• Tidak ada hasil yang ditemukan

Unjuk kerja America Wind Mill dengan variasi jumlah sudu - USD Repository

N/A
N/A
Protected

Academic year: 2019

Membagikan "Unjuk kerja America Wind Mill dengan variasi jumlah sudu - USD Repository"

Copied!
71
0
0

Teks penuh

(1)

i

UNJUK KERJA AMERICAN WIND MILL DENGAN VARIASI

JUMLAH SUDU

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Mesin

Progam Studi Sains dan Teknologi

Disusun oleh:

WIDYA KRISTIYANTO NIM : 065214034

PROGRAM STUDI TEKNIK MESIN

JURUSAN TEKNIK MESIN

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS SANATA DHARMA

(2)

ii

FINAL PROJECT

Presented as partial Fulfillment on the Requirements To obtain the Sarjana Teknik Degree

In Mechanical Engineering study program

By:

WIDYA KRISTIYANTO NIM : 065214034

MECHANICAL ENGINEERING STUDY PROGRAM

MECHANICAL ENGINEERING DEPARTEMENT

SCIENCE AND TECHNOLOGY FACULTY

SANATA DHARMA UNIVERSITY

(3)
(4)
(5)
(6)
(7)

vii

Penelitian ini bertujuan untuk mendapatkan efisiensi dan daya yang dihasilkan terhadap kecepatan angin untuk setiap variasi jumlah sudu 2,3,6, dan 12.

Agar menghasilkan listrik, kincir angin dihubungkan dengan generator. Dari kincir ini kita bisa mengukur tegangan, arus dan efisiensi. Alat ini diberikan variasi lampu sebagai pembebanannya. Pada setiap pembebanan dilakukan pengukuran putaran poros kincir dengan menggunakan tachometer dan arus listrik yang dihasilkan diukur dengan menggunakan multimeter.

(8)

viii

diberikan serta semangat, harapan baru yang berlimpah dan tiada henti di dalam penulisan tugas akhir ini hingga selesai.

Tugas akhir ini merupakan salah satu syarat yang harus dipenuhi bagi mahasiswa Teknik Mesin sebelum dinyatakan lulus sebagai Sarjana Teknik. Dalam pelaksanaan dan penulisan tugas akhir ini tidak lepas dari bantuan berbagai pihak, baik berupa materi, bimbingan, kerja sama serta dukungan moril. Dalam kesempatan ini penulis mengucapkan terimakasih kepada :

1. Yosef Agung Cahyanta, S.T., M.T., selaku Dekan Fakultas Teknik Universitas Sanata Dharma Yogyakarta.

2. Ir. YB. Lukiyanto, M.T., selaku dosen pembimbing yang telah memberikan bimbingan, dorongan serta meluangkan waktu untuk membimbing penulis dalam menyelesaikan Tugas Akhir.

3. Seluruh dosen, staf dan karyawan Fakultas Sains dan Teknologi Universitas Sanata Dharma Yogyakarta atas kuliah, bimbingan , serta fasilitas yang diberikan selama masa kuliah.

4. Kepada kedua orang tua, atas dukungan moral, financial, doa dan motivasi yang tiada henti hingga tugas akhir ini bisa selesai.

5. Kakak dan adikku yang telah mendukung selama ini

6. Dewi Pristiana, atas segala cinta, kasih sayang, dan semangatnya selama ini yang telah diberikan.

7. Segenap teman-teman Teknik Mesin terutama angkatan 2006, banyak pembelajaran yang penulis dapatkan bersama kalian.

(9)

ix

inspirasi ini dapat menjadi jalan menuju suatu hal yang lebih baik untuk penulisan tugas akhir teman-teman nantinya serta melanjutkan ke arah penelitian dan penciptaan demi kemajuan Universitas kita.

Yogyakarta, 21 Desember 2009

(10)

x

HALAMAN PENGESAHAN PEMBIMBING .………... iii

HALAMAN PENGESAHAN PENGUJI DAN DEKAN ………... Iv HALAMAN PERNYATAAN .………... V LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH.………... Vi INTISARI ……… Vii KATA PENGANTAR ………...……….. Viii DAFTAR ISI ………... X DAFTAR TABEL………. Xii DAFTAR GAMBAR……… Xiii BAB I PENDAHULUAN ………... 1

1.1. Latar Belakang ...………...………... 1

1.2. Perumusan Masalah ………..………. 4

1.3. Batasan Masalah ………... 4

1.4. 1.5. Tujuan ...……….. Manfaat...……….. 4 5

BAB II DASAR TEORI………...…….………... 6

2.1. Pengertian Angin ………..………. 6

2.2. 2.3. 2.4. Tipe Turbin Angin ... 2.2.1. Kelebihan Kincir Angin Sumbu Horizontal... 2.2.2.Kekurangan Kincir Angin Sumbu Horizontal... Gerak Turbin... Perhitungan Pada Turbin... 6 8 8 9 9 BAB III METODOLOGI PENELITIAN………….………... 17

(11)

xi 3.3.

