• Tidak ada hasil yang ditemukan

STUDI EKSPERIMEN DAN SIMULASI CFD KARAKTERISTIK ARUS- TEGANGAN DAN ARUS-DAYA PROTON EXCHANGE MEMBRANE

N/A
N/A
Protected

Academic year: 2018

Membagikan "STUDI EKSPERIMEN DAN SIMULASI CFD KARAKTERISTIK ARUS- TEGANGAN DAN ARUS-DAYA PROTON EXCHANGE MEMBRANE"

Copied!
69
0
0

Teks penuh

(1)

commit to user

i

STUDI EKSPERIMEN DAN SIMULASI CFD KARAKTERISTIK

ARUS-TEGANGAN DAN ARUS-DAYA PROTON EXCHANGE MEMBRANE FUEL CELL

SKRIPSI

Diajukan sebagai salah satu syarat

untuk memperoleh gelar

Sarjana Teknik

Disusun oleh

Muhammad Imam Saputra I0407046

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET

SURAKARTA

(2)

commit to user

(3)

commit to user

(4)

commit to user

iv

MOTTO

Hai orang-orang yang beriman, mintalah pertolongan (kepada

Allah) dengan sabar dan (mengerjakan) salat, sesungguhnya Allah beserta

orang-orang yang sabar.

(QS Al-Baqarah:153)

Sesungguhnya Allah tidak melihat pada bentuk rupamu dan

hartamu, tetapi melihat kepada hati dan amalanmu.

(Muhammad SAW)

Saya tak mau jadi pohon bambu, saya mau jadi pohon oak yang

berani menentang angin.

(Soe Hok Gie)

Mereka pikir ini sulit, tapi bagi kami ini tantangan

(5)

commit to user

v

PERSEMBAHAN

Aku persembahkan karya ini kepada:

Atas kuasa-Nya penulis ada dan mampu mencapai level kehidupan seperti ini.

Pemberi petunjuk dan teladan yang sempurna dalam menjalani kehidupan

Serta kepada keluarga dan Kepada mereka yang memberi inspirasi, serta dukungan.

Kepada mereka yang haus akan ilmu.

(6)

commit to user

vi

STUDI EKSPERIMEN DAN SIMULASI CFD KARAKTERISTIK ARUS-TEGANGAN DAN ARUS-DAYA PROTON EXCHANGE MEMBRANE

FUEL CELL lingkungan. Penelitian ini bertujuan untuk mengetahui karakteristik arus-tegangan dan arus-daya dari fuel cell J101 serta parameter-parameter yang berpengaruh pada efisiensi fuel cell. Penelitian ini terdiri dari dua tahap yaitu eksperimen dan simulasi dengan CFD (Computational Fluid Dynamic). Eksperimen menggunakan

fuel cell J101 yang merupakan perangkat fuel cell jenis PEMFC (Proton Exchange

Membrane Fuel cell) produk dari H-tec dengan luas penampang membran fuel cell

adalah 4 cm2. Bahan bakar (H2 dan O2) hasil elektrolisis ditampung di gas storage

kemudian direaksikan pada fuel cell. Reaksi ini menghasilkan produk berupa listrik dan panas. Karakteristik dan efisiensi fuel cell diuji dengan memberi hambatan yang berbeda-beda sehingga dihasilkan arus dan tegangan yang bervariasi. Hasil dari penelitian ini menunjukkan bahwa fuel cell J101 dapat menghasilkan daya tertinggi sebesar 556 mW pada arus 1335 mA dan tegangan 416,75 mV. Efisiensi energi tertinggi adalah 57,8% pada arus 55,48 mA dan tegangan 787,62 mV. Hasil simulasi CFD menunjukkan kesamaan kurva karakteristik I-V dan I-P dengan hasil eksperimen. Untuk bahan-bakar hidrogen murni, tidak terlihat adanya pengaruh dari porositas katalis dan gas diffusion layer

terhadap arus yang dihasilkan fuel cell. Adanya kenaikan temperatur kerja fuel cell

dari 30°C, 50°C, dan 75°C menyebabkan penurunan arus yang dihasilkan oleh fuel cell. Hasil scale up menunjukkan bahwa perbesaran luas membran dua kali lipat dapat meningkatkan daya maksimum hingga dua kali lipat.

(7)

commit to user

vii

EXPERIMENT AND CFD SIMULATION STUDY OF CURRENT-VOLTAGE AND CURRENT-POWER CHARACTERISTIC OF PROTON

EXCHANGE MEMBRANE FUEL CELL

Muhammad Imam Saputra Department of Mechanical Engineering Engineering Faculty of Sebelas Maret University

Surakarta

E-mail : m.imamsaputra@gmail.com

Abstract

Fuel cell is one of energy conversion devices which changes chemical energy into electrical energy directly. Having high efficiency and environmental friendly are its characteristic. This research aims for knowing characteristics of J101 fuel cell, namely power voltage and current flow. Furthermore, it studied what parameters that affected the efficiency of the fuel cell. The research study is consisted of two steps; they were experiments and simulation using CFD (computational fluid dynamic). The experiments used J101 fuel cell which included the type of PEMFC (Proton exchange membrane fuel cell). It have four centimeters membrane cross sectional produced by H-Tec. The electrolysis process produced hydrogen and oxygen which were collected in the gas storage. After collecting those fuels, they were reacted in fuel cell. This reaction produced electricity and heats. The characteristic and the efficiency of fuel cell were tested by giving them different load so that the variety of output current of fuel cell. The increasing of fuel cell temperature of 30 ºC, 50 ºC and 75 ºC caused the decreasing of current which was produced by fuel cell. The result of scale up show that scale up of membrane cross sectional area two times increased the maximum power twice.

(8)

commit to user

viii

KATA PENGANTAR

Segala puji syukur hanya kepada Allah SWT yang Maha Pengasih dan

Maha Penyayang, shalawat serta salam untuk Nabi besar Muhammad SAW

yang telah menjadi suri tauladanbagi umat manusia. Walaupun berbagai

rintangan dan hambatan yang dihadapi selama pembuatannya, akhirnya atas

berkat rahmat dan karunia-Nya penulis dapat menyelesaikan skripsi ini.

Dengan segala keterbatasan dan kemampuan dalam proses

pembuatannya, penulis menyadari bahwa proses pembuatan skripsi ini tidak

lepas dari bimbingan, bantuan, arahan serta dorongan dan doa dari berbagai

pihak. Oleh karena itu dengan segala ketulisan hati, penulis mengucapkan

terima kasih kepada :

1. Allah SAW, Tuhan semesta alam. Atas kuasa-Nya penulis sampai pada level

ini.

2. Bapak Dr. techn. Suyitno, ST., MT. selaku pembimbing I atas bimbingan dan

ilmu yang bermanfaat hingga penulis menyelasikan skripsi ini.

3. Bapak Zainal Arifin, ST., MT. selaku pembimbing II dan Pembimbing

Akademis yang telah memberikan ilmu, bimbingan dan arahan dalam

menyelesaikan skripsi ini dan menyelesaikan studi di Universitas Sebelas

Maret ini.

4. Bapak Didik Djoko Susilo, ST., MT. selaku Ketua Jurusan Teknik Mesin

Universitas Sebelas Maret Surakarta.

5. Bapak Wahyu Purwo Raharjo, ST., MT. Selaku Koordinator Tugas Akhir.

6. Seluruh Dosen serta Staff di Jurusan Teknik Mesin Universitas Sebelas Maret

yang turut mendidik penulis hingga dapat menyelesaikan studi S1.

7. Kedua Orang tua tersayang atas segala kasih sayang, pengorbanan dan

jasanya yang tak terkira, memberikan dukungan moril maupun matriil,

semangat, doa yang tulus dan ikhlas kepada penulis.

8. ‘Adek’ yang menjadi salah satu motivasi penulis.

9. Keluarga ‘mbah’ Parman dan ‘mbah’ Yusrin yang banyak memberikan

(9)

commit to user

ix

10. Rekan-rekan Jurusan Teknik mesin khususnya angkatan 2007 dan

rekan-rekan Lab. Biofuel &Advanced Energy yang banyak membantu penulis dalam

penulisan skripsi dan menyelesaikan studi S1 Teknik Mesin.

11. H-tec dan Google, yang membantu penulis mendapatkan informasi yang

diperlukan

12. Semua pihak yang tidak dapat penulis sebutkan satu per satu yang telah

membantu pelaksanaan dan penyusunan laporan skripsi ini.

Penulis menyadari bahwa dalam penyusunan skripsi ini masih jauh dari

sempurna, maka kritik dan saran sangat penulis harapkan untuk kesempurnaan

skripsi ini.Akhirnya penulis berharap semoga skripsi ini bermanfaat bagi kita

semua.

