• Tidak ada hasil yang ditemukan

Statistics calculated from the sample The interval [L, U] is called a 95 confidence interval (C.I.) for the parameter θ if

N/A
N/A
Protected

Academic year: 2018

Membagikan "Statistics calculated from the sample The interval [L, U] is called a 95 confidence interval (C.I.) for the parameter θ if"

Copied!
5
0
0

Teks penuh

(1)

I nterval Estimation

3% Not yet decided

1% Buchanan

4% Ralph Nader

45% Al Gore

47% George W. Bush

Result of Nationwide Gallup poll November 5, 2000

Example : Election 2000 voting poll from 2386 interviews

Margin of error : 2%

Can Bush get more votes than Gore?

47% > 45%

Bush Gore

45 %

43 47 49

Point estimates

“too close to call” Interval estimates

Margin of error : 0.05%

Interval estimates

“Bush will win the race”

I nterval Estimation

Example : VSRS from

(

µ,σ2

)

N {X1,X2,...,Xn}

     

n N X

2 , ~ µσ

    

 

Φ −     

 

+

Φ =    

 

+ ≤ ≤ −

n n

n n

n X

n σ

µ σ µ σ

µ σ µ σ µ σ

µ 1.96 1.96

96 . 1 96

. 1 Pr

( ) (1.96−Φ−1.96) Φ

=0.975−(1−0.975) =

95 . 0 =

I nterval Estimation

     

n N X

2

, ~ µσ

95% of the means within bounds

X

X X

X

X

X X

X

X X

X 95% of the intervals contain µ

n X−1.96σ

n X+1.96σ

n X−1.96σ

n X+1.96σ

n X−1.96σ

n X+1.96σ

n X−1.96σ

n X+1.96σ

n X−1.96σ

n X+1.96σ

n X−1.96σ

n X+1.96σ

n X−1.96σ

n X+1.96σ n

σ µ+1.96 n

σ µ−1.96

area = 0.95

% 95 96 . 1 96

. 1

Pr =

  

 

+ ≤ ≤ −

n X n

σ µ σ

µ 

  

 

+ −

n X n X 1.96σ , 1.96σ

95 % confidence interval

Confidence I nterval

L, U Statistics calculated from the sample

The interval [L, U] is called a 95% confidence interval (C.I.) for the parameter θif

(

θ

)

0.95 for any possible

θ

PrL≤ ≤U =

Confidence level

The interval [L, U] is called a 90% confidence interval (C.I.) for the parameter θif

(

θ

)

0.90 for any possible

θ

PrL≤ ≤U =

The interval [L, U] is called a 100(1-α)% confidence interval (C.I.) for the parameter θif

(

θ

)

1-

α

for any possible

θ

PrL≤ ≤U =

90% 0.1

95% 0.05

99% 0.01

Confidence level α

Confidence I nterval

Normal population

VSRS

(

µ,σ2

)

N µ unknown σ2known

{X1,X2,...,Xn}

( ) (

1.96 1.96

)

0.95 96

. 1 96

. 1

Pr =Φ −Φ− =

  

  

≤ − ≤ −

n X

σ

µ 1.96 0.95

96 . 1

Pr =

  

 

+ ≤ ≤ −

n X n

X σ µ σ

95% confidence interval for µ : 

  

 

+ −

n X n

X 1.96σ , 1.96σ

point estimate margin of error n X±1.96σ

90 . 0 645 . 1 645

. 1

Pr =

  

 

+ ≤ ≤ −

n X

n

X σ µ σ

n X±1.645σ 90% confidence interval for µ :

99 . 0 576 . 2 576

. 2

Pr =

  

 

+ ≤ ≤ −

n X

n

X σ µ σ

n X±2.576σ 99% confidence interval for µ :

α σ µ

σ

α

α = −

 

 

+ ≤ ≤

− 1

Pr 2 2

n Z X n Z X

n Z

X± α2 σ

100(1-α)% C.I. for µ :

Tail Area

( )0,1 N

0

-Zα/2 Zα/2

α/2 1 -α α/2

645 . 1 05 . 0 = Z

96 . 1 025 . 0 = Z

2 3 . 0 15 .

0 Z

Z0.15==1.036 Z

1 . 0 9 .

0 Z

(2)

Confidence I nterval

Example : X alcohol concentration of French wine

(

,1.22

)

~Nµ X

VSRS {X1,X2,...,X60} X=9.3

A 90% C.I. for µ: ( )

60 2 . 1 645 . 1 3 . 9 05 .

0 = ±

±

n Z

X σ

255 . 0 3 . 9 ± =

[

9.045 ,9.555

]

=

(

9.045 9.555

)

0.9

Pr ≤

µ

≤ =

? ?

Confidence I nterval

     

60 2 . 1 , ~

2

µ N X

X

X

X

X X

X

X 90% of the intervals contain µ

255 . 0 + µ 255

. 0 − µ

area = 0.90

90 % confidence intervals

[9.045, 9.555] 9.3

8.9 [ ]

9.155 , 8.645

9.5

[9.245, 9.755]

Normal Model, Unknown Variance

Normal population

VSRS

(

µ,σ2

)

N µ unknown σ2unknown

{X1,X2,...,Xn}

α σ µ

σ

α

α = −

  

 

+ ≤ ≤

− 1

Pr 2 2

n Z X n Z X

n Z

X± α2 σ

100(1-α)% C.I. for µ :

( )0,1 ~N n X

σ µ −

unknown ?

