = 20 MPa

Mutu baja = 240 MPa

f = 0.8 Rn perlu = Mn perlu / ( b . d^2 )

ρ balance = 0.85 . fc'/fy x 600/(600+fy) = 0.050595

ρ max = 0.75 . ρ balance = 0.037946

r min u/ plat dg.Tul.fy240Mpa (altf SKSNI dan CUR) = 0.0025

m = fy/0.85 . fc' = 14.11764706

ρ min < ρ perlu < ρ max As perlu = ρ perlu . b . d

Arah Mu Mn Rn=Mn/bd2 r perlu cek r

(82)

lap di plat 8.52 10.64525 1.006 0.00419 0.004192 tum di plat 17.64 22.05 2.084 0.00868 0.008684 pembagi pembagi tangga pakai t = 140 mm bordes pakai t = 140 mm tulangan utama : Ø 10 - s = 150 tulangan bordes : Ø 13 - s = 120 tulangan pembagi : Ø 10 - s = 200

PERHITUNGAN GESER PADA PLAT TANGGA

Vc = 1/6

√ (

fc' bw . d)

Ø = 0.6

jika : Vu < 0.5 ØVc ----> tidak tul geser

jika : 0.5 ØVc < Vu < ØVc ----> pakai tul geser minimal Vs min = 1/3 (Mpa) . bw . d

Øvs = vu < Øvc vu = Vu / bd

Øvc = 1/6

fc'

Øvs = (vu - Øvc)

A sengk = (vu - Øvc) b y / (Øfy) A sengk min = b.y / (3 fy)

fc' = 20 Mpa fy sengk = 240 Mpa Vu b h d vu kg mm mm Mpa PLAT TANGGA 2,596 1,000 140 105 0.247238 BORDES 1,000 170 135 0

(83)

t bordes = 140

d bordes = 0 mm

(plat tangga)

kNm kNm

As perlu tul.pakai As ada As ada>Asperlu

mm2 Ø (mm) s (mm)

(84)

482 10 150 523 ok 999 13 120 1106 ok 96 10 200 393 ok 20% tul.utama 200 10 200 393 ok 20% tul.utama mm mm mm Øvc Øvc > vu ? Mpa

0.447214 ok, tdk perlu tul gsr

(85)
(86)

20% tul.utama 20% tul.utama

Referensi

Dokumen terkait

pabrik. Adanya pembangunan jalan di sepanjang jalan industri menuju pabrik PT. Guna Kemas Indah. Pemasukan Listrik di sepanjang jalan industri menuju PT. Guna Kemas Indah. Standar

Hubungan Antara Penerimaan Perkembangan Fisik Dengan Kematangan Emosi Pada Remaja Awal. Universitas Pendidikan Indonesia |

Penyelenggara Pemilu adalah lembaga yang menyelenggarakan Pemilu yang terdiri atas Komisi Pemilihan Umum dan Badan Pengawas Pemilu sebagai satu kesatuan fungsi

All in One 150 Key Performance Indicators and Balanced Scorecard, Malcolm Baldrige, Lean Six Sigma Supply

(12) Bendera Negara sebagai penutup peti atau usungan jenazah sebagaimana dimaksud pada ayat (1) huruf c dapat dipasang pada peti atau usungan jenazah Presiden atau Wakil

Studi Eksplorasi Kesesuaian Antara Kompetensi Guru Di SMK Dengan Standar Kompetensi Guru Dari Standar Nasional Pendidikan (SNP).. Universitas Pendidikan Indonesia |

mengajukan permohonan untuk diterbitkannya surat keterangan pengganti ijin operasional yang sampai saat ini penerbitannya masih dalam proses di Kantor Wilayah Kementerian

Pengaruh iklan black versi welcome to the jungle terhadap minat beli konsumen anggota club motor trand bikers. 4 Fuji Lara Sakti A 6662122278 Lebak, 26 April 1994 Konstruksi