Surakarta,

November 2012

(10)

commit to user

1.4. Tujuan dan Manfaat ... 3

1.5. Sistematika Penulisan ... 3

2.2.3. Termodinamika Fuel Cell ... 13

2.2.4. Teori Tentang Computational Fluid Dynamic (CFD)FLUENT-GAMBIT... 16

2.2.5. Prosedur Pemodelan Geometri Menggunakan GAMBIT (Geometry and Mesh Building Intelligent Toolkit) ... 17

2.2.6. Pemodelan denganFLUENT ... 19

BAB III METODOLOGI PENELITIAN 3.1. Tempat Pengujian ... 21

3.2. Alat dan Bahan yang Digunakan ... 21

3.3. Solar-Hydrogen Energy ... 25

3.4. Uji Karakteristik Arus-Tegangan dan Arus-Daya Fuel Cell. ... 26

3.5. Variasi Pengujian ... 27

3.6. Skema penelitian ... 28

3.7. Tahap Penelitian ... 29

3.8. Prosedur Percobaan (Experiment) ... 30

3.9. Pemodelan dengan GAMBIT-FLUENT ... 30

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Eksperimen Unit Fuel Cell J101 ... 33

(11)

commit to user

xi

4.3. Parameter yang Berpengaruh pada Performa Fuel Cell. ... 44

4.4. Scale Up ... 49

BAB V KESIMPULAN DAN SARAN

5.1. Kesimpulan ... 52

5.2. Saran ... 52

(12)

commit to user

xii DAFTAR GAMBAR

Gambar 2.1. Skema sederhana fuel cell (Moran dkk., 2004) ... 8

Gambar 2.2. Jenis-jenis fuel cell dan aplikasinya (European-Commission, 2003) ... 9

Gambar 2.3. Skema Proton Exchange Membrane (Voight dkk., 2009) ... 12

Gambar 2.4. Reaksi pada PEMFC (Voight dkk., 2009) ... 12

Gambar 2.5. Karakteristik performa fuel cell (Spiegel, 2007). ... 14

Gambar 2.6. Prosedur Pemodelan FLUENT-GAMBIT. ... 17

Gambar 3. 1 Satu set Junior basic J101 (Voight dkk., 2009) ... 21

Gambar 3.2. PEM Fuel Cell (Voight dkk., 2009). ... 21

Gambar 3.3. PEM Electrolyzer (Voight dkk., 2009). ... 22

Gambar 3.4. Proses Elektrolisis (Voight dkk., 2009). ... 22

Gambar 3.5. Gas Storage kapasitas 30 ml(Voight dkk., 2009). ... 23

Gambar 3.6. Solar Module (Voight dkk., 2009). ... 23

Gambar 3.7. Resistor, Multimeter, Stopwatch. ... 25

Gambar 3.8. Solar-Hydrogen Cycle (Voight dkk., 2009) ... 26

Gambar 3.9. Skema penelitian pemodelan Fuel cell. ... 28

Gambar 3.10. Skema pengambilan data eksperimen. ... 28

Gambar 3.11. Tahap penelitian pemodelan Fuel Cell ... 29

Gambar 3.12. Grid dan meshfuel cell ... 31

Gambar 4.1. Kurva karakteristik arus-tegangan (I-V). ... 34

Gambar 4.2. Kurva karakteristik Arus- Daya (I-P) dan efisiensi fuel cell J101 (eksperimen). ... 35

Gambar 4.3. H2O yang terbentuk pada variasi hambatan 0.3 Ohm dan 100 Ohm. ... 36

Gambar 4.4. Tampak depan dari skema model geometri fuel cell. ... 37

Gambar 4.5. Mesh dan grid fuel cell J101.... 38

Gambar 4.6. Perbandingan kurva karakteristik arus-tegangan (I-V) eksperimen dengan simulasi fuel cell J101. ... 39

(13)

commit to user

xiii

Gambar 4. 8. Perbandingan penurunan tekanan pada anoda dan katoda (posisi 0

untuk Outlet dan posisi 0,0727 untuk Inlet). ... 41

Gambar 4.9. Kontur tekanan (Pa) dalam anoda dan katoda. ... 42

Gambar 4. 10. Perbandingan fraksi massa H2O terbentuk dengan variasi hambatan (posisi 0 untuk Outlet dan posisi 0,0727 untuk Inlet). ... 43

Gambar 4.11. Kontur fraksi massa H2O pada variasi 0.404 volt dan 0.792 volt. .. 43

Gambar 4. 12. Perbandingan fraksi massa H2 pada GDL dengan variasi porositas GDL. ... 46

Gambar 4.13. Kontur H2 pada channel anoda dengan variasi porositas gas diffusion layer. ... 46

Gambar 4. 14. Perbandingan fraksi massa H2O terbentuk dengan variasi porositas katalis (posisi 0 untuk Outlet dan posisi 0,0727 untuk Inlet) ... 48

Gambar 4.15. Kontur fraksi massa H2O yang terbentuk. ... 48

Gambar 4.16. Geometri fuel cell dengan luas membran 8 cm2. ... 50

Gambar 4.17. Kurva I-V untuk fuel cell dengan luas membran 8 cm2 ... 51

(14)

commit to user

xiv DAFTAR TABEL

Tabel 2. 1. Jenis-jenis fuel cell dan komponen penyusun (Spiegel, 2007). ... 10

Tabel 2. 2. Perbedaan efisiensi, densitas energi dan waktu start up fuel cell (Spakovsky, 1999) ... 11

Tabel 2. 3. Kriteria Kualitas Mesh berdasarkan equiangle skew. ... 18

Tabel 3. 1. Spesifikasi multimeter. ... 24

Tabel 4. 1. Data hasil percobaan fuel cell J101. ... 33

Tabel 4. 2. Efisiensi Fuel Cell J101. ... 35

Tabel 4. 3. Parameter untuk membuat geometri pemodelan fuel cell.... 37

Tabel 4. 4. Perbandingan hasil eksperimen dengan simulasi. ... 39

Tabel 4. 5. Perbandingan data perhitungan arus dengan rumus empiris dengan simulasi. ... 40

Tabel 4.6. Hasil simulasi fuel cell J101 dengan variasi temperatur.... 44

Tabel 4.7. Hasil simulasi fuel cell J101 dengan variasi porositas gas diffusion layer. ... 45

(15)

commit to user

xv DAFTAR LAMPIRAN

Tabel 1. Data eksperimen Fuel cell J101 variasi hambatan 0.3 Ohm

Tabel 2. Data eksperimen Fuel cell J101 variasi hambatan 1 Ohm

Tabel 3. Data eksperimen Fuel cell J101 variasi hambatan 3.3 Ohm

Tabel 4. Data eksperimen Fuel cell J101 variasi hambatan 10 Ohm

Tabel 5. Data eksperimen Fuel cell J101 variasi hambatan 33.3 Ohm

Tabel 6. Data eksperimen Fuel cell J101 variasi hambatan 100 Ohm

Tabel 7. Data eksperimen Fuel cell J101 variasi hambatan 333 Ohm

Tabel 8. Data eksperimen Fuel cell J101 variasi hambatan 996 Ohm

(16)

commit to user

xvi DAFTAR NOTASI

: Convective derivative

: Laju alir massa (kg/s)

a : Panjang sisi persegi panjang mesh (satuan panjang)

b : Lebar sisi persegi panjang mesh (satuan panjang)

Cp : Specific heat capacity (kJ/kg.K)

Di : koeffisien difusi

E : Perbedaan potensial listrik (Volt)

Eelectric : Energi listrik (Watt)

Ehidrogen : Energi kimia hidrogen (Watt)

Er : Tegangan reversibel standard (Volt)

F : Konstanta Faraday (96487 C/mol) hi : Entalpi masuk sistem (J/kg)

hj : Entalpi keluar sistem (J/kg)

I : Arus (Ampere)

i : Current density (A/m2)

io : Refference current density (A/m2)

keff : Effective thermal conductivity (W/mK)

M : Berat molekul oksigen (kg/kmol) mi : Massa masuk system (kg)

mj : Massa keluar system (kg)

n : jumlah mol elektron P : Daya (Watt)

p : Tekanan (Pa)

Q : Muatan listrik (Coulumbs)

QEAS : EquiAngle Skew

QEVS : EquiSize Skew

R : konstanta gas ideal (J/mol.K) S : Luasan/volume elemen mesh

Seq : Maksimum luasan/volume elemen mesh

Si : Source of species

Virrev : Tegangan irreversible (Volt)

Vrev : Tegangan reversible (Volt)

Welec : Kerja elektrik (Watt)

Xi : Fraksi massa spesies i

: Activity of species

: Perubahan energy Gibss (J/mol.K)

rxn : Perubahan energi Gibss pada reaksi (J/mol.K)

(17)

commit to user

xvii : Perubahan entropi (J/kg.K)

act : Activation Overvoltage (Volt)

: Porositas Medium

energy : Efisiensi energi

: Sudut karakteristik dari elemen mesh ( )

: Sudut maksimum dari elemen mesh ( )

(18)

commit to user

1 BAB I

PENDAHULUAN

1 . 1. La t a r B ela ka ng

Semakin meningkatnya kebutuhan energi yang tidak diiringi dengan

penambahan suplai bahan baku dapat menyebabkan krisis energi di Indonesia.

Pada saat ini BBM (Bahan Bakar Minyak) merupakan bahan baku utama untuk

kebutuhan energi di Indonesia. Namun, cadangan minyak tersebut semakin lama

semakin menipis. Menyadari ketergantungan yang sangat besar kepada minyak

bumi tersebut, maka telah dan sedang dilakukan berbagai upaya untuk

mengurangi ketergantungan tersebut dengan menggunakan bahan bakar

non-minyak untuk memenuhi kebutuhan energi di dalam negeri.

