• Tidak ada hasil yang ditemukan

Pengoptimalan Persediaan Dengan Metode Simpleks

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengoptimalan Persediaan Dengan Metode Simpleks"

Copied!
13
0
0

Teks penuh

(1)

BAB 2

LANDASAN TEORI

Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier.

2.1. Persediaan

2.1.1. Pengertian Persediaan

Persediaan adalah sumber daya menganggur (idle resources) yang menunggu proses lebih lanjut. Yang dimaksud dengan proses lebih lanjut adalah berupa kegiatan produksi pada sistem manufaktur, kegiatan pemasaran pada sistem distribusi ataupun kegiatan konsumsi pangan pada sistem rumah tangga (Nasution, 2008).

Setiap perusahaan perlu mengadakan persediaan untuk menjamin kelangsungan hidup usahanya. Untuk mengadakan persediaan, dibutuhkan sejumlah uang yang diinvestasikan dalam persediaan tersebut. Oleh karena itu, setiap perusahaan haruslah dapat mempertahankan suatu jumlah persediaan optimum yang dapat menjamin kebutuhan bagi kelancaran kegiatan perusahaan dalam jumlah dan mutu yang tepat dengan biaya yang serendah-rendahnya.

(2)

perusahaan bisa saja rusak sebelum digunakan. Selain itu perusahaan juga harus

menanggung biaya-biaya yang timbul akibat adanya persediaan tersebut.

2.1.2. Jenis-jenis Persediaan

Persediaan diklasifikasikan sebagai berikut:

1. Persediaan barang dagang

Barang yang ada di gudang dibeli oleh pengecer atau perusahaan dagang untuk dijual kembali. Barang yang diperoleh untuk dijual kembali diperoleh secara fisik tidak diubah kembali, barang tersebut tetap dalam bentuk yang telah jadi ketika meninggalkan pabrik pembuatnya.

2. Persediaan manufaktur

a. Persediaan bahan baku

Barang berwujud yang dibeli atau diperoleh dengan cara lain (misalnya dengan menambang) dan disimpan untuk penggunaan langsung dalam membuat barang untuk dijual kembali. Bagian dari suku cadang yang diproduksi sebelum digunakan kadang-kadang diklasifikasikan sebagai persediaan komponen suku cadang.

b. Persediaan barang dalam proses

Barang yang membutuhkan proses lebih lanjut sebelum penyelesaian.

c. Barang jadi

(3)

3. Persediaan rupa-rupa

Barang seperti perlengkapan kantor kebersihan dan pengiriman, persediaan ini biasanya dicatat sebagai beban penjualan umum.

2.1.3. Fungsi Persediaan

Berdasarkan fungsinya, persediaan dapat dikelompokkan dalam 4 jenis, yaitu (Herjanto, 1999):

1. Stok Fluktuasi (Fluctuation Stock)

Merupakan persediaan untuk menjaga terjadinya fluktuasi permintaan yang tidak dapat diperkirakan sebelumnya, dan untuk mengatasi jika terjadi kesalahan/penyimpangan dari perkiraan penjualan, waktu produksi, atau waktu pengiriman barang.

2. Stok Antisipasi(Anticipation Stock)

Merupakan persediaan yang dibutuhkan untuk menghadapi permintaan yang diramalkan, misalnya pada saat jumlah permintaan besar, tetapi kapasitas produksi tidak mampu memenuhi permintaan tersebut. Jumlah permintaan yang besar ini diakibatkan oleh sifat musiman dari suatu produk. Persediaan ini

juga menjaga kemungkinan sukarnya diperoleh bahan baku, agar proses produksi tidak berhenti.

3. Persediaan dalam Jumlah Besar (Lot Size Inventory)

(4)

4. Pipa Persediaan (Pipeline/ Transit Inventory)

Merupakan persediaan yang sedang dalam proses pengiriman dari tempat asal ke tempat di mana barang itu akan digunakan. Persediaan ini timbul karena jarak dari tempat asal ke tempat tujuan cukup jauh dan bisa memakan waktu beberapa hari atau beberapa minggu.