~ n S

X −µ

( )

= −

= n

i i X X n S

1 2

1 1

1 ~ −

n t n S

X µ

α

µ α

α = −

 

 

+ ≤ ≤

− − − 1

Pr 1, 2 1, 2

n S t X n S t

X n n

n S t X± n−1,α2

Cauchy t1≡ 7 t

3 t

Student-t Distribution

( )  −∞< <∞

    

+

     

Γ

     

Γ

      + Γ =

+ − −

x r

x r r

r x f

r

, 1 2 1 2

2 1

2 1 2 2 1

r t X~

0 3

3

Student-t Densities N( )0,1

( )X =0 for r>1 E

( ) for 2 2 > −

= r

r r X Var

∞ ≡t

Student-t Distribution

r

t

0

α/2 1 -α α/2

tr,α/2 -tr,α/2

Student-t Distribution Table

r

t

X~

? 05 . 0 ,

8 =

t8,0.05=1.860

(3)

Normal Model, Unknown Variance

Example : X Frequency of elephant call

(

, 2

)

~Nµσ X

A 95% C.I. for µ: ( )

12 424 . 56 201 . 2 33 . 22 025 . 0 ,

11 = ±

±

n S t X

773 . 4 33 . 22 ± =

[

17.557 ,27.103

]

=

(

17.557 27.103

)

0.95

Pr ≤

µ

≤ =

VSRS {X1,X2,...,X12} X=22.33 S2=56.424

Two Samples Problem

Population 1 Population 2

2

, x

x σ

µ 2

, y

y σ

µ

y

x

µ

µ

Compare µxand µyby : unknown

{X1,X2,...,Xm} {Y1,Y2,...,Yn} VSRS

estimate

Normal Models, Known Variances

Normal populations

(

, 2

)

x x

Nµ σ µσx ,µyunknown

x2 , σy2known

point estimate margin of error

(

)

α σ σ µ

(

)

α σ σ = −α

  

  

+ + − ≤ ≤ + −

− 1

Pr

2 2 2 2

2 2

n m Z Y X n m Z Y

X x y x y

(

)

n m Z Y

X x y

2 2 2

σ σ

α +

± − 100(1-α)% C.I. for µ :

(

, 2

)

y y Nµ σ

IndependentVSRSs {X1,X2,...,Xm} {Y1,Y2,...,Yn}

Y X

Point estimator for µx-µy:

  

  

+ − −

n m N

Y

X x y

y x

2 2 ,

~ µ µ σ σ

Normal Models, Unknown Variances

Normal populations

(

, 2

)

x x

Nµ σ σµx ,µyunknown

x2 , σy2unknown

(

X Y

)

Z mx ny 2 2 2

σ σ

α +

± − 100(1-α)% C.I. for µx-µy:

(

, 2

)

y y Nµ σ

IndependentVSRSs {X1,X2,...,Xm} {Y1,Y2,...,Yn}

unknown Assumption : Equal variances σ2=σ2=σ2

y x

Pooled sample variance ( ) ( )

2 1

1 2 2

2

− +

− + − =

n m

S n S m

S x y

pool

(

X Y

)

tmn Spool m n 1 1 2 ,

2 +

±

− +− α

Normal Models, Unknown Variances

Example : growth of tomatoes

13, 11, 10, 6, 7, 4, 10 Fertilizer B (Y)

12, 11, 7, 13, 8, 9, 10, 13 Fertilizer A (X)

Assumptions : (i) Normal populations

(ii) Independent samples (iii) Equal variance

95% C.I. for µx-µy :

905 . 9 , 125 . 5 , 714 . 8 , 371 . 10 , 7 ,

8 = = = 2= 2=

= n X Y Sx Sy

m

(

X Y

)

tmn Spool m n 1 1 2 ,

2 +

±

− +− α

(

)

(

)

7 1 8 1 331 . 7 714 . 8 371 .

10 −

(

)(

±t13,0

)

.025 +

7 1 8 1 331 . 7 160 . 2 661 .

1.661±3.027 [ 1.366 , +4.688]

1 ± = −

Pooled sample variance : ( ) ( )

2 1

1 2 2

2

− +

− + − =

n m

S n S m

S x y

pool

( )( ) ( )( ) 7.331

2 7 8

905 . 9 1 7 125 . 5 1 8

2 =

− +

− + − = pool S

Large Sample Approximation

(

2

)

,σ µ N

Normal Population

α σ µ σ

α

α = −

  

 

+ ≤ ≤

− 1

Pr 2 2

n Z X n Z X

n Z

X± α2 σ

100(1-α)% C.I. for µ : ( )0,1 ~N n X σ

µ −

VSRS

{X1,X2,...,Xn}

α σ µ σ

α

α ≈ −

  

 

+ ≤ ≤

− 1

Pr 2 2

n Z X n Z X

Approximate 100(1-α)% C.I. for µ :

IF σis unknown, replace it by S.