Menurut data pada tahun 2009 penggunaan minyak bumi untuk memenuhi

kebutuhan energi Indonesia mencapai 50,9%. Sumber energi yang lain adalah batu

bara 25,1%, gas alam 20%, panas bumi 2,1%, dan sisanya energi baru terbarukan

(EBT). Pada sisi lain terdapat Perpres No. 5/2006 tentang Kebijakan Energi

Nasional dimana pemerintah menargetkan penggunaan EBT sebesar 17% pada

tahun 2025. Selain itu UU no. 30/2007 tentang energi mendorong untuk

memanfaatkan energi baru terbarukan (ESDM, 2009). Pemanfaatan energi

non-minyak yang sudah berhasil antara lain adalah batubara dan gas bumi sebagai

bahan bakar di pembangkit listrik (ESDM, 2009). Kebutuhan teknologi

pembangkit listrik di masa depan memerlukan teknologi yang bahan bakunya

terjamin, berefisiensi tinggi dan ramah lingkungan.

Salah satu sistem pembangkit listrik yang memenuhi kriteria di atas adalah

fuel cell. Fuel cell merubah energi kimia menjadi energi listrik secara langsung

sehingga berefisiensi tinggi. Salah satu bahan bakar fuel cell adalah hidrogen.

Hidrogen adalah salah satu sumber energi yang ramah lingkungan dimana

reaksinya dengan oksigen menghasilkaan produk berupa uap air dan energi. Selain

itu hidrogen dapat diperoleh dari berbagai jenis sumber energi baik yang

terbarukan maupun tidak terbarukan seperti biomassa, air, minyak bumi, batubara

dan lainnya dengan melalui proses seperti gasifikasi, elektrolisis, ataupun secara

(19)

commit to user

Hidrogen sendiri dapat digunakan langsung pada Internal Combustion

Engine (EG & G Technical service) atau melalui Fuel Cell. Dibandingkan dengan

ICE, Fuel Cell memiliki efisiensi lebih besar yaitu dapat mencapai 90% secara

termodinamika (EG & G Technical service, 2004). Bahan bakar dari fuel cell bisa

berupa hydrogen (proton exchange membrane fuel cell), Methanol (direct

methanol fuel cell), biogas, biomassa, gas alam. Fuel cell ini juga dapat digunakan

untuk pembangkit listrik sumber daya peralatan transportasi, atau sumber daya

yang portable seperti baterei laptop (European-Commission, 2003).

Fuel cell sangat ideal untuk sumber energi terbarukan. Jika dibanding

dengan solar energy atau wind energy, fuel cell memiliki aplikasi yang lebih luas.

Tidak seperti solar dan wind energy yang harus berada pada tempat yang memiliki

sumber energi cukup, ataupun sumber listrik seperti PLTA, PLTD yang harus

statis di suatu tempat sehingga membutuhkan sistem transmisi kabel untuk

mendistribusikan energi listrik, fuel cell dapat berada di manapun listrik

dibutuhkan. Transmisi ini sendiri memiliki rugi-rugi sebesar 7-10% serta

membutuhkan tegangan yang besar untuk dialirkan ke tempat yang jauh (Spiegel,

2007). Fuel cell juga tidak memiliki bagian yang bergerak sehingga tidak akan

menimbulkan kebisingan.

Namun teknologi untuk fuel cell ini masih mahal di Indonesia. Hal inilah

yang mendorong perlunya dilakukan penelitian tentang fuel cell ini khususnya dari

karakteristik performa. Untuk meneliti karakteristik performa dapat digunakan

software dimana salah satunya adalah Fluent. Dengan pemodelan diharapkan

dapat dilakukan proses reverse engineering untuk mengembangkan fuel cell yang

lebih baik.

1 . 2. B at a san M asa la h

Pada penelitian ini, permasalahan dibatasi pada:

1. Fuel cell yang digunakan berjenis proton exchange membrane fuel cell

(PEMFC) J101 merk H-Tec.

2. Reaktan yang dipakai adalah H2 dan O2 dari hasil elektrolisis menggunakan

perangkat elektrolisis H-Tec J101.

(20)

commit to user

3

4. Simulasi menggunakan computational fluid dynamic(CFD) pada kondisi

steady state dengan menggunakan software FLUENT 6.3.26.

1 . 3. R umusa n Ma sa lah

Perumusan masalah dalam Tugas Akhir ini adalah sebagai berikut:

1. Bagaimana karakteristik I-V, I-P dari fuel cell J101.

2. Bagaimana karakteristik I-V, I-P dari simulasi fuel cell J101.

3. Bagaimana perbandingan antara karakteristik I-V, I-P aktual dan simulasi.

4. Bagaimana pengaruh porositas gas diffusion layer, porositas katalis dan

temperatur terhadap performa fuel cell dari uji simulasi.

5. Bagaimana meningkatkan kapasitas dari fuel cell dengan menggunakan

simulasi.

1 . 4. Tuj ua n da n Ma nfa at

Penelitian ini bertujuan untuk:

1. Mengetahui karakteristik I-V, I-P dari fuel cell.

2. Membandingkan karakteristik I-V, I-P dari fuel cell antara metode

eksperimen dan simulasi.

3. Mengetahui parameter-parameter yang berpengaruh langsung dengan

performa fuel cell dan kemudian membuat model simulasi fuel cell dengan

skala yang lebih besar.

Hasil penelitian yang diperoleh diharapkan dapat memberikan manfaat:

1. Mampu meningkatkan pemahaman tentang cara kerja fuel cell dan

bagian-bagian yang ada pada fuel cell.

2. Mendapatkan parameter-parameter yang berpengaruh terhadap performa fuel

cell.

3. Mendapatkan model fuel cell dengan kapasitas yang lebih besar.

1 . 5. Sist e ma ti ka Penu lisa n

Sistematika penulisan Tugas Akhir adalah sebagai berikut:

(21)

commit to user

penelitian, perumusan masalah, batasan masalah dan sistematika

penulisan.

BAB II : Landasan teori, berisi tinjauan pustaka dan dasar teori yang

berkaitan dengan fuel cell dan CFD.

BAB III : Metodologi penelitian, menjelaskan peralatan yang digunakan,

tempat dan pelaksanaan penelitian, langkah-langkah percobaan

dan pengambilan data.

Bab IV : Data dan Analisa, berisi data hasil pengujian dan analisa data

hasil pengujian.

Bab V : Penutup, berisi kesimpulan penelitian dan saran yang berkaitan

(22)

commit to user

dilakukan dengan menggunakan software Fluent 6.3. Pemodelan menggunakan

model tiga dimensi (3D). Dalam peneilitian tersebut digunakan reaktan H2 dan O2.

Tujuan penelitian tersebut adalah untuk mengetahui pengaruh porositas Gas

Diffusion Layer (0.2, 0.4, 0.6, dan 0.8) terhadap performa fuel cell. Hasil yang

ditunjukkan dari simulasi adalah pada tegangan dibawah 0.8 V semakin besar

porositas semakin tinggi densitas arus yang dihasilkan. Namun pada tegangan

diatas 0.8 V semua variasi porositas menunjukkan hasil densitas arus yang hampir

sama (Wei dkk., 2011). Dengan menggunakan software fluent pemodelan yang

dilakukan dapat menjadi lebih mudah. Hal ini karena semua nilai dari parameter

fuel cell yang perlu dimasukkan dalam model adalah nilai dari beberapa parameter

secara langsung seperti mass flow, temperatur, tekanan dan lain-lain. Fluent

sendiri menyediakan pemodelan secara 2D dan 3D. Dengan fluent juga dapat

dilihat kontur tekanan, temperatur, kecepatan fluida sampai fraksi massa dari zat.

Namun sayangnya, pada penelitian ini tidak ada validasi dari hasil pemodelan

dengan eksperimen langsung. Pada dasarnya sebuah model harus memiliki

pembanding dengan keadaan nyata agar dapat diketahui apakah model yang

dibuat mendekati pada keadaan nyata. Untuk variasi porositas dari diffusion layer

tidak memberikan hasil yang signifikan pada performa fuel cell. Karena pada

tegangan tinggi sampai sedang 1.1-0.7 V hampir tidak ada perbedaan karakteristik

I-V dari semua variasi. Perbedaan baru terlihat pada tegangan kurang dari 0.7 V.

Maka perlu adanya penelitian lebih lanjut mengenai parameter lain untuk

meningkatkan performa fuel cell.

