• Tidak ada hasil yang ditemukan

TRY OUT UJIAN NASIONAL

N/A
N/A
Protected

Academic year: 2021

Membagikan "TRY OUT UJIAN NASIONAL"

Copied!
11
0
0

Teks penuh

(1)

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA

DINAS PENDIDIKAN

MUSYAWARAH KERJA KEPALA SEKOLAH SMA

Sekretariat :SMA Negeri 70 Jakarta

Jalan Bulungan No. 1C, Jakarta Selatan - Telepon (021) 7222667, Fax (021) 7221343

TRY OUT UJIAN NASIONAL

Mata Pelajaran : Matematika

Program Studi : Ilmu Pengetahuan Alam (IPA) Hari / Tanggal : Rabu, 14 Maret 2012

Waktu : 07.00 – 09.00 WIB

Petunjuk Umum

1. Isikan identitas Anda ke dalam Lembar Jawaban Try Out Ujian Nasional (LJTOUN) yang tersedia dengan menggunakan pensil 2B.

2. Tersedia waktu 120 menit untuk mengerjakan paket TO UN ini.

3. Jumlah soal40(empat puluh) butir, pada setiap butir terdapat 5 (lima) pilihan jawaban. 4. Periksa dan bacalah soal-soal sebelum Anda menjawabnya.

5. Laporkan kepada Pengawas Try Out apabila terdapat soal yang kurang jelas, rusak, atau tidak lengkap.

6. Tidak diizinkan menggunakan kalkulator, HP, tabel matematika, atau alat bantu hitung lainya. 7. Periksa pekerjaan Anda sebelum diserahkan kepada Pengawas Try Out.

8. Lembar soal boleh dicoret-coret untuk mengerjakan perhitungan.

1. Sukubanyak P(x) = x3– (a – 1)x2 + bx + 2a habis dibagi (x + 2), dibagi (x – 2) sisanya -4. Jika P(x) dibagi (x + 1) maka hasil bagi dan sisanya berturut–turut adalah ….

A. x2- 3x – 2 dan 8 B. x2+ 3x + 2 dan 8 C. x2– 3x + 2 dan 8 D. x2+ 3x – 2 dan -8 E. x2– 3x - 2 dan -8 2. Diketahui f(x) = 2x + 5 dan g(x) = ; 4 4 1     x x x

. Jika (f o g)(a) = 5 maka nilai a = ... . A. -2

B. -1 C. 0 D. 1 E. 2

3. Diketahui (f o g)(x) = 4x2+ 8x – 3 dan g(x) = 2x + 4. Jika f-1(x) adalah invers dari f(x) maka f

-1 (x) = .... A. x + 9 B. 2 +x C. x2– 4x – 3 D. 2 + x1 E. 2 + x7

(2)

4. Seorang pedagang membeli jeruk seharga Rp1.200,00/buah dijual dengan laba Rp300,00/buah. Sedangkan apel seharga Rp1000,00/buah dijual dengan laba Rp200,00/buah. Pedagang tersebut mempunyai modal Rp340.000,00 dan kiosnya dapat menampung 300 buah, maka keuntungan maksimum pedagang tersebut adalah ….

A. Rp75.000,00 B. Rp78.000,00 C. Rp80.000,00 D. Rp83.000,00 E. Rp85.000,00 5. Diketahui matriks A =         a 1 3 a 2 1

dengan determinan matriks A sama dengan 5, maka A-1 adalah .... A.             5 1 5 1 -5 3 -5 2 B.             5 1 5 2 5 3 5 3 C.             5 2 5 1 -5 3 -5 4 D.              5 2 5 1 -5 3 5 6 E.             5 3 5 2 -5 4 -5 7

6. Agar akar-akar x1 dan x2 dari persamaan kuadrat 2x2 + 8x + m = 0 memenuhi 7x1 – x2 = 20

maka nilai 6 - ½m adalah …. A. -24

B. -12 C. 12 D. 18 E. 20

7. Supaya garis ymx1 memotong di satu titik pada kurva yx2 x3, nilai m yang memenuhi adalah A. 3 atau 5 B. - 5 atau 3 C. - 3 atau 5 D. - 3 atau 4 E. 3 atau 4

8. Enam tahun yang lalu, umur Budi 4 tahun lebih muda dari seperenam umur ayahnya. Umur Budi sekarang 3 tahun lebih tua dari seperdelapan umur ayahnya. Jumlah umur Budi dan ayahnya sekarang adalah ...