3.4. 3.5.

Bahan Penelitian... Analisa Data... Langkah Penelitian...

19 21 21

BAB IV PERHITUNGAN DAN PEMBAHASAN... …...………... 23

4.1. Data Penelitian ... 23

4.2. Pengolahan Data dan Perhitungan ……….. 32

4.3. Grafik Hasil Perhitungan ……… 46

BAB V PENUTUP ... 52

5.1. Kesimpulan ... 52

5.2. Saran ... 52

DAFTAR PUSTAKA... 53

(12)

xii

Tabel 1.1. Data angin yang telah dihimpun oleh Pusat Meteorologi dan

Geofisika ... 3 Tabel 2.1. Unjuk kerja macam-macam kincir angin……….. 8 Tabel 2.3. Spesifikasi bahan poros ……….... 13 Tabel 4.1.

Tabel 4.2.

Tabel 4.2.1.

Tabel 4.2.2.

Tabel 4.3.

Tabel 4.3.1.

Tabel 4.3.2.

Data perolehan dari kincir bersudu 2, dengan variasi kecepatan angin berbeda-beda……… Data perolehan dari kincir bersudu 3, dengan variasi kecepatan angin berbeda-beda……… Data perolehan dari kincir bersudu 3, dengan variasi kecepatan angin berbeda-beda……… Data perolehan dari kincir bersudu 3, dengan variasi kecepatan angin berbeda-beda……… Data perolehan dari kincir bersudu 6, dengan variasi kecepatan angin berbeda-beda………... Data perolehan dari kincir bersudu 6, dengan variasi kecepatan angin berbeda-beda……… Data perolehan dari kincir bersudu 6, dengan variasi kecepatan angin berbeda-beda……… 23 24 25 26 27 28 29 Tabel 4.4. Data perolehan dari kincir bersudu 12, dengan variasi kecepatan

angin berbeda-beda……… 30

Tabel 4.4.1. Data perolehan dari kincir bersudu 12, dengan variasi kecepatan

angin berbeda-beda……… 31

Tabel 4.4.2. Data perolehan dari kincir bersudu 12, dengan variasi kecepatan

angin berbeda-beda……… 32

Tabel 4.5. Data Perhitungan, Kecepatan angin, Pout, Pin, kecepatan ujung

(13)

xiii

sudu, TSR, dan CP dengan variasi jumlah sudu 3……… 39 Tabel 4.7

Tabel 4.8.

Data Perhitungan, Kecepatan angin, Pout, Pin, kecepatan ujung

sudu, TSR, dan CP dengan variasi jumlah sudu 6 ... Data Perhitungan, Kecepatan angin, Pout, Pin, kecepatan ujung

sudu, TSR, dan CP dengan variasi jumlah sudu 12... 41

(14)

xiv

Gambar 2.1 Grafik Prestasi untuk Beberapa Jenis Turbin Angin... 7

Gambar 2.2 Kincir angin Amerikan poros mendatar... 7

Gambar 2.3 Kontruksi sabuk-V……….. 15

Gambar 2.4 Ukuran penampang sabuk-V……….……….. 15

Gambar 3.1 Generator listrik……….. 17

Gambar 3.2 Multimeter……….……….. 18

Gambar 3.3 Beban lampu………. 19

Gambar 3.4 Anemometr……… 19

Gambar 3.5 Dudukkan sudu kincir….………... 20

Gambar 3.6 Sudu kincir………. 20

Gambar 3.7 Kerangka penyangga kincir……….………….. 21

Gambar 3.8 Skema alat... 22

Gambar 4.1 Grafik hubungan kec angin dengan daya output pada variasi jumlah sudu 2………... 46

Gambar 4.2 Grafik hubungan kec angin dengan daya output pada variasi jumlah sudu 3………. 47

(15)

xv

jumlah sudu 12………... 48

Gambar 4.5 Gambar 4.6 Gambar 4.7 Gambar 4.8 Gambar 4.8 Grafik hubungan daya output dengan putaran sudu pada variasi jumlah suduc 2,3,6, dan sudu 12……... Grafik hubungan CP dengan TSR pada jumlah sudu 2……….. Grafik hubungan CP dengan TSR pada jumlah sudu 3……….. Grafik hubungan CP dengan TSR pada jumlah sudu 6……….. Grafik hubungan CP dengan TSR pada jumlah sudu 6……….. 49 49 50 50 51 Gambar L.1 Bentuk sudu dengan variasi jumlah sudu 2 ... 54