Percobaan lain dilakukan untuk mengetahui pengaruh geometri dari flow

pattern terhadap performa dari mikro Proton Exchange Membrane fuel cell

(PEMFC). Dalam studi ini geometri yang dimaksud adalah sudut belokan pada

(23)

commit to user

menggunakan mikro fuel cell dengan membran nafion NRE212 dengan luas

permukaan 1,44 cm2. Terdapat tiga variasi sudut belokan dan tiga variasi

rib/channel. Variasi sudut belokan yang digunakan adalah 30-150, 60-120 dan

90-90. Sedangkan variasi dari rib/channel adalah 500/700 m, 800/700 m dan

100/500 m. Hasilnya menunjukkan bahwa pada sudut tikungan 60° dan 120°

dapat memberikan kinerja yang lebih baik pada 20 dan 40 sccm (standard

centimeter cubic per minute) laju aliran inlet dibandingkan dengan desain

konvensional yaitu flow pattern dengan sudut belokan 90o-90o. Selain itu, saluran

yang lebih luas dengan jarak rib/channel sempit memberikan kinerja yang lebih

baik. Dengan flow pattern yang lebih luas memberikan sensitifitas yang lebih baik

dari kerja mikro fuel cell. Performa PEMFC akan menurun seiring naiknya flow

rate (Chen dkk., 2009). Penelitian secara langsung seperti ini akan menghasilkan

data pada kondisi sebenarnya. Namun dengan penelitian secara langsung harus

disiapkan specimen uji dari variasi geometri flow pattern, sehingga membutuhkan

biaya yang lebih dalam pembuatan specimen. Penelitian pun terbatas pada

pengujian terhadap specimen yang ada. Jika terdapat kemungkinan dari bentuk baru

yang lebih optimal maka harus membuat bentuk tersebut dan dilakukan pengujian.

Penelitian tentang pemodelan dan eksperimen tentang SOFC APUs (Solid

Oxide Fuel Cell Auxiliary Power Units) menjelaskan bahwa untuk implementasi

SOFC pada bidang transportasi, terdapat kriteria-kriteria yang harus terpenuhi agar

kerja dari fuel cell dapat optimal. Kriteria-kriteria tersebut adalah temperatur operasi

yang rendah, konfigurasi fuel cell yang optimal, standarisasi produk, dan kontrol

yang maksimal. Dalam hal ini pemodelan yang dibantu data eksperimen akan

sangat membantu dalam mengembangkan fuel cell untuk memenuhi kriteria

tersebut. Penelitian yang dilakukan terdiri dari beberapa tahap yaitu tahap

eksperimen untuk mengetahui kondisi nyata dari fuel cell. Kemudian membuat

model fisik untuk memodelkan fuel cell. Kemudian control-oriented modeling

untuk mencari kontrol yang maksimal untuk mengimplementasikan fuel cell pada

bidang transportasi. Hasilnya adalah data hasil simulasi fisik dan eksperimen adalah

mendekati sama. Tidak seperti SOFC APUs tanpa kontrol, SOFC APUs dengan

kontrol akan terhindar dari temperatur yang membahayakan yaitu diatas 180oC.

(24)

commit to user

7

tinggi dibanding dengan PEMFC yaitu berkisar antara 150-160oC. Selain itu SOFC

membutuhkan reformer dan air pre heater untuk aplikasinya. PEMFC hanya

membutuhkan gas storage untuk menampung bahan bakar (Pianese dkk., 2010).

Penelitian tentang pemodelan PEMFC juga dapat menggunakan

MATHLAB/SIMULINK dan PSPICE. Inti dari pemodelan yang dilakukan adalah

memodelkan PEMFC mendekati keadaan asli dengan asumsi-asumsi yang telah

dibuat, diantaranya temperatur kerja, dimensi fuel cell dan lain sebagainya.

Setelah itu dilakukan validasi dengan uji nyata yang mana propertis yang

dimasukkan ke dalam model adalah mengikuti uji nyata ini. Pengujian tersebut

menggunakan 500-W Avista Labs SR-12 PEM fuel cell stack. Hasil dari simulasi

tersebut berupa karakteristik I-V, I-P, respon temperatur, dan transient responses.

Ternyata hasil dari simulasi memperlihatkan hasil yang mendekati dengan hasil

uji spesimen langsung. Sehingga dengan model ini dapat memprediksi kelistrikan

dari PEMFC stack baik dalam kondisi steady maupun transient (Wang dkk.,

2005). Pemodelan dengan menggunakan MATHLAB/SIMULINK dan PSPICE

perlu memasukkan parameter dari fuel cell sampai dengan properties dari material

yang digunakan. Langkah ini dapat dipersingkat jika menggunakan software fluent

karena fluent telah menyediakan database properties material untuk pemodelan

fuel cell. Pada penelitian ini pemodelan dilakukan sampai mengetahui

karakteristik performa dari fuel cell, sedangkan dari model yang telah dibuat

tersebut memungkinkan untuk diteliti parameter yang dapat meningkatkan

performa dari fuel cell.

Sel bahan bakar merupakan sumber daya baru yang paling menarik karena

tidak hanya memecahkan masalah lingkungan, tetapi juga masalah sumber daya

alam tak terbarukan. Pernah dilakukan penelitian menggunakan analisa numerik

untuk mengetahui efisiensi dari fuel cell dengan bentuk micro channel yang

berbeda. Karakteristik aliran dengan kondisi batas yang sama disimulasikan dalam

enam bentuk micro channel yang berbeda baik yang telah ada maupun rancangan

baru. Hasil analisis menunjukkan bahwa karakteristik aliran seperti kecepatan,

keseragaman, dan laju aliran, sangat tergantung pada bentuk saluran itu sendiri.

Itu berarti efisiensi sel bahan bakar mikro bisa ditingkatkan melalui konfigurasi

(25)

commit to user

menunjukkan bahwa bentuk terbaik untuk saluran gas hidrogen adalah dengan

bentuk bukan alur, melainkan ruangan dengan tonjolan-tonjolan yang teratur

didalamnya. Micro channel dengan bentuk tersebut memiliki aliran gas lebih

uniform dan dari hasil analisa numerik menunjukkan peningkatan efisiensi fuel

cell. Tahap terakhir adalah pembuatan channel tersebut dengan metode SU-8

(epoxy type negative photo-resist) yang mana merupakan metode yang mudah

untuk membuat bentuk yang rumit dalam skala mikro (Choi dkk., 2009).

Sayangnya dengan bentuk tersebut ternyata channel dari fuel cell sulit untuk

dibuat. Pembuatan micro channel dengan metode SU-8 memberikan efek negatif

berupa penurunan performa fuel cell karena adesi material elektroda ke channel.

Sehingga perlu dicari material yang lebih baik untuk membuat geometri yang

paling optiamal tersebut.

2 . 2. D asa r Teo ri

2 . 2. 1 . Fue l Ce l l

Fuel Cell atau sel bahan bakar adalah sebuah alat dimana bahan bakar dan

pengoksidasi melalui sistem reaksi kimia terkontrol dan menghasilkan produk dan

arus listrik secara langsung ke sebuah rangkaian eksternal seperti ditunjukkan

pada Gambar 2.1. Bahan bakar dan pengoksidasi tidak bereaksi pada suatu proses

pembakaran yang cepat, namun bereaksi secara bertahap pada elektroda-elektroda

yang terpisah. Elektroda positif selanjutnya disebut katoda dan elektroda negatif

disebut anoda. Sebuah elektrolit memisahkan kedua elektroda tersebut. Laju

terjadinya reaksi dibatasi oleh waktu yang dibutuhkan untuk difusi spesies kimia

melalui elektroda dan elektrolit dan kinetika reaksi (Moran dkk., 2004).

(26)

commit to user

9

Dalam sel bahan bakar, bahan bakar gas dialirkan secara terus-menerus ke

katoda (elektroda positif), sedangkan oksidan (oksigen murni atau udara)

diumpankan secara terus menerus ke Anoda (elektroda negatif). Reaksi

elektrokimia berlangsung di elektroda untuk menghasilkan arus listrik.

Beberapa keuntungan dari sistem sel bahan bakar meliputi:

Sel bahan bakar memiliki potensi untuk efisiensi operasi yang tinggi yang

tidak tergantung pada ukuran sistem.

Sel bahan bakar memiliki desain yang scalable.

Banyak jenis sumber bahan bakarpotensial yang tersedia. Selain itu

penggunaannya luas seperti untuk untuk transportasi ataupun sistem daya yang

portable. Hal ini seperti ditunjukkan pada Gambar 2.2.

Zero Emission.

Tidak memiliki bagian yang bergerak sehingga tidak bising dan tidak bergetar.

Sel bahan bakar menyediakan kemampuan mengisi ulanghampir seketika jika

dibandingkan dengan baterai.

Sedangkan keterbatasan sistem sel bahan bakar adalah sebagai berikut:

Teknologi untuk saat ini masih tergolong mahal dalam pembuatan membran

maupun katalis serta sistem penyimpanan hidrogen.

Perlu adanya sistem reforming untuk bahan bakar yang bukan hidrogen murni.

Penggunaaan hidrogen yang tidak murni akan mengakibatkan penurunan

kualitas Fuel Cell seiring dengan penggunaannya karena elektroda akan

terdegradasi dan elektrolit akan terkontaminasi (Spiegel, 2007).

Gambar 2.2. Jenis-jenis fuel cell dan aplikasinya (European-Commission, 2003)

Fuel Cell memiliki beberapa jenis dengan pembeda antara satu jenis

dengan jenis yang lain adalah elektrolit dan bahan bakar dari fuel cell itu sendiri.