A. 60 tahun B. 57 tahun C. 56 tahun

(3)

D. 54 tahun E. 52 tahun

9. Persamaan lingkaran yang berpusat di (-2,2) dan menyinggung garis 4x – 3y + 24 = 0 adalah .... A. x2+ y2+ 4x – 4y + 4 = 0

B. x2+ y2+ 4x + 4y + 4 = 0 C. x2+ y2– 4x + 4y + 4 = 0 D. x2+ y2– 4x – 4y – 4 = 0 E. x2+ y2+ 4x – 4y – 4 = 0

10. Salah satu persamaan garis singgung pada lingkaran (x + 2)2+ (y + 3)2= 4 yang sejajar dengan garis 6x – 2y – 7 = 0 adalah …. A. y = 2x + 3 + 310 B. y = 2x - 3 - 310 C. y = 3x + 3 + 210 D. y = 3x - 3 - 210 E. y = 3x - 3 + 210 11. Diketahui premis-premis:

P1: Jika ia dermawan maka ia disenangi masyarakat.

P2: Ia tidak disenangi masyarakat .

Kesimpulan yang sah untuk dua premis di atas adalah ... . A. Ia tidak dermawan

B. Ia dermawan tetapi tidak disenangi masyarakat C. Ia tidak dermawan dan tidak disenangi masyarakat D. Ia dermawan

E. Ia tidak dermawan tetapi disenangi masyarakat

12. Pernyataan yang setara dengan “Jika semua pengendara kendaraan disiplin di jalan maka lalu-lintas tidak macet”

adalah...

A. Jika lalu lintas macet maka semua pengendara kendaraan disiplin di jalan B. Jika lalu lintas tidak macet maka ada pengendara tidak disiplin di jalan

C. Beberapa pengendara kendaraan tidak disiplin di jalan atau lalu lintas tidak macet D. Ada pengendara kendaraan disiplin di jalan atau lalu lintas macet

E. Semua pengendara kendaraan disiplin di jalan dan lalu-lintas macet 13. Jika f(n) = 2n + 2.6n – 4dan g(n) = 12n – 1; n bilangan asli maka 

) ( ) ( n g n f ... . A. 32 1 B. 27 1 C. 18 1 D. 9 1 E. 29 2

(4)

14. Bentuk sederhana dari



.... ) 7 2 ( 3 4 3 4 ) 7 3 6 ( 2      A. 2613 7 B. 26 7 C. 26 7 D. 2613 7 E. 26 7

15. Jika4log 6 = m + 1 maka9log 8 = ... . A. 4 2 3  m B. 2 4 3  m C. 2 4 3  m D. 4 2 3  m E. 2 2 3  m

16. Jika vektor a dan vektor b membentuk sudut 600, |a| = 4 dan |b| = 3, maka a.(a - b) =... . A. 2

B. 4 C. 6 D. 8 E. 10

17. Diketahui titik-titik A(3,2,4), B(5,1,5), dan C(4,3,6). AB adalah wakil dari u dan AC wakil dari v. Kosinus sudut yang dibentuk oleh vektor u dan v adalah... .

A. 6 5 B. 2 1 C. 3 1 D. 3 1  E. 2 1  18. Diketahui vektor-vektor _ a= i + 2j + 3k, _ b= 5i + 4j – k, _ c= 2i – j + k, jika vektor _ _ _ b a x  , maka proyeksi vektor

_ x pada vektor _ c adalah .... A. i j k 3 1 3 1 3 2    B. i j k 3 1 3 1 3 2

(5)