Gambar L.2 Bentuk sudu dengan variasi jumlah sudu 3 ... 54

Gambar L.3 Bentuk sudu dengan variasi jumlah sudu 6 ... 55

Gambar L.4 Bentuk sudu dengan variasi jumlah sudu 12 ... 55

Gambar L.5 Axial Blower……… 56

(16)

1 BAB I

PENDAHULUAN

1.1 Latar Belakang

Energi angin merupakan salah satu sumber energi alternatif yang berkembang pesat. Dikarenakan masyarakat membutuhkan sumber- sumber energi alternatef, seiring dengan semakin sulitnya mendapat energi minyak bumi. Kebutuhan energi merupakan hal yang tak terpisahkan dari kehidupan manusia maka dari itu energi mempunyai peranan penting dalam memenuhi kebutuhan hidup, baik sosial ekonomi maupun lingkungan. Menurut data terbaru dari IFR Report, Economist 2008, dalam rentang tahun 2005 – 2030 diperkirakan kebutuhan minyak akan tumbuh sebesar 1,4% per tahun. Sebenarnya, prediksi angka pertumbuhan ini jika dibandingkan dengan angka pertumbuhan sumber energi lainnya seperti gas, masih lebih rendah. Akan tetapi, dalam proporsi penggunaan minyak sebagai energi di dunia, masih jauh lebih besar dibandingkan dengan sumber energi lainnya.

(Sumber : http://ww.its.ac.id/berita.php?nomer=5780)

(17)

27,4%, bahan padat turun menjadi 26,8%, dan energi terbarukan justru diperkirakan turun ke angka 9,2%. Hal ini menggambarkan situasi bahwa sampai dengan tahun 2030, minyak masih menjadi primadona sumber energi.( Sumber : http://www.energi.lipi.go.id )

Indonesia tercatat sebagai negara dengan garis pantai terpanjang di dunia. Ini berarti bahwa Indonesia memiliki potensi besar akan salah satu sumber energi terbarukan yaitu angin. Energi angin yang tersedia berlimpah, tidak habis-habis, dan tersebar luas. Penggunaan energi angin memiliki beberapa keunggulan yakni bersih dan tidak menimbulkan efek rumah kaca. Penggunaan energi di Indonesia secara umum meningkat pesat sejalan dengan pertumbuhan penduduk, pertumbuhan perekonomian maupun perkembangan teknologi.

Energi angin merupakan energi terbarukan yang fleksibel, energi angin dapat di manfaatkan untuk keperluan misalnya untuk pembangkit listrik. Alat yang di gunakan adalah kincir angin, energi potensial yang terdapat pada kicir angin akan memutar sudu-sudu pada kincir.Sudu- sudu ini terhubung pada poros dn akan memutarkan generator, sehingga menghasilkan listrik. Penggunaan energi di Indonesia secara umum meningkat pesat sejalan dengan pertumbuhan penduduk, pertumbuhan perekonomian maupun perkembangan teknologi.

(18)

Tabel 1.1 Data angin yang telah dihimpun oleh Pusat Meteorologi dan Geofisika tentang daerah yamg mempunyai kecepatan angin rata-rata 3.5 m/s atau lebih.

No Nama Daerah

Kecepatan Rata-rata (m/s)

Masa Bertiup Angin Di atas 4.0 m/s (%)

1 Blang Bintang 3.50 42.6

2 Tanjung Pinang 3.75 62.5

3 Tanjung Pandang 4.35 75.0

4 Pondok Betung 3.70 25.0

5 Margahayu 4.30 90.0

6 Rendole/Pati 5.30 84.8

7 Semarang 3.90 51.3

8 Iswahyudi 5.15 95.5

9 Kalianget 4.15 65.6

10 Denpasar 4.03 59.5

11 Pasir Panjang 4.95 66.7

12 Kupang/Penfui 5.75 78.6

13 Waingapu 3.65 32.7

Sumber : Pusat Meteorologi dan Geofisika, 2000

(19)

1.2 Perumusan Masalah

Permasalahan yang dapat dirumuskan pada pembuatan alat ini adalah sebagai berikut:

1) Potensi angin yang terdapat diindonesia sangatlah besar namun untuk kecepatan angin itu sendiri sangat rendah.

2) Dari SDM Indonesia sangat rendah dalam bidang pendidikan, sehingga tidak dapat diterapkan teknologi tinggi.

3) Agar mudah dibuat dan mudah ditemui maka dibuat poros horizontal.

Membuat dan menguji kemampuan kincir angin poros horizontal untuk mengetahui unjuk kerja alat ini, agar dapat mengetahui kekurangan-kekurangan pada kincir angin ini.