(27)
(28)

commit to user

11

Dari bermacam-macam fuel cell tersebut, tiap-tiap fuel cell memiliki efisiensi,

densitas energi dan waktu start up yang berbeda-beda. Untuk efisiensi, selain

dipengaruhi oleh jenis dari fuel cell namun juga bagaimana fuel cell tersebut

digunakan. Fuel cell jenis PEMFC memiliki densitas energi paling tinggi yaitu sekitar

3,8-6,5 kW/m2. Selain itu dibanding dengan jenis fuel cell yang lain, PEMFC

memiliki waktu start up paling tnggi. Hal ini dapat dilihat pada Tabel 2.2.

Tabel 2. 2. Perbedaan efisiensi, densitas energi dan waktu start up fuel cell

(Spakovsky, 1999)

Jenis FC Efisiensi listrik (%) Densitas Energi (kW/m2)

Proton exchange membrane fuel cells (PEMFC) dapat memberikan densitas

daya yang tinggi. Selain itu PEMFC lebih ringan serta memiliki volume yang lebih

kecil dibandingkan dengan sel bahan bakar jenis lain untuk daya output yang sama.

PEMFC menggunakan polimer padat sebagai elektrolit dan elektroda karbon berpori

(porous carbon electrodes) yang mengandung katalis platina. PEMFC hanya

membutuhkan hidrogen, oksigen dari udara, dan air untuk sistem operasinya dan

tidak membutuhkan cairan korosif seperti pada sel bahan bakar jenis lain. PEMFC

(29)

commit to user

yang jauh melampaui efisiensi mesin bakar BBM yang kurang dari 20% (Smith,

1971). Skema dan reaksi dari PEMFC dapat dilihat pada Gambar 2.3 dan Gambar 2.4.

Untuk reaksi kimia yang terjadi di PEMFC adalah sebagai berikut :

Anoda : 4H+ + 4e- + O2 2O (2.1)

Katoda : 2H2 + + 4e- (2.2)

Gambar 2.3. Skema Proton Exchange Membrane (Voight dkk., 2009)

(30)

commit to user

13

2 .2. 3. Te rmodinamika F ue l C el l

Fuel cell akan menghasilkan energi elektrik maksimum jika beroperasi pada

kondisi thermodynamically reversible. Tegangan tertinggi adalah tegangan reversible.

Tegangan keluaran dari fuel cell dapat dinyatakan sebagai berikut.

( ) = (2.3)

Dimana Vrev adalah tegangan reversible (tegngan maksimum fuel cell), sedangkan

Virrev adalah tegangan Irreversible (rugi tegangan). Sedangkan kerja maksimum dari

fuel cell adalah negatif dari energi bebas Gibbs.

= (2.4)

= = (2.5)

Dimana adalah perubahan entalpi pembentukan dari proses kimia yang terjadi

pada fuel cell dan dapat dinyatakan sebagai berikut.

= (2.6)

Kerja dalam bentuk elektrik juga dapat dinyatakan sebagai

= (2.7)

Dimana Q adalah muatan listrik dan E adalah perbedaan potensial elektrik.

= (2.8)

Dimana n adalah jumlah mol elektron yang dialirkan dan F adalah konstanta Faraday

(96,485 Coulumb/mol elektron). Sehingga

= (2.9)

Dimana Er adalah potensial reversible standard.

Hubungan antara tegangan dan temperatur pada kondisi standard (T=25oC)

dan dengan asumsi perubahan enthalpi tidak berubah terhadap temperatur adalah:

= = (2.10)

= ( 25) (2.11)

Untuk hidrogen-oksigen pada kondisi standard

(31)

commit to user

Dimana untuk reaksi tersebut pada - 285,8 kJ

-237,3 kJ/mol maka

= . /

, / = 1,229 (2.13)

Tegangan aktual fuel cell dapat dinyatakan sebagai berikut.

= ln / (2.14)

Dimana R adalah konstanta gas ideal sehingga tegangan aktual untuk

hidrogen-oksigen pada kondisi standard adalah

= 1,229 , . ln

, / = 1,219 V (2.15) Performa dari hidrogen-oksigen fuel cell dapat dilihat pada Gambar 2.5

(Spiegel, 2007).

Gambar 2.5. Karakteristik performa fuel cell (Spiegel, 2007).

Arus yang dihasilkan oleh fuel cell dapat juga dihitung dengan mengacu pada

laju alir massa reaktan dengan menggunakan rumus di bawah ini

= (2.16)

Dimana : = mass flow rate oksigen (kg/s)

v = Elektron Valensi dari oksigen

(32)

commit to user

15

M = berat molekul oksigen (kg/kmol)

Dari persamaan di atas jelas terlihat bahwa arus yang dihasilkan oleh fuel cell

berbanding lurus dengan mass flow rate oksigen.

Selanjutnya untuk mendapatkan kurva karakteristik I-P terlebih dulu

menghitung daya yang dihasilkan fuel cell. Persamaan yang digunakan adalah

sebagai berikut.

menghitung efisiensi fuel cell adalah sebagai berikut.

= (2.18)

yang sama dengan besarnya entalpi pembakaran. Entalpi pembakaran didefinisikan

sebagai selisih antara entalpi dari produk hasil pembakaran dan entalpi reaktan ketika

pembakaran sempurna terjadi pada tekanan dan temperature konstan.

Ada dua nilai kalor yang dikenal melalui istilahnya yaitu nilai kalor atas

(higher heating value-HHV) dan nilai kalor bawah (lower heating value-LHV). Nilai

kalor atas diperoleh ketika semua air yang terbentuk oleh pembakaran berbentuk cair,

sedangkan nilai kalor bawah diperoleh ketika air yang terbentuk oleh pembakaran

(33)

commit to user

dibutuhkan untuk menguapkan cairan yang terbentuk. Nilai untuk HHV dan LHV juga

tergantung dari apakah bahan bakar berupa cairan atau gas (Moran dkk., 2004).

2 .2. 4. Teo ri Te nta ng C o mp u ta ti onal F l ui d D y n am ic (C FD ) FLUEN T- GAMBIT

Secara definisi, Computational Fluid Dynamic (CFD) adalah ilmu yang

mempelajari cara memprediksi aliran fluida, perpindahan panas, reaksi kimia, dan

fenomena lainnya dengan menyelesaikan parsamaan-persamaan matematika (model

matematika) (Tuakia, 2008). Computational Fluid Dynamic (CFD) memiliki tiga

proses umum yang mendasari ilmu ini. Proses tersebut adalah Pre-processing,

Solving dan Post-processing. Pre-processing adalah proses identifikasi masalah.

Beberapa hal yang perlu diperhatikan dalam proses ini adalah boundary condition,

masalah yang akan diselesaikan dan geometri (mesh). Hal lain yang perlu

diperhatikan pada tahap ini adalah hal-hal yang akan dicapai dalam pemodelan CFD

dan kemampuan solver. Proses selanjutnya adalah Solving. Proses ini sering disebut

sebagai black box-nya CFD. Solving dalah proses dimana user memasukkan

parameter-parameter seperti boundary condition, mengatur under relaxation factor,

serta perhitungan numerik (iterasi). Proses terakhir adalah post-processsing yang

merupakanproses analisa hasil dari solver.

Perangkat lunak Computational Fluid Dynamic (CFD) dapat memberi

kemampuan untuk mensimulasikan aliran fluida, perpindahan panas, perpindahan

massa, benda-benda bergerak, aliran multifasa, reaksi kimia, interaksi fluida dengan

struktur, dan sistem akustik hanya dengan pemodelan di komputer. Perangkat lunak

ini bisa digunakan untuk membuat virtual prototype dari sebuah sistem atau alat yang

ingin dianalisa dengan menerapkan kondisi nyata di lapangan sehingga mampu

meminimalkan waktu dan biaya yang dibutuhkan dibandingkan dengan melakukan

pengujian konvensional. FLUENT adalah salah satu jenis program CFD yang

menggunakan metode elemen hingga yang mampu menyediakan fleksibilitas mesh

yang lengkap sehingga dapat menyelesaikan kasus aliran fluida dengan mesh (grid)

(34)

commit to user

17

2 .2. 5. Prosedur Pemodelan Geo met ri Mengg unakan GAMBIT (G e om e t ry an d M e s h B u il ding I n te llige n t T o olki t)

Gambar 2.6. Prosedur Pemodelan FLUENT-GAMBIT.

Agar dapat memodelkan dan mensimulasikan dengan menggunakan FLUENT,

geometri dari model harus terlebih dulu dibuat dan berbagai parameter simulasi harus

terlebih dulu ditentukan. GAMBIT digunakan untuk keperluan tersebut. GAMBIT

berfungsi untuk membuat model geometri, membuat mesh dan menentukan boundary

condition yang digunakan pada model untuk analisis CFD. Prosedur pemodelan

menggunakan FLUENT-GAMBIT bisa dilihat lebih jelas dalam Gambar 2.6.