2.2. Permintaan

2.2.1. Pengertian Permintaan

Permintan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu dan dalam periode tertentu.

2.2.2. Teori Permintaan

Dapat dinyatakan:

“Perbandingan lurus antara permintaan terhadap harganya yaitu apabila permintaan naik, maka harga relatif akan naik, sebaliknya bila permintaan turun, maka harga relatif akan turun.”

2.2.3. Hukum Permintaan

(5)

2.3. Program Linier

Program Linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara yang terbaik yang mungkin dilakukan. Misalnya pengalokasian fasilitas produksi, sumber daya nasional untuk kebutuhan domestik, penjadwalan produksi dan lain-lain.

2.3.1. Karakteristik-karakteristik Dalam Program Linier

Dalam membangun model dari formulasi di atas akan digunakan karakteristik-karakteristik yang biasa digunakan dalam persoalan program linier yaitu:

1. Variabel Keputusan

Variabel keputusan adalah variabel yang menguraikan secara lengkap keputusan-keputusan yang akan dibuat.

2. Fungsi Tujuan

Fungsi tujuan merupakan fungsi dari variabel keputusan yang akan

dimaksimumkan (untuk pendapatan atau keuntungan) atau diminimumkan (untuk ongkos). Fungsi ini merupakan bentuk hubungan antara variabel keputusan.

3. Pembatas

(6)

2.3.2. Asumsi Dalam Program Linier

Dalam menggunakan model program linear, diperlukan beberapa asumsi sebagai berikut:

1. Asumsi kesebandingan (proposionality)

a. Kontribusi setiap variabel keputusan terhadap fungsi tujuan adalah sebanding dengan nilai variabel keputusan.

b. Kontribusi suatu variabel keputusan terhadap ruas kiri dari setiap pembatas juga sebanding dengan nilai variabel keputusan itu.

2. Asumsi penambahan (additivity)

a. Kontribusi setiap variabel keputusan terhadap fungsi tujuan tidak bergantung pada nilai dari variabel keputusan yang lain.

b. Kontribusi suatu variabel keputusan terhadap ruas kiri dari setiap pembatas bersifat tidak bergantung pada nilai dari variabel keputusan yang lain.

3. Asumsi pembagian (divisibility)

Dalam persoalan program linear, variabel keputusan boleh diasumsikan berupa bilangan pecahan.

4. Asumsi kepastian (certainty)

Setiap parameter, yaitu koefisien fungsi tujuan, ruas kanan, dan koefisien teknologi, diasumsikan dapat diketahui secara pasti.

Setelah masalah diidentifikasikan, tujuan ditetapkan, langkah selanjutnya adalah

formulasi model matematik yang meliputi tiga tahap, sebagai berikut:

1. Tentukan variabel keputusan dan nyatakan dalam simbol matematik.

(7)

3. Menentukan semua kendala masalah tersebut dan mengekspresikan dalam

persamaan atau pertidaksamaan yang juga merupakan hubungan linier dari variabel keputusan yang mencerminkan keterbatasan sumber daya masalah itu.

Bentuk baku model Program Linier:

Fungsi tujuan : Maksimumkan atau minimumkan

= 1�1+ 2�2+⋯+ �

Fungsi pembatas : 11�11 + 12�12+⋯+ 1 �1 1

21�21 + 22�22+⋯+ 2 �2 2 . . . . . . .

1� 1+ 2� 2 +⋯+ �

dan �1 0,�2 0,…,�3 0

2.3.3. Metode Simpleks

(8)

Perhatikan model Program Linier:

Fungsi tujuan : Maksimumkan atau minimumkan

= 1�1+ 2�2+⋯+ �

Fungsi pembatas : 11�11 + 12�12+⋯+ 1 �1 1

21�21 + 22�22+⋯+ 2 �2 2

. . . .

. . . .

1� 1+ 2� 2 +⋯+ �

dan �1 0,�2 0,…,�3 0

Jika didefinisikan:                                                    n n mn m m n n b b b B x x x X a a a a a a a a a A . . ; . . ; ... . . . . . . . . ... ... 2 1 2 1 2 1 2 22 21 1 12 11

maka pembatas dari model tersebut dapat dituliskan ke dalam bentuk sistem persamaan AX = B.