1.3 Batasan Masalah

Agar permasalahan yang ada tidak berkembang menjadi luas, maka perlu adanya batasan terhadap permasalahan yang akan dibuat yaitu:

1) Jumlah sudu yang digunakan ialah sudu 2,3,6 dan 12. 2) bentuk sudu trapesium dan luas persudu sama.

3) Kecepatan angin untuk setiap variasi dirata-rata sama.

1.4 Tujuan

Membuat dan menguji model kincir angin american dengan jumlah sudu 2, 3, 6 dan 12, sebagai pembangkit listrik :

(20)

2. Mendapatkan efesiensi kincir maksimal pada variasi jumlah sudu. 3. Hubungan TSR dengan CP (koefisien daya) pada variasi jumlah sudu.

1.5 Manfaat

1. Dapat digunakan dalam pembuatan dalam skala besar yang mampu menghasilkan listrik sehingga dapat dimanfaatkan oleh masyarakat. 2. Untuk mengurangi dan menekan penggunaan energi minyak bumi yang

lama kelamaan akan menipis dan habis.

3. Untuk menambah kepustakaan dan pengetahuan tentang energi terbarukan.

(21)

6 BAB II

DASAR TEORI 2.1 Pengertian Angin

Terjadinya angin karena adanya perbedaan temperatur, menyebabkan adanya perbedaan tekanan udara. Tempat dengan tekanan yang lebih rendah akan ditempati oleh udara inilah yang disebut dengan angin. ( sumber : Arismunandar, W., Penggerak Mula Turbin ).

Angin terjadi di lapisan Atmosfer pada lapisan Troposfer. Lapisan Troposfer ini memiliki ketebalan kurang lebih 11 km (3600 ft) dari permukaan laut ke atas.

2.2Tipe Turbin Angin

(22)

menyerap energi angin dengan effisiensi kurang lebih 30% ( sumber : Arismunandar, W., Penggerak Mula Turbin ). Menurut Profesor Betz, effisiensi maksimum kincir American sekitar 20%. Dapat dilihat pada Gambar 2.1 dibawah ini.

Gambar 2.1. Grafik Prestasi Untuk Beberapa Jenis Turbin Angin

Gambar 2.2. Kincir angin model American poros mendatar

Savonius

A merican multiblade

High Speed Propeller Ideal Propeller

(23)

Tabel 2.1. Unjuk kerja macam-macam kincir angin

Tipe CP Solidity %

Horizontal Axis

C

Crreettaannssaaiil l 00,,0055––00,,115 5 50 C

Caammbbeerreeddppllaatteeffaann 00,,1155––00,,330 0 50 – 80 M

Mooddeerraattee ssppeeeedd aaeerroo- -g

geenneerraattoor r

0

0,,2200––00,,335 5 5 – 10

H

Hiigghh ssppeeeedd aaeerroo- -g

geenneerraattoor r

0

0,,3300––00,,445 5 < 5

V

V

e

e

r

r

t

t

i

i

c

c

a

a

l

l

A

A

x

x

i

i

s

s

P

Paanneemmoonne e >>00,,110 0 550 0 S

Saavvoonniiuus s 00,,115 5 11000 0 D

Daarrrriiuuss 00,,2255––00,,335 5 1100––220 0 V

VaarriiaabblleeGGeeoommeettrryy 00,,2200––00,,335 5 1155––440 0 ( Sumber : Ir. YB. Lukiyanto, M.T., KuliahRekayasa Tenaga Angin ). 2.2.1. Kelebihan kincir Angin Sumbu horizontal

• Pondasi untuk menara lebih kuat untuk menahan kincir dari terpaan angin

• Putaran yang dihasilkan cukup tinggi.

• Dapat menerima angin pada kecepatan tinggi.

2.2.2. Kekurangan kincir Angin Sumbu Horizontal

• Menara yang tinggi sulit dibawa kelokasi, akan membutuhkan biaya

transpotasi yang cukup besar.

• TASH yang tinggi sulit dipasang, membutuhkan derek yang yang sangat

tinggi dan mahal serta para operator yang tampil.

• Konstruksi menara yang besar dibutuhkan untuk menyangga bilah-bilah

(24)

2.3. Gerak Turbin

• Pada dasarnya kerja turbin angin berkebalikan dengan kipas angin.

• Turbin angin bukan untuk membuat angin yang dialiri listrik melainkan

turbin angin digerakan oleh angin untuk menghasilkan listrik.

• Angin yang mengenai sudu akan menghasilkan energi kinetik. Energi

kinetik tersebut, akan memutar puli yang telah terpasang pada roda jalan dan generator. Lalu secara otomatis generator tersebut akan beputar dan menghasilkan energi listrik.