Kualitas mesh dari geometri yang dibuat di GAMBIT penting untuk diperiksa

terlebih dahulu sebelum di-export. Kualitas mesh ini akan mempengaruhi hasil iterasi

yang dilekukan FLUENT. Parameter kualitas mesh yang sering dipermasalahkan oleh

(35)

commit to user

Aspect ratio

Mesh yang baik memiliki aspect ratio 5. Aspect ratio didefinisikan sebagai

berikut.

berhubungan pada suatu elemen mesh. Sedangkan eq adalah sudut karakteristik dari

elemen. Bentuk elemen persegi memiliki sudut karakteristik 90o dan bentuk elemen

segitiga memiliki sudut karakteristik 60o. Kualitas dari parameter ini dapat dilihat

pada Tabel 2.3.

Tabel 2. 3. Kriteria Kualitas Mesh berdasarkan equiangle skew.

QEAS Quality

QEAS = 0 Equilateral (Perfect)

(36)

commit to user

19

Dimana S adalah luasan (2D) atau volume (3D) dari sebuah elemen mesh. Sedangkan

Seq adalah maksimum luasan (2D) atau volume (3D). Mesh dikatakan baik jika

memenuhi batas equisize skew sebagai berikut.

0 1 (2.23)

2 .2 .6 . Pe mo dela n deng a n F L U E N T

FLUENT adalah salah satu jenis program CFD yang menggunakan metode

volume hingga. FLUENT menyediakan fleksibilitas mesh yang lengkap, sehingga

dapat menyelesaikan kasus aliran fluida dengan mesh (grid) yang tidak terstruktur

sekalipun dengan cara yang relatif mudah.

Ada beberapa hal yang perlu diperhatikan ketika akan menyelesaikan

permasalahan dengan menggunakan FLUENT, yaitu :

1. Menentukan tujuan pemodelan.

2. Pemilihan model komputasi.

3. Pemilihan model fisik.

4. Penentuan prosedur.

Permasalahan aliran fluida akan diselesaikan secara numerik dengan

menggunakan FLUENT. Dasarnya meliputi penentuan konvergensi, sehingga

solusinya akurat untuk semua jangkauan dari variabel aliran. Penjelasan tentang

parameter konvergen dan akurat tersebut adalah sebagai berikut :

Konvergen, berarti parameter aliran pada batas-batas aliran yang ada sudah

mendekati nilai kondisi batas yang ditetapkan sebelumnya. Skala konvergensi

pada FLUENT diterjemahkan dalam bentuk residual. Default nilai residual

maksimum pada FLUENT adalah 0,001 (kecuali untuk energi yaitu 10-6).

Nilai residual dapat diubah oleh pengguna. Semakin kecil nilai residual, maka

model aliran akan semakin mendekati keadaan sebenarnya. Akan tetapi

jumlah iterasi yang diperlukan juga semakin banyak.

Akurat, adalah properti dari metode numerik untuk menghasilkan solusi yang

(37)

commit to user

FLUENT sendiri menyediakan pemodelan khusus untuk fuel cell dalam menu

add-on.FLUENT menyediakan dua jenis pemodelan untuk fuel cell yaitu SOFC dan

PEMFC. Terdapat beberapa persamaan yang mendasari pemodelan ini yaitu :

Persamaan Kekekalan Massa

( )

+ . ( ) = (2.24)

Persamaan Kekekalan Momentum

( )

+ . ( ) = + + ( ) + (2.25)

Persamaan Kekekalan Energi

+ . = . + (2.26)

Conservation of Species

( )

+ . ( ) = +

= (2.27)

Conservation of Charge

(38)

commit to user

21 BAB III

METODOLOGI PENELITIAN

3 .1 . Te mpa t Peng ujia n

Pengujian dilakukan di Laboratorium Biofuel and Advance Energy Teknik

Mesin UNIVERSITAS SEBELAS MARET SURAKARTA.

3 .2 . Ala t da n Ba ha n y a ng Dig unaka n

a) Satu set fuel cell dan electrolyzer seperti terlihat pada Gambar 3.1.

Gambar 3. 1 Satu set Junior basic J101 (Voight dkk., 2009)

(39)

commit to user

Gambar 3.2 adalah gambar dari fuel cell yang digunakan yang merupakan

produk dari H-Tec dengan tipe PEMFC . Fuel cell ini memiliki luas penampang aktif

4 cm2. PEMFC memiliki Operasi kerja pada tekanan atmosfer dan temperatur

lingkungan. Fuel cell jenis ini menghasilkan daya maksimum 500 mW dan bekerja

pada tegangan 0,40-0,96 V.

Gambar 3.3. PEM Electrolyzer (Voight dkk., 2009).

Electrolyzer (Gambar 3.3) digunakan untuk memisahkan antara H2 dan O2 dari

air. Elektrolizer memerlukan energi listrik. Arus listrik yang dibutuhkan adalah arus

listrik searah. Dalam penelitian ini sumber daya (listrik DC) didapat dari konversi

energi cahaya menjadi listrik melalui solar cell.

Gambar 3.4. Proses Elektrolisis (Voight dkk., 2009).

Elektrolizer ini memiliki luas penampang 4 cm2 dengan daya 1,16 W.

(40)

commit to user

23

Elektrolizer ini dapat menghasilkan hidrogen dengan debit 5 cm3/menit dan oksigen

dengan debit 2,5 cm3/menit. Prinsip kerja dari elekrolizer sendiri dapat dijelaskan

pada Gambar 3.4.

b) Gas Storage

Gambar 3.5. Gas Storage kapasitas 30 ml (Voight dkk., 2009).

Gas storage digunakan untuk menampung gas hasil elektrolisis. Seperti yang

terlihat pada Gambar 3.5 gas storage ini memiliki kapasitas 30 ml dan memiliki skala

volume dengan urutan dari bawah ke atas semakin kecil. Hal ini digunakan untuk

mengetahui gas yang tersisa di dalamnya.

c) Solar Module.

Gambar 3.6. Solar Module (Voight dkk., 2009).

Solar module (Gambar 3.6) digunakan untuk memenuhi kebutuhan energi

listrik pada saat elektrolisisdengan cara mengkonversi energi cahaya menjadi energi

(41)

commit to user

d) Variable resistor (Gambar 3.7) digunakan untuk mengatur arus dan tegangan

keluaran dari fuel cell. Resistor ini dapat diatur nilai hambatannya.

e) Multimeter yang digunakan untuk mengetahui arus dan tegangan yang dihasilkan

oleh fuel cell. Multimeter yang dipakai memiliki spesifikasi sebagai berikut.

Tabel 3. 1. Spesifikasi multimeter.

KRISBOW KW0600271 HELES UX-838TR

Tegangan DC Tegangan DC

Jangkauan Resolusi Akurasi Jangkauan Resolusi Akurasi

200 mV 100 µV ± 0,5% dari pemb. ± 2D 200 mV 100 µV ± 0,5% dari pemb. ± 2D

Jangkauan Resolusi Akurasi Jangkauan Resolusi Akurasi

200 µ A 100 nA ± 1% dari pemb. ± 2D 200 µA 100 nA ± 1% dari pemb. ± 2D

Jangkauan Resolusi Akurasi Jangkauan Resolusi Akurasi

(42)

commit to user

25

f) Satu buah stopwatch yang digunakan untuk merekam waktu selama pengujian.

Gambar 3.7. Resistor, Multimeter, Stopwatch.

g) H2O (aquadest) untuk bahan baku H2 dan O2.

h) Software CFD FLUENT 6.3.26 dan GAMBIT 2.4.6 beserta komputer.

3 .3 . S o la r -H y d rog e n E ne rg y

Solar dan hydrogen adalah contoh dari sumber energi terbarukan yang ramah

lingkungan. Seperti pada Gambar 3.8 keduanya dapat digunakan secara bersamaan

mengingat terdapat kekurangan dan kelebihan dari masing-masing sumber energi

yang dapat saling menutupi. Solar cell dapat bekerja (menghasilkan listrik) jika ada

sumber cahaya yaitu matahari. Fuel cell merupakan alat konversi energi yang

mengubah energi kimia dari hidrogen menjadi energi listrik. Hidrogen sendiri dapat

dihasilkan dari proses elektrolisis dimana proses ini memerlukan sumber listrik DC.

Kondisi ini memberikan ide baru untuk memproduksi hidrogen dari air melalui proses

elektrolisis dengan menggunakan listrik yang dihasilkan solar module.

Hal lain yang menjadi pertimbangan adalah solar energy tidak dapat bekerja

pada malam hari dan terbatas pada ruang dan waktu. Fuel cell memiliki penggunaan

yang luas seperti sumber daya portable dan transportasi sehingga akan lebih mudah

pengaplikasiannya. Jika listrik dari solar moduel langsung dipakai maka

pengaplikasiannya akan sangat sempit mengingat solar module harus selalu terpapar

(43)

commit to user

Gambar 3.8. Solar-Hydrogen Cycle (Voight dkk., 2009)

Prinsip inilah yang menjadi dasar penelitian ini. Namun dalam penelitian ini

dititikberatkan pada penggunaan fuel cell sebagai alat untuk mengubah energi kimia

menjadi listrik.

Solar modul dipaparkan cahaya sehingga dapat menghasilkan listrik searah.

Energi listrik ini kemudian digunakan untuk mengelektrolisis air. Hasil dari

elektrolisis berupa hidrogen dan oksigen. Daya tampung dari gas storage adalah 30

ml. maka proses elektrolisis dihentikan jika gas storage sudah penuh. Proses

selanjutnya yaitu pengkonversian energi kimia yang terkandung pada hidrogen dan

oksigen menjadi energi elektrolisis dengan menggunakan fuel cell. Fuel cell yang

telah terhubung dengan gas storage diberi beban sehingga akan timbul arus listrik.