ArbitraryPopulation

2

µ ?

For large n

( )0,1 ~

. N n X σ

(4)

Population Proportion

LargePopulation

π

π

1

π Population proportion

Random sample of size n

Virus carriers

X= number of virus carriers in the sample

( )

,

π

~

b

n

X

Point estimator for π:

n X

= π

Sample proportion

Population Proportion

( )~ ( )0,1 1

. N n

n X

π π

π − −

For large n

(

π

)

α

π π

α

α ≈ −

  

  

≤ − − ≤

− 1

1

Pr 2 Z 2

n n X Z

Approximate 100(1-α)% C.I. for π :

(

)

(

)

(

Z n

)

n Z n

Z Z

2 2

2 2 2 2 2

2 2

2

1 2

1 4 2

2

α

α α

α π π

π

+

+ − + ±

+

(

)

n

Z π π

π α

±

≈ 2 1

Population Proportion

Example : 41 people out of 500 persons were unemployed

082 . 0 500

41 = = πK

Approximate 95% C.I. for π:

( ) ( ) ( )( )

500 918 . 0 082 . 0 96 . 1 082 . 0 1 025 .

0 = ±

− ±

n

Z π π

πK K K

024 . 0 082 . 0 ± =

[5.8% , 10.6%] =

Estimated unemployment rate is 8.2% with margin of error 2.4% .

Two Samples Problem

Population 1 Population 2

2

1

π

π

Compare π1and π2by : unknown

1

π π2

Sample with size n1 Sample with size n2

X Y

Two Samples Problem

Point estimators 1 1

n X

= π

2 2

n Y

= π

( )~ ( )0,1 1

.

1 1 1

1 1

N n

n X

π π

π − −

For large n1, n2 ( )~ ( )0,1

1 .

2 2 2

2

2 N

n n Y

π π

π − −

Approximate 100(1-α)% C.I. for π1-π2:

(

)

(

)

(

)

2 2 2

1 1 1 2 2 1

1 1

n n

Z π π π π

π

π α

+ − ±

Two Samples Problem

Example : ability of detergents to remove stains

37 42

2

63 Successes

28 1

Failures Detergent

79 91

Total 69.23% 13

9 91 63

1= = =

πK

% 16 . 53 79 42

2= =

πK

Approximate 90% C.I. for π1-π2:

( ) ( ) ( )

2 2 2 1

1 1 05 . 0 2 1

1 1

n n

Z π π π π

π

π− ± − + −

( ) ( )( ) ( )( )

79 79 37 79 42 91

13 4 13 9 645 . 1 79 42 13

9 ± +

      =

[3.88% ,28.26%]

1219 . 0 1607 .

0 ± =

=

0

(5)

Sample Size Determination

n Z

X± α2 σ

100(1-α)% C.I. for µ :

X

n Zα2σ

n Zα2σ

µ X

n Zα2σ

n Zα2σ

X

n Zα2σ

n Zα2σ

X

n Zα2σ

n Zα2σ

D : precision requirement

2 2 2

2 2

D Z n n Z

D= ασ⇔ = ασ

( ) ( )

2 2

2 2

1 1

D Z n n Z

D α π π α π π

− = ⇔ − =

With probability 1-αααα, estimation error is at most D.

Sample Size Determination

Example : survey on entertainment expenses

95% confidence that estimation error is at most $120 Precision requirement :

400 $ =

σ from past surveys

( ) ( )

( )120 42.68 43 400

96 . 1

2 2 2 2

2 2

025 .

0 = =

=

D Z

Referensi

Dokumen terkait

Namun walaupun demikian kemampuan dalam mengelola emosi, mengenal emosi diri, memotivasi diri, mengenali emosi orang lain, dan membina hubungan yang merupakan aspek-aspek

Kelompok melakukan konsult asi dengan dosen pembimbing baik pada saat pemilihan lokasi dan saat menyusun program

Penelitian ini bertujuan untuk menguji ekstrak buah mengkudu secara rendaman dalam penyembuhan penyakit MAS (Motil Aeromonas Septicemia) pada ikan nila (Oreochromis

Karya yang baik maka perlu disusun dokumen perencanaan terpadu dengan mengacu pada arah.. kebijakan nasional dan memperhatikan potensi yang

Segala puja dan puji syukur bagi Allah SWT, karena penulis diberi sebuah kesempatan, ketabahan, dan bimbingan serta kekuatan sehingga dapat menimba ilmu pengetahuan dan

Pancasila sebagai filsafat pendidikan dipergunakan sebagai kaidah berfikir atau pedoman dalam mengatasi berbagai permasalahan pendidikan maka aliran filsafat

Tujuan penelitian ini adalah untuk membandingkan kandungan fenol total dan aktivitas antioksidan buah alpukat dan stroberi, serta hubungan kandungan fenol total dengan

Intisari — Meningkatnya jumlah peminat jasa asuransi di Indonesia mengakibatkan tingkat pesaingan di dunia asuransi semakin kuat.Tingginya persaingan antar perusahaan