2.4. Perhitungan Pada Turbin

1. Daya Yang Dihasilkan Generator Listrik

Sebuah generator listrik berfungsi untuk mengubah energi mekanis menjadi energi listrik yang besarnya sebagai berikut :

Pout = V x I ……….. (1)

dengan :

V = Tegangan (Volt) A = Arus (Ampere)

2. Daya Yang Tersedia Pada Angin

Daya yang disediakan angin dapat dihitung dari perkalian masa jenis udara dikalikan luas penampang kincir angin dikalikan pangkat tiga kecepatan angin

P

=

∗ ∗ ∗

(25)

Apabila massa jenis udara ( standarρ =1,225kg/m3 ), maka persamaan di atas dapat disederhanakan menjadi :

P

in

=

0

,

6

A

v

3 (Watt) ………. (2)

dengan keterangan :

Pin = daya angin, (watt)

A = luas penampang melintang arus angin yang ditangkap kincir, (m2)

V = kecepatan angin, (m/s)

3. Perencanaan kekuatan poros

Poros merupakan salah satu bagian terpenting dalam perancangan mesin. Poros berfungsi meneruskan daya dari suatu penggerak utama. Untuk mengetahui seberapa besar diameter poros yang akan digunakan dalam perancangan kincir, maka perlu dilakukan perhitungan terhadap kekuatan poros terhadap beban-beban yang dikenakan

Hal utama yang paling penting dalam perencanaan kekuatan poros adalah torsi poros itu sendiri. Torsi pada poros terjadi bila ada beban-beban atau gaya-gaya yang mengenai. Beban atau gaya yang mengenai poros pada kincir dapat berasal dari kerangka kincir dan juga energi angin yang ditangkap oleh sudu kincir.

Secara matematis, beban atau gaya yang mengenai poros dapat dihitung dengan persamaan sebagai berikut :

(26)

v P

F = …………..……….. (3)

Dengan :

P = daya angin, (Watt)

F = gaya yang diberikan angin,(N) v = kecepatan angin, (m/s)

4. Tip Speed Ratio / TSR

Kecepatan kincir angin biasanya diukur berdasarkan kecepatan putarnya, dengan satuan rpm (revolutions per minute, simbol n) atau berdasarkan kecepatan sudutnya, dengan satuan rad s-1 (radian per detik), symbol Ω dan ω.

Perbandingan kecepatan ujung sudu dengan kecepatan angin biasa disebut dengan Tip Speed Ratio / TSR.

……….. (4) Dengan :

R = jari-jari terluar sudu (m) n = Putaran sudu (rpm)

Tip speed ratio (λ), adalah perbandingan antara kecepatan ujung sudu

dengan kecepatan angin (V)

Kita dapat menghitung TSR (λ) dengan persamaan berikut :

= ………..(5)

det rad 0,10472 detik

60 rad 2 rpm

1 = π = -1

(27)

Dimana :

U = kecepatan ujung sudu (m/s) V= kecepatan angin (m/s) 5. Perhitungan Torsi

n P M in t * * 2 * 60 π

= (Nm) ………. (6)

Dengan :

t

M = torsi (Nm)

Pin = daya input (Watt)

n = putaran poros (rpm)

Setelah torsi poros diketahui, maka dimensi poros juga perlu dihitung sesuai dengan beban yang dikenakannya. Dimensi poros yang perlu diperhitungkan adalah diameter poros.

Sebelum melakukan perhitungan diameter poros yang sesuai, maka perlu dipilih bahan poros yang akan digunakan. Bahan poros dan sifa-sifatnya dapat dipilih berdasarkan Tabel 1.3

Diameter poros dapat dihitung dengan persamaan sebagai berikut :

3 / 1 1 , 5       ⋅ ⋅ = K C T

d t b

a s

τ ………... (7)

Dengan :

Kt= faktor koreksi tumbukan

(28)

Tabel 2.3 : Spesifikasi bahan poros

( Sumber : Sularso dan Kiyokatsu Suga, Dasar Perencanaan dan Pemilihan Elemen Mesin, 1997. )

Kelompok Bahan Lambang Bahan Kekuatan tarik

σB (kg/mm2)

Kekerasan (Brinell) HB

Tegangan lentur yang diizinkan

σa (kg/mm2)

Besi cor FC 15 FC 20 FC 25 FC 30 15 20 25 30 140-160 160-180 180-240 190-240 7 9 11 13 Baja cor SC 42 SC46 SC49 42 46 49 140 160 190 12 19 20 Baja karbon untuk

konstruksi mesin

S 25 C S 35 C S 45 C

45 52 58 123-183 149-207 167-229 21 26 30

Baja paduan dengan

pengerasan kulit

S 25 CK 50

400 (dicelup dingin dalam miyak ) 30 SNC 21 SNC 22 80 100

600 (dicelup dingin dalam air )