Perhatikan suatu sistem AX = B dari persamaan linear dalam n variabel (n > m).

Definisi:

1. Solusi basis

(9)

dinolkan ini disebut variabel nonbasis (NBV). Selanjutnya, dapatkan harga dari

n – (n – m) = m variabel lainnya yang memenuhi AX = B, yang disebut variabel basis (BV).

2. Solusi basis fisibel

Jika solusi variabel pada suatu solusi basis berharga nonnegatif, maka solusi itu disebut solusi basis fisibel (BFS).

3. Solusi feasibel titik ekstrem

Yang dimaksud dengan solusi feasibel titik ekstrem atau titik sudut ialah solusi feasibel yang tidak terletak pada suatu segmen garis yang menghubungkan dua solusi feasibel lainnya.

Untuk menyelesaikan persoalan program linier maksimasi dengan menggunakan metode simpleks, lakukanlah langkah-langkah berikut:

1. Konversikan formulasi persoalan ke dalam bentuk standar.

2. Cari Solusi Basis Fisibel (BFS).

3. Jika seluruh NBV mempunyai koefisien nonnegatif (artinya berharga positif atau nol) pada baris fungsi tujuan [baris persamaan z yang biasa disebut baris 0 atau baris (zj – cj)], maka BFS sudah optimal. Jika pada baris 0 masih ada

variabel dengan koefisien negatif, pilihlah salah satu variabel yang mempunyai paling negatif pada baris 0 itu. Variabel ini akan memasuki status variabel basis, karena itu variabel ini disebut sebagai variabel yang masuk basis (entering variable, disingkat EV).

(10)

ini kemudian disebut sebagai variabel yang meninggalkan basis atau leaving

variable, disingkat LV.

2.3.4. Teknik M (Metode pinalti)

Program linier dengan sistem batasan yang mengandung tanda (≥) atau (=), diselesaikan dengan menambahkan variabel buatan atau variabel fiktif. Variabel ini akan terbuang dari tabel simpleks segera ia menjadi variabel nonbasis.

Penambahan variabel ini akan merusak sistem batasan. Akan tetapi kesulitan ini dapat diatasi dengan menciptakan situasi di mana variabel ini menjadi nol pada penyelesaian akhir. Hal ini dapat dicapai dengan membuat suatu bilangan besar M sebagai harga variabel buatan tersebut dalam fungsi tujuan. Dalam kasus memaksimumkan, M bertanda negatif (-M) dan dalam kasus meminimumkan M bertanda positif (M).

2.3.5. Teknik Dua Fase

Dengan digunakannya konstanta M yang merupakan bilangan positif yang sangat besar sebagai penalty, maka bisa terjadi kesalahan perhitungan, terutama apabila perhitungan itu dilakukan dengan menggunakan komputer. Kesalahan itu bisa terjadi karena koefisien fungsi tujuan relatif sangat kecil dibandingkan dengan harga M, sehingga komputer akan memperlakukannya sebagai koefisien yang berharga nol.

(11)

Fase I:

Fase ini digunakan untuk menguji apakah persoalan yang kita hadapi memiliki solusi fisibel atau tidak. Pada fase ini fungsi tujuan semula diganti dengan meminimumkan jumlah variabel artifisialnya. Jika nilai minimum fungsi tujuan baru ini berharga nol (artinya seluruh variabel artifisial berharga nol), berarti persoalan memiliki solusi fisibel, lanjutkan ke fase 2. Tetapi, jika nilai minimum fungsi tujuan baru ini berharga positif, maka persoalan tidak memiliki solusi fisibel.

Fase II:

Gunakan solusi basis optimum dari fase I sebagai solusi awal bagi persoalan semula. Dalam hal ini ubahlah bentuk fungsi tujuan fase I dengan mengembalikannya pada fungsi tujuan persoalan semula. Pemecahan persoalan dilakukan dengan cara seperti biasa.