Beban dapat berupa kipas yang tersedia pada Set J101 atau resistor. Penelitian ini

menggunakan variasi resistor 0, , , , ,

1 k dan 1 M .

3 .4 . Uj i Kara kteristik A rus-Te ga nga n da n A rus- Da y a F ue l C e ll.

a. Experimental

Dalam uji karakteristik fuel cell manggunakan alat ukur arus dan tegangan

serta stopwatch. Variasi hambatan yang digunakan adalah , ,

(44)

commit to user

27

pada tegangan dan arus yang dihasilkan fuel cell sehingga dengan hambatan yang

berbeda akan dihasilkan arus dan tegangan yang berbeda-beda pada tiap variasi

hambatan. Pengambilan data dilakukan setelah 20 detik untuk tiap-tiap hambatan

untuk mendapatkan data yang valid (kondisi fuel cell steady). Data yang diambil

adalah waktu, hidrogen yang terpakai, tegangan dan arus. Data yang didapat

kemudian dibuat grafik I-V dan I-P.

b. Simulasi

Simulasi Fuel cell memerlukan data-data kondisi kerja dan dimensi fuel cell

itu sendiri. Data ini bisa didapatkan pada saat uji eksperimen. Data yang harus ada

adalah temperatur, tekanan, geometri, flow rate hidrogen dan oksigen serta dimensi

dari fuel cell.

Variasi yang dilakukan adalah memvariasikan tegangan yang dihasilkan oleh

fuel cell. Data tegangan yang dihasilkan oleh fuel cell ini didapat dari uji eksperimen.

Data arus yang dihasilkan dari fuel cell akan didapat setelah proses simulasi selesai.

Karakteristik I-V dan I-P dari simulasi fuel cell dibuat dari data tersebut.

3 .5 . Va ria si Penguji a n

Variasi yang dilakukan dalam uji eksperimen adalah dengan memvariasikan

besarnya hambatan. Data yang diambil adalah tegangan dan arus dari fuel cell,

banyaknya hidrogen dan oksigen yang terpakai, dan lama pengujian. Hambatan

divariasikan dari 0,33 sampai 1 M . Pengambilan data dilakukan selama fluktuasi

(45)

commit to user

3 .6 . Skema penelit ia n

Skema penelitian ini dapat dilihat pada gambar Gambar 3.9 dan Gambar 3.10.

Gambar 3.9. Skema penelitian pemodelan Fuel cell.

(46)

commit to user

29

3 .7 . Ta hap Pene li tia n

Tahap penelitian uji eksperimen dan simulasi CFD fuel cell J101 dapat dilihat

pada Gambar 3.11.

(47)

commit to user

3 .8 . Pro se dur Perc obaa n (E x pe r im e nt)

a. Menyiapkan alat dan bahan.

Fuel cell, electrolyzer, gas storage, Decade resistor, Stopwatch, multimeter,

dan H2O.

b. Merangkai peralatan sesuai dengan gambar.

c. Memasukkan air ke dalam gas storage dengan sebelumnya menutup outlet

dari fuel cell.

d. Mengaktifkan electrolyzer dengan cara memaparkan cahaya ke solar cell.

e. Setelah volume tampungan gas penuh, menghubungkan beban ke fuel cell

untuk mengaktifkan fuel cell.

f. Mengatur hambatan.

g. Menyalakan stopwatch untuk mencatat waktu.

h. Setiap perubahan volume 1 menit (lamanya selang waktu pengambilan data

tergantung besar kecilnya fluktuasi data tegangan dan arus) membaca volume

hidrogen dan oksigen yang terpakai, tegangan dan arus keluaran.

i. Mencatat hasil tersebut.

j. Mengulangi langkah a-i untuk variasi hambatan yang lain.

k. Mencatat hasilnya dan membuat grafik karakteristik I-V dan I-P.

3 .9 . Pe mo dela n deng a n G A M B IT - F L U E N T

Membuat Geometri Dengan Gambit

Membuat dan meshing geometri dengan menggunakan software GAMBIT

(48)

commit to user

31

Gambar 3.12. Grid dan mesh fuel cell

Gambar 3.12 merupakan grid dan mesh untuk pemodelan fuel cell. Boundary

condition dan continuum ditentukan setelah geometri di beri mesh kemudian file

di-export ke file dengan format *.msh agar bisa dibaca pada software Fluent 6.3.26.

Boundary condition dan continuum yang dimaksud adalah seperti padaTabel

3.2 danTabel 3.3.

Tabel 3.2. Boundary type untuk pemodelan fuel cell.

Zone Boundary Type

Anode-side inlet mass flow inlet

cathode-side inlet mass flow inlet

anode-side outlet pressure outlet

cathode-side outlet pressure outlet

anodee terminal wall

cathode terminal wall

anode-side flow channel walls wall

cathode-side flow channel walls wall

(49)

commit to user

Zone Boundary Type

anode-side diffusion layer walls wall cathode-side diffusion layer walls wall

dinding wall

Tabel 3.3. Continuum type untuk pemodelan fuel cell.

Zone Continuum

anode-side catalyst layer fluid cathode side catalyst layer fluid anode side flow channel fluid cathode side flow channel fluid anode side gas diffusion layer fluid cathode side diffusion layer fluid electrolyte membrane fluid anode current collector solid cathode current collector solid

Simulasi dengan FLUENT

a. Membuka file yang telah di-export dari Gambit dengan langkah

File> Read > case > *.msh

b. Mengecek grid dari geometri.

Grid > Check

(volume harus positif )

c. Menentukan model dari simulasi (PEMFC).

d. Memasukkan parameter PEMFC.

e. Memasukkan parameter boundary condition.

f. Memasukkan parameter-parameter control solution.

g. Initialize.

h. Iterasi.

(50)

commit to user

33

massa dari hidrogen dan oksigen. Data hasil eksperimen ini selanjutnya digunakan

untuk dasar simulasi CFD dari unit fuel cell J101.

4.1. Eksperimen Unit Fuel Cell J101

Fuel cell bekerja dengan dua reaktan yaitu hidrogen dan oksigen. Kedua

reaktan tersebut dapat diperoleh dengan proses elektrolisis aquadest. Unit fuel cell

J101 menyediakan electrolizer dengan sumber energi berasal dari solar cell.

Pengambilan data eksperimen fuel cell J101 dapat dilakukan setelah didapat gas

hidrogen dan oksigen. Data yang diambil adalah tegangan dan arus keluaran fuel cell.

Pengambilan data arus dan tegangan mengguanakan multimeter. Hasil dari

eksperimen dapat dilihat pada Tabel 4.1 berikut.

Tabel 4. 1. Data hasil percobaan fuel cell J101.

Hambatan

(51)

commit to user

tersebut dapat dibuat kurva karakteristik Arus-Tegangan (I-V) pada Gambar 4.1 dan

kurva Arus-Daya (I-P) pada Gambar 4.2 dari fuel cell J101.

Gambar 4.1. Kurva karakteristik arus-tegangan (I-V).

Gambar 4.1 menunjukkan tegangan maksimum dari fuel cell adalah 0,97 Volt,

padahal secara teoritis tegangan dari fuel cell dengan hidrogen dan oksigen sebagai

reaktannya dapat mencapai 1,2 Volt. Kurva karakteristik arus-tegangan dari fuel cell

J101 memiliki karakteristik semakin kekanan (arus semakin besar) tegangan semakin

rendah. Hal ini disebabkan oleh rugi-rugi (polarization). Rugi-rugi tegangan yang ada

pada fuel cell terdiri dari tiga jenis yaitu rugi aktivasi, rugi ohmic, dan

rugi-rugi konsentrasi. Daya puncak dari fuel cell jenis HTec J101 adalah sekitar 556 mW

sebagaimana dapat dilihat pada Gambar 4.2.

Efisiensi energi dari fuel cell dapat dihitung menggunakan persamaan 2.19.

(52)

commit to user

35

Efisiensi energy pada variasi hambatan 0,33 adalah

= ,

, , 1,335

= 0,216 = 21,6 %

Efisiensi fuel cell di semua variasi arus dapat dilihat pada Tabel 4.2. Efisiensi energi

tertinggi adalah 57,8% pada arus 55,48 mA dan daya 43,69 mWatt.

(53)

commit to user

Semakin tinggi arus yang dihasilkan, semakin tinggi juga konsumsi oksigen

maupun hidrogen sehingga reaksi dalam fuel cell akan menghasilkan uap air yang

semakin banyak. Fenomena ini dapat dilihat pada gambar 4.3. Uap air yang

terkondensasi pada variasi hambatan 0,3 Ohm (arus tinggi) lebih banyak dibanding

dengan variasi hambatan 100 ohm (arus rendah).

Gambar 4.3. H2O yang terbentuk pada variasi hambatan 0,3 Ohm dan 100 Ohm.