35-40 40-55

Baja krom nikel

SNC 1 SNC 2 SNC 3 75 85 95 212-255 248-302 269-321 35-40 40-60 40-40 Perunggu

logam delta perunggu fospor (coran)

Perunggu nikel (coran) 18 35-60 19-30 64-90 85 - 80-100 180-260 5 10-20 5-7 20-30

Damar phenol,dll. 3-5

6. Perhitungan Koefisien daya (Cp)

Koefisien daya (Cp) digunakan untuk menggantikan istilah

(29)

=

……….. (8)

Dengan :

Cp= Koefisien Daya Kincir

Pout = Daya Yang dihasilkan oleh Kincir ( Watt )

Pin = Daya Teoritis ( Watt )

Untuk mendapatkan CP yang maksimum menurut Betz Limit dapat dilihat pada gambar 2.1.

7. Transmisi sabuk dan puli

Jarak yang jauh antara dua poros sering tidak memungkinkan transmisi langsung dengan roda gigi. Oleh karena itu, dalam perancangan kincir angin ini digunakan transmisi berupa sabuk dan puli.

Sabuk yang digunakan dalam transmisi ada 2 macam, yaitu sabuk-V dan sabuk gilir. Sabuk-sabuk-V terbuat dari karet dan mempunyai penampang trapesium. Tenunan atau semacamnya dipergunakan sebagai inti sabuk untuk membawa tarikan yang besar. Sedangkan sabuk gilir terbuat dari karet neoprene atau plasik poliuretan sebagai bahan cetak dengan inti dari serat gelas atau kawat baja. Selain itu, sabuk gilir juga mempunyai gigi-gigi yang dicetak secara teliti di permukaan sebelah dalam. ( Sumber : Dasar Perancangan dan Pemilihan Elemen Mesin, karangan Sularso dan Kiyokatsu Suga)

(30)

Transmisi sabuk-V bekerja berdasarkan gesekan belitan. Sabuk ini memiliki konstruksi yang sederhana, mudah untuk didapatkan perbandingan putarannya, dan murah harganya. Dilihat dari keuntungan yang ada, maka sabuk-V digunakan sebagai transmisi pada konstruksi kincir angin ini.

Dalam perhitungan sabuk dan puli, maka perlu lebih dahulu diketahui ukuran diameter poros yang nantinya dihubungkan pada kedua puli. Jika diameter kedua poros sudah diketahui, maka diperlukan pemilihan jenis sabuk-V yang sesuai dan diameter minimal puli.

Gambar 2.4 : Ukuran penampang sabuk-V

( Sumber : Sularso dan Kiyokatsu Suga, Dasar Perencanaan dan Pemilihan Elemen Mesin, 1997. )

Untuk mendapatkan putaran yang diinginkan untuk dihubungkan pada generator, maka perlu diketahui lebih dahulu perbandingan putaran antara kedua puli. Perbandingan putaran dapat dihitung dengan persamaan sebagai berikut : ( Sumber : Sularso dan Kiyokatsu Suga, Dasar Perencanaan dan Pemilihan Elemen Mesin, 1997. )

i n n i

n n

. 1 2 1

2 = → =

………(9)

(31)

n1 = putaran puli yang terhubung pada poros kincir, (rpm)

n2 = putaran puli yang terhubung pada poros generator, (rpm)

Setelah diketahui perbandingan putaran kedua puli, maka diameter masing-masing puli juga harus diperhitungkan.

Kecepatan linear sabuk-V dihitung dengan persamaan sebagai berikut :

1000 60

1

× ⋅ = d n

v p ………..(10)

(32)

17 BAB III

METODOLOGI PENELITIAN

3.1.Metode Penelitian

Metode yang digunakan untuk penelitian pada tugas akhir ini adalah kincir angin amerikan dengan jumlah sudu 2,3, 6 dan 12. Selanjutnya kincir angin tersebut akan dicari unjuk kerjanya pada kecepatan angin yang berbada-beda sehingga mendapatkan daya masukkan yang berbeda. Transmisi yang akan digunakan dalam kincir ini berupa puli dengan penghubung daya berupa sabuk. Daya tersebut akan dihubungkan pada poros rotor generator. Rotor generator akan berputar sehingga menghasilkan energi listrik,dan energi listrik inilah yang akan digunakan sebagai penerangan rumah tangga.

3.2. Peralatan Penelitian

Adapun peralatan yang digunakan dalam penelitian tersebut adalah : 1. Generator

Alat ini berfungsi sebagai alat yang mengubah gaya gerak menjadi listrik. Alternator menghasilkan Arus listrik dan Tegangan listrik yang berfungsi untuk mencari besar daya yang dikeluarkan.