C. i j k 3 1 3 2 3 1    D. i j k 3 1 3 2 3 1   E. i j k 3 1 3 1 3 2

19. Jika titik (a,b) dicerminkan terhadap sumbu Y, kemudian dilanjutkan dengan transformasi sesuai matriks        2 1 1 2

menghasilkan titik (1,-8) maka nilai a + b = .... A. -3

B. -2 C. -1 D. 1 E. 2

20. Persamaan bayangan garis 3x + 2y – 1 = 0 oleh transformasi yang bersesuaian dengan matriks

       1 1 1 1

dilanjutkan oleh matriks 

     1 1 1 0 adalah…. A. 4x + y + 1 = 0 B. 4x + y – 1 = 0 C. 6x + y – 2 = 0 D. 6x – y + 2 = 0 E. 6x – y – 2 = 0

21. Diketahui kubus ABCD.EFGH dengan panjang rusuk 12 cm, titik P adalah titik tengah EG maka jarak A ke garis CP adalah ….

A. 6 6 cm B. 8 3 cm C. 8 6 cm D. 9 3 cm E. 9 6 cm

22. Diketahui kubus ABCD.EFGH dengan rusuk 4 cm . Sinus sudut antara bidang ACF dan bidang ACGE adalah …. A. 6 6 1 B. 3 3 1 C. 2 2 1 D. 6 2 1 E. 3 2 1

23. Tiga bilangan berurutan ( 3k – 3 ) , (3k + 1) dan (k2+ 2k + 3) merupakan tiga suku dari barisan aritmetika. Nilai k yang memenuhi adalah ….

(6)

B. – 2 dan 1 C. 2 dan – 1 D. 3 dan – 2 E. 3 dan 2

24. Seutas tali dibagi menjadi 5 bagian dengan membentuk suatu barisan geometri. Jika tali yang paling pendek adalah 16 cm dan tali yang paling panjang adalah 81 cm, maka panjang tali semula adalah …. A. 242 cm B. 211 cm C. 133 cm D. 130 cm E. 121 cm 25. Pertidaksamaan 2 1 ) 3 2 log( 2 25    x x dipenuhi …. A. 4x2 B. 2x4 C. x1 atau x3 D. 4x1 atau 2x3 E. 2x1 atau 3x4

26. Taksiran harga sebuah mesin setelah t tahun adalah V rupiah dengan

t r P V         1 1 .Jika P=Rp25.000.000,00 dan r = 5, maka taksiran harga mesin itu setelah 3 tahun adalah …. A. Rp 3.200.000,00

B. Rp 6.400.000,00 C. Rp 9.600.000,00 D. Rp12.800.000,00 E. Rp32.000.000,00

27. Pada gambar suatu elevasi terhadap puncak menara T dilihat dari titik A adalah 300dan dari titik B adalah 600. Jika jarak A dan B 120 m , tinggi menara adalah ….

A. 120 3m B. 120 2 m C. 90 3m D. 60 3m E. 60 2 m A B 300 600 T

(7)

28. Himpunan penyelesaian persamaan cos 2x0+ 7 sin x0– 4 = 0, untuk 0x360 adalah …. A.

30,150

B.

60,120

C.

120,240

D.

210,330

E.

240,300

29. Diketahui   1500 dan 4 3 cos sin   ,Nilai .... tan tan    A. 3 B. 3 C. 3 3 1 D. 3 3 1  E. 3 30. Nilai .... 6 4 2 1 2 lim 2 1       x x x A. – 2 B. – 1 C. 0 D. 2 E. 4 31. Nilai .... 7 6 5 sin 9 sin lim 0    xcox x x x x A. 3 2 B. 2 1 C. 3 1 D. 4 1 E. 6 1

32. Sebuah kotak berbentuk balok tanpa tutup mempunyai alas persegi. Jika volume kotak tersebut 13.500 cm3, maka luas minimum permukaannya adalah ….

A. 1.350 cm2 B. 1.800 cm2 C. 2.700 cm2 D. 3.600 cm2 E. 4.500 cm2

(8)

33. Perhatikan tabel berikut! Tinggi badan (cm) Frekuensi 140 – 145 146 – 151 152 – 157 158 – 163 164 – 169 170 – 175 176 – 181 2 6 11 12 9 7 3 Median data di atas adalah …. A. 159,00

B. 159,50 C. 159,75 D. 160,50 E. 160,75

34. Dari 8 pegawai pria dan 6 pegawai wanita dari suatu perusahaan akan dipilih 5 orang untuk ditempatkan di bagian keuangan. Jika paling banyak 2 wanita dipilih untuk ditempatkan di bagian keuangan, maka banyak cara memilih ada ….