Banyaknya H2O yang terbentuk pada saluran/channel menjadi hambatan pada

reaksi yang terjadi di fuel cell. Uap yang terkondensasi mengakibatkan luas

penampang membran aktif berkurang sehingga arus dan tegangan pada variasi dengan

arus tinggi (hambatan kecil) lebih cepat turun.

4.2. Simulasi CFD Fuel Cell J101

Simulasi yang dilakukan terdiri dari dua tahap yaitu pembuatan geometri

menggunakan softrware GAMBIT 2.4.6 dan simulasi mengguakan software

FLUENT6.3.26.. Nilai-nilai yang dimasukkan seperti dimensi, temperatur kerja, mass

flow rate oksigen dan hidrogen adalah nilai yang didapat dari eksperimen. Nilai dari

laju alir massa hidrogen dan oksigen nantinya dimasukkan pada boundary condition,

begitu juga dengan nilai tegangan dan temperatur. Sedangkan nilai arus nantinya

sebagai pembanding antara hasil eksperimen dan simulasi. Langkah pertama yang

dilakukan dalam simulasi CFD adalah membuat geometri dari fuel cell. Pembuatan

(54)

commit to user

37

dilihat dalam Gambar 4.4 dan parameter-parameter dalam membuat geometri untuk

simulasi dari fuel cell J101 dapat dilihat pada Tabel 4.3.

Gambar 4.4. Tampak depan dari skema model geometri fuel cell.

Tabel 4. 3. Parameter untuk membuat geometri pemodelan fuel cell.

Geometri dibuat dengan menggunakan software GAMBIT 2.4.6 dan

berdasarkan pada parameter di atas. Gambar 4.5 adalah mesh dan grid dari fuel cell

J101. Tipe mesh yang dipakai adalah Quadrilateral dengan jumlah elemen mesh

316.800 elemen.

Parameter nilai

(55)

commit to user

Gambar 4.5. Mesh dan grid fuel cell J101.

Langkah selanjutnya yang dilakukan adalah simulasi dengan FLUENT

6.3.26. Data-data yang dibutuhkan untuk simulasi ini berasal dari uji eksperimen.

Tipe boundary condition dan continuum disesuaikan dengan Tabel 3.2 dan Tabel

3.3. Data hasil eksperimen yang digunakan untuk input pemodelan adalah

geometi, temperatur, laju alir massa reaktan, dan tegangan fuel cell. Data-data

tersebut dimasukkan pada boundary condition. Hasil simulasi FLUENT dari fuel

cell J101 dapat dilihat pada Tabel 4.4. Kurva karakteristik I-V dan I-P antara hasil

(56)

commit to user

39

Tabel 4. 4. Data hasil simulasi fuel cell J101.

R (Ohm) V (Volt) Simulasi

Gambar 4.6. Perbandingan kurva karakteristik arus-tegangan (I-V) eksperimen

dengan simulasi fuel cell J101.

Gambar 4.7 memperlihatkan bahwa hasil simulasi dan eksperimen

menunjukkan hasil yang mendekati, namun tidak sepenuhnya sama. Tabel 4.5.

(57)

commit to user

Gambar 4.7. Perbandingan kurva arus-daya (I-P) hasil eksperimen dan simulasi fuel

cell J101

Tabel 4.5. Perbandingan data eksperimen dengan simulasi.

(58)

commit to user

41

Perbedaan antara hasil eksperimen dan simulasi dapat disebabkan karena

adanya internal current. Internal current disebabkan oleh adanya bahan bakar yang

melewati membran. Membran seharusnya hanya melewatkan ion + dari hidrogen,

namun tetap dimungkinkan bahan bakar yang terdiri dai ion dan electron melewati

membran ini, sehingga dengan lewatnya bahan bakar langsung melalui membran,

bahan bakar akan bereaksi tanpa menghasilkan arus.

Tabel 4.5 juga menunjukkan hasil dimana daya hasil simulasi relatif lebih

besar dibandingkan dengan daya hasil eksperimen. Simulasi yang dibuat dengan sifat

se-ideal mungkin (dengan asumsi) dapat menyebabkan perbedaan ini. Hasil simulasi

tidak memperlihatkan efek dari fenomena fisik seperti timbulnya gelembung air yang

dapat menurunkan arus serta daya dari fuel cell yang berpengaruh terhadap daya yang

dihasilkan oleh fuel cell.

Hasil simulasi dapat menunjukkan pressure drop yang terjadi pada channel

baik di katoda maupun di anoda sebagaimana dapat dilihat pada Gambar 4.8 dan

Gambar 4.9.

.

Gambar 4. 8. Perbandingan penurunan tekanan pada anoda dan katoda (posisi

0,0727 untuk Outlet dan posisi 0 untuk Inlet).

(59)

commit to user

Gambar 4.9. Kontur tekanan (Pa) dalam anoda dan katoda.

Gambar 4.8 dan Gambar 4.9 memperlihatkan bahwa penurunan tekanan di

katoda lebih besar dibanding dengan penurunan tekanan di anoda. Perbedaan

penurunan tekanan ini disebabkan karena laju alir massa di katoda lebih besar

daripada di anoda. Hasil eksperimen menunjukkan bahwa debit hidrogen (anoda)

lebih besar dari debit oksigen (katoda), namun massa jenis dari oksigen lebih besar

dibanding dengan hidrogen sehingga laju alir massa di katoda lebih besar dari laju alir

massa di anoda.

Hasil penelitian sebelumnya yang meneliti tentang simulasi CFD fuel cell

dengan parallel flow channel menunjukkan hal yang sama yaitu terjadi perbedaan

penurunan tekanan pada channel anoda dan katoda. Channel katoda akan memiliki

penurunan tekanan lebih besar dibandingkan dengan channel anoda. Tingginya

penurunan tekanan pada sisi katoda dibanding dengan anoda disebabkan karena lebih

tingginya mass flow rate oksigen di katoda (Lee dkk., 2008). Penurunan tekanan akan

berpengaruh pada proses diffusi bahan bakar dari channel ke gas diffusion layer dan

katalis. Jika penurunan tekanannya terlalu besar, maka proses difusi yang terjadi tidak

merata, sehingga arus yang terukur mengalami penurunan dibandingkan dengan

(60)

commit to user

43

Gambar 4. 10. Perbandingan fraksi massa H2O terbentuk dengan variasi hambatan

(posisi 0,0727 untuk Outlet dan posisi 0 untuk Inlet).

Gambar 4.11. Kontur fraksi massa H2O pada variasi 0.404 volt dan 0.792 volt.

Fenomena yang terjadi pada saat eksperimen dapat juga dilihat dengan

menggunakan simulasi. Fenomena tersebut yaitu perbedaan uap air yang terbentuk

antara variasi hambatan besar dengan variasi hambatan kecil. Perbedaan tersebut

dapat dilihat pada Gambar 4.10. dan Gambar 4.11. Fraksi massa H2O yang terbentuk

pada variasi hambatan 0,3 (tegangan kecil) relatif lebih tinggi dibanding dengan

fraksi massa yang terbentuk pada variasi hambatan 33,3 (tegangan besar).

0 0,2 0,4 0,6 0,8 1 1,2

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

Posisi (m)

Hambatan 0.3 Ohm

0,3 Ohm

Gambar

Tabel 3. Data eksperimen Fuel cell J101 variasi hambatan 3.3 Ohm
Gambar 2.2. Jenis-jenis fuel cell dan aplikasinya (European-Commission, 2003)
Gambar 2.3. Skema Proton Exchange Membrane (Voight dkk., 2009)
Gambar 2.5. Karakteristik performa fuel cell (Spiegel, 2007).
+7

Referensi

Dokumen terkait

Setiap dosen dalam mengatur mahasiswa sangat memerlukan data terkini yang akurat dan untuk mendukung penyediaan data tersebut maka data tidak mungkin diolah

Bagi mahasiswa yang telah mendapatkan penentuan pembimbing (hasil rapat) untuk segera melakukan penelitian dan batas waktu ujian proposal maksimal 3 bulan dari hasil rapat

IV PENGEMBANGAN A Membuat karya tulis/karya ilmiah 1 Karya tulis ilmiah hasil pene- PROFESI dibidang kesehatan litian, pengkajian, survei dan evaluasi yang dipublikasikan a Dalam

Dengan terbentuknya Kabupaten Mimika, maka untuk mencapai daya-guna dan hasilguna dalam penyelenggaraan pemerintahan, pelaksanaan pembangunan, dan pembinaan serta pelayanan

Sarana pelengkap pariwisata adalah perusahaan atau tempat-tempat yang menyediakan fasilitas untuk rekreasi yang fungsinya tidak hanya melengkapi sarana pokok pariwisata, tetapi

38 Dalam Kompilasi Hukum Islam pada pasal 113, disebutkan bahwa perkawinan dapat putus karena: (1) Kematian (2) Perceraian (3) Putusan Pengadilan Pada pasal

Kesimpulannya adalah tingkat pengetahuan gejala klinis malaria masyarakat Bayah tergolong kurang dan tidak berhubungan dengan usia, jenis kelamin, tingkat pendidikan,

Artikel yang dibuat pada “Journal of Cryptology” ini dinamakan Dining Cryptographers Problem (Masalah Jamuan Makan Malam para Kriptografer), sesuai dengan contoh