(33)

2. Tachometer

Alat ini digunakan untuk mengukur putaran poros motor DC. Tachometer yang digunakan tachometer jenis digital light tachometer, yang prinsip kerjanya dengan memancarkan sinar untuk membaca sensor yang berupa pemantul cahaya (contoh alumunium foil) yang dipasang pada poros.

3. Wind Tunnel

Alat ini berfungsi sebagai lorong yang menangkap dan mengumpulkan angin dan menghembuskannya pada kincir yang juga diletakkan didalam Wind Tunnel tersebut.

4. Fan / Blower

Alat ini menyerap angin yang akan disalurkan ke Wind Tunnel. 5. Multimeter

Alat ukur untuk mengukur kelistrikan pada beban yang diberikan.

Gambar 3.2 Multimeter 6. Lampu / beban

(34)

Gambar 3.3 Beban lampu 7. Anemometer

Berfungsi sebagai alat pengukur kecepatan angin.

Gambar 3.4 Anemometer 8. Peralatan Kunci-kunci

Alat yang digunakan untuk membongkar pasang seperti kunci pas 10,12, dan14.

3.3. Bahan Penelitian 1. Dudukan sudu

(35)

Gambar 3.5 Dudukan sudu kincir 2. Sudu kincir

Sudu kincir terbuat dari triplek dengan ketebalan 0,5,agar dalam pengujian bahan tersebut ringan sehingga dapat menggerakan kincir lebih mudah. Ukuran yang digunakan P=0,45mm, a=0,18mm, b=0,078mm.

Gambar 3.6 Sudu kincir 3 kerangka penyangga kincir

(36)

Gambar 3.7 Kerangka penyangga kincir

3.4. Analisa Data

Data yang diambil dari percobaan ini adalah sebagai berikut : 1. Putaran poros kincir dan Alternator yang dihasilkan ( n ). 2. Tegangan (Volt) dan Arus (Ampere) listrik pada Lampu.

3. Kecepatan angin (V) yang digunakan didapat dari pengukuran Anemometer yang diletakan didepan Wind Tunnel.

4. Pout diperoleh dari pengkalian Tegangan (Volt) dan Arus (Ampere)

Listrik yang dihasilkan dari lampu.

5. Perhitungan daya kincir ( Pin ) agar dapat menghitung CP

6. Perhitungan TSR.

3.5. Langkah Penelitian

1. Kincir angin dipasang didalam Wind Tunnel dan dibaut supaya tidak bergerak sedikitpun.

(37)

3. Didepan kincir angin dipasang Anemometer untuk mengetahui besar angin yang ada dalam Wind Tunnel.

4. Blower dihidupkan untuk menyerap angin masuk kedalam Wind Tunnel. Putar saklar off (0) keposisi on (1) dan tekan tombol warna hijau.

5. Ukur kecepatan angin yang diperlukan dengan mengatur jarak antara windtunnel dengan blower.

6. Tunggu waktu sekitar 1 s/d 2 menit agar sistem menjadi tunak. 7. Catat kecepatan angin, putaran poros, arus dan tegangan, pada

tiap-tiap 1x pemberian beban.

8. Setelah selesai ’’off’’kan semua saklar dan Ulangi langkah 5 s/d 7 sampai 3x variasi kecepatan angin.

9. Ulangi langkah 4 s/d 8 pada tiap-tiap variasi jumlah sudu.

10.Tekan tombol warna merah (stop) untuk mematikan blower dan putar saklar blower pada posisi on.

Gambar 3.8 Skema alat

Arah Angin

Sudu Generator

Wind Tunnel

(38)

23 BAB IV

PERHITUNGAN DAN PEMBAHASAN 4.1.Data Penelitian

Data yang diperoleh pada percobaan dengan variasi jumlah sudu 2,3,6, dan 12. Khusus pada data dengan sudu 2 hanya didapat 1x percobaan, dikarenakan kincir tidak mampu berputar pada kecepantan rendah dan multimeter tidak mampu membaca dengan tepat. Didapat data sebagai berikut :

Tabel 4.1. Data perolehan dari kincir bersudu 2, dengan variasi kecepatan angin berbeda-beda.

No. Beban Tegangan Arus Putaran (n)

kec angin (Watt) (Volt) (Ampere) (rpm) (m/s)

1 8 3,80 0,24 190,1 5,83

2 16 2,10 0,35 113,1 5,55

3 24 1,00 0,40 112,1 5,70

4 32 0,80 0,42 111,4 5,62

5 40 0,70 0,40 94,70 5,74

6 48 0,60 0,35 95,80 5,78

7 56 0,50 0,30 70,10 5,37

8 64 0,55 0,40 65,70 5,40

9 72 0,40 0,32 60,40 4,99

10 80 0,40 0,36 68,60 5,13

11 88 0,40 0,40 61,00 5,22

12 96 0,38 0,33 77,70 5,11

13 104 0,30 0,30 62,60 5,50

14 112 0,40 0,32 57,00 5,90

15 120 0,30 0,35 59,90 6,00

16 128 0,40 0,38 63,40 6,26

17 136 0,40 0,32 62,00 6,22

18 144 0,38 0,40 51,70 6,30

19 152 0,40 0,35 59,80 6,37

20 160 0,30 0,30 61,70 6,42

21 168 0,28 0,35 60,30 6,22

22 176 0,27 0,40 56,80 6,38

23 184 0,26 0,38 58,90 6,15

24 192 0,28 0,39 55,20 6,19

(39)