2.3.6. Teori Dualitas

Teori Dualitas merupakan salah satu konsep program linear yang penting dan menarik ditinjau dari segi teori dan praktisnya. Ide dasar yang melatarbelakangi

teori ini adalah bahwa setiap persoalan programa linear mempunyai suatu programa linear lain yang saling berkaitan yang disebut dual , sedemikian sehingga solusi pada persoalan semula (yang disebut primal) juga memberi solusi pada dualnya.

Hubungan antara primal dengan dual sebagai berikut:

1. Koefisien fungsi tujuan primal menjadi konstanta ruas kanan bagi dual, sedangkan konstanta ruas kanan primal menjadi koefisien fungsi tujuan dual. 2. Untuk setiap pembatas primal ada satu variabel dual, dan untuk setiap

variabel primal ada satu pembatas dual.

(12)

4. Fungsi tujuan berubah bentuk (maksimasi menjadi minimasi dan sebaliknya).

5. Setiap kolom pada primal berkorespondensi dengan baris (pembatas) pada dual.

6. Setiap baris (pembatas) pada primal berkorespondensi dengan kolom pada dual.

7. Dual dari dual adalah primal.

2.3.7. Metode Dual Simpleks

Apabila pada suatu iterasi kita mendapat persoalan program linear yang sudah optimum (berdasarkan kondisi optimalitas), tetapi belum fisibel (ada pembatas nonnegatif yang tidak terpenuhi), maka persoalan tersebut harus diselesaikan dengan menggunakan metode dual simpleks. Syarat digunakannya metode ini adalah bahwa seluruh pembatas harus merupakan ketidaksamaan yang bertanda (≤), sedangkan fungsi tujuan bisa berupa maksimasi atau minimasi.

Pada dasarnya metode dual simpleks ini menggunakan tabel yang sama seperti metode simpleks pada primal, tetapi lea ving dan entering variable-nya ditentukan sebagai berikut:

1. Leaving variable (kondisi fisibilitas)

Yang menjadi leaving va riable pada dual simpleks adalah variabel basis yang memiliki harga negatif terbesar. Jika semua variabel basis telah berharga positif atau nol, berarti keadaan fisibel telah tercapai.

2. Entering variable (kondisi optimalitas)

(13)

b. Untuk persoalan minimasi, entering variable adalah variabel dengan rasio

Referensi

Dokumen terkait

Uji korelasi sederhana pertama : untuk mengetahui tingkat signifikansi dari hubungan yang signifikan antara metode open ended learning (X 1 ) terhadap kemampuan

In the present study nicotine (0.1 mg / kg, s.c.) increased discharge rate of putative dorsal raphe (DRN) serotonergic neurons of behaving rats during REM sleep (362.61%), without

(1) Setiap penyelenggaran usaha sarana pariwisata, Pengusahaan obyek dan daya tarik wisata serta jasa pramuwisata sebagaimana dimaksud dalam pasal 4 ayat (1), (2), dan (3)

JUMLAH WESEL POS DALAM NEGERI YANG DIKIRIM DAN DITERIMA MENURUT JENISNYA DI KOTA BANDUNG TAHUN 2003 Table 8.4.7 TOTAL DOMESTIC MONEY ORDER SENT AND RECEIVED BY TYPE IN.

Besarnya pengaruh lingkungan keluarga terhadap hasil belajar siswa dapat dilihat dari nilai koefisien determinasi yaitu sebesar 0,419 yang berarti besarnya

Menurut Reid 1998, Vicioso seorang guru telah mengedarkan soal selidik Gaya Pembelajaran Persepsi PLSP dalam Bahasa Inggeris kepada 193 orang pelajar sekolah menengah di negara

Sumber data yang digunakan dalam penelitian ini, yaitu (1) data primer dalam penelitian ini adalah data yang diperoleh secara langsung dengan menyebarkan

Tentu lebih banyak ilmu yang di dapat dari adanya kegiatan yang sekarang menjadi buah bibir di masyarakat ini, baik setiap ajaran baru maupun penerimaan siswa baru yang di gelar