A. 1.320 B. 1.316 C. 1.080 D. 980 E. 896

35. Kantong A berisi 5 kelereng merah dan 3 kelereng putih. Kantong B berisi 2 kelereng merah dan 6 kelereng putih. Dari masing-masing kantong diambil sebuah kelereng, peluang bahwa kedua kelereng berwarna sama adalah ….

A. 16 6 B. 16 7 C. 16 8 D. 16 9 E. 16 11

(9)

36. Hasil dari .... 4 3 2 3 3 2 2    

dx x x x x A. 3 (x33x24)2 C 2 3 B. 3 (x33x24)2 C 2 1 C. 3 x3 x2 C ) 4 3 ( 2 1 D. 3 x3 x2 2 C ) 4 3 ( 3 1 E. 3 x3 x2 C ) 4 3 ( 6 1 37. Nilai dari (1 3 ) .... 1 0 3  

x dx A. 12 16  B. 12 15  C. 12 13  D. 12 15 E. 12 16

38. Hasil dari

2cos3x sinx cosx dx....

A.

x cos5xC 2 1 cos 5 1

B.

x cosxC 2 1 5 cos 5 1

C.

x cosxC 2 1 5 cos 5 1

D.

x cosxC 2 1 5 cos 10 1 E.  x cosxC 2 1 cos 10 1

(10)

39. Luas daerah yang diarsir pada gambar berikut adalah ….. A. 3 4 satuan luas B. 3 2 2 satuan luas C. 3 2 4 satuan luas D. 3 2 6 satuan luas E. 3 1 9 satuan luas

40. Volume benda putar yang terbentuk jika daerah y = 4 – x2 dan y = x + 2 diputar mengelilingi sumbu X sejauh 3600adalah ….

A.  5 3 9 satuan volume. B.  5 3 10 satuan volume. C.  5 3 21 satuan volume. D.  5 3 23 satuan volume. E.  5 2 26 satuan volume. y=4x-x2 X Y

(11)

KUNCI MATEMATIKA IPA PAKET C 1. A 2. D 3. E 4. E 5. C 6. D 7. B 8. B 9. A 10. C 11. A 12. C 13. B 14. D 15. B 16. E 17. B 18. A 19. C 20. E 21. B 22. B 23. C 24. B 25. E 26. D 27. D 28. A 29. E 30. A 31. A 32. C 33. D 34. B 35. B 36. B 37. B 38. D 39. B 40. A

Referensi

Dokumen terkait

Di antara larutan-larutan berikut ini yang mempunyai penurunan titik beku paling tinggi pada konsentrasi yang sama adalah ..A.

dalam beberapa kantong dengan jumlah yang sama. Setiap kantong akan berisi ….. Andika mendapat tugas untuk membuat kerangka kubus dari kawat. Maka panjang seluruh kawat yang harus

Saat menyalip kendaraan lain, saya memberikan jarak agak jauh untuk memotong jalur kendaraan yang saya salip.. Saya tidak suka melewati

Beberapa siswa SMA di DKI jakarta tidak lulus ujian atau Pak Gubernur DKI Jakarta sujud syukurc. Pak Salim hendak berjualan beras dan gula

Dari beberapa produk diatas yang sangat mendukung pada usaha pemerintah untuk meningkatkan efisiensi pertumbuhan ekonomi dengan meningkatkan stock barang modal adalah

Jika pak Dodo bekerja 5 hari dengan terus menerus lembur, maka upah yang diperoleh adalah ….. Pesawat penumpang mempunyai tempat duduk 48 kursi, setiap penumpang kelas utama

Dari pernyataan di atas yang termasuk faktor yang mempengaruhi banyak sedikitnya curah hujan di suatu tempat adalah pernyataan pada nomor ….. a. Perhatikan gambar siklus

Dalam neraca saldo terdapat akun beban angkut pembelian sebesar Rp 135.000,00 dan pada ayat jurnal penyesuaian di debet Rp 15.000,00, maka penyelesainnya di kertas kerja adalah