No Beban Tegangan Arus Putaran (n)

kec angin (Watt) (Volt) (Ampere) (rpm) (m/s)

26 208 0,28 0,39 58,70 6,37

27 216 0,25 0,40 60,60 6,21

Tabel 4.2. Data perolehan dari kincir bersudu 3 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin (Watt) (Volt) (Ampere) (rpm) m/s

1 8 5,80 0,40 252,20 7,45

2 16 5,20 0,74 245,50 7,57

3 24 4,25 0,94 208,00 7,63

4 32 3,90 1,17 199,30 7,67

5 40 3,00 1,22 175,60 7,44

6 48 2,25 1,27 165,80 7,50

7 56 2,15 1,33 155,90 7,49

8 64 2,00 1,37 164,60 7,50

9 72 2,00 1,35 147,20 7,34

10 80 1,95 1,40 155,30 7,44

11 88 2,00 1,44 133,70 7,45

12 96 1,80 1,32 149,20 7,41

13 104 1,85 1,39 143,60 7,45

14 112 1,80 1,35 135,40 7,40

15 120 1,60 1,32 138,00 7,38

16 128 1,80 1,37 138,50 7,36

17 136 1,65 1,39 129,20 7,34

18 144 1,50 1,36 136,40 7,40

19 152 1,60 1,38 140,40 7,54

20 160 1,45 1,14 114,70 7,30

21 168 1,45 1,24 111,10 7,48

22 176 1,60 1,34 109,10 7,30

23 184 1,80 1,39 109,40 7,50

24 192 1,45 1,30 108,30 7,50

25 200 1,40 1,27 100,60 7,34

26 208 1,45 1,37 110,10 7,61

27 216 1,43 1,36 110,60 7,63

(40)

Tabel 4.2.1. Data perolehan dari kincir bersudu 3 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin (Watt) (Volt) (Ampere) (rpm) m/s

1 8 2,00 0,26 97,50 6,18

2 16 1,00 0,33 58,70 6,25

3 24 0,90 0,43 68,80 6,29

4 32 0,87 0,45 68,20 6,12

5 40 0,60 0,42 60,50 6,29

6 48 0,50 0,42 58,60 6,15

7 56 0,50 0,42 61,60 6,35

8 64 0,60 0,44 58,60 6,26

9 72 0,50 0,45 61,10 6,27

10 80 0,45 0,44 59,90 6,22

11 88 0,45 0,50 58,10 6,40

12 96 0,50 0,47 60,80 6,38

13 104 0,40 0,40 52,20 6,42

14 112 0,45 0,50 57,50 6,48

15 120 0,43 0,49 58,20 6,12

16 128 0,60 0,53 56,10 6,44

17 136 0,60 0,56 63,90 6,45

18 144 0,60 0,52 58,70 6,40

19 152 0,60 0,54 58,30 6,36

20 160 0,60 0,54 61,80 6,40

21 168 0,60 0,56 57,30 6,23

22 176 0,50 0,53 61,10 6,35

23 184 0,60 0,57 60,80 6,43

24 192 0,50 0,55 63,30 6,40

25 200 0,42 0,53 58,80 6,45

26 208 0,60 0,56 57,00 6,55

(41)

Tabel 4.2.2. Data perolehan dari kincir bersudu 3 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin (Watt) (Volt) (Ampere) (rpm) m/s

1 8 0,60 0,17 49,7 5,83

2 16 0,40 0,21 44,1 5,79

3 24 0,30 0,19 42,1 5,70

4 32 0,30 0,25 41,5 5,69

5 40 0,20 0,26 40,0 5,79

6 48 0,20 0,24 40,6 5,78

7 56 0,21 0,28 38,8 5,83

8 64 0,21 0,25 33,7 5,81

9 72 0,20 0,27 34,9 5,71

10 80 0,19 0,25 34,0 5,77

11 88 0,20 0,28 30,9 5,75

12 96 0,20 0,26 30,2 5,74

13 104 0,22 0,3 32,4 5,82

14 112 0,20 0,29 36,4 5,80

15 120 0,18 0,26 26,7 5,75

16 128 0,17 0,27 30,4 5,71

17 136 0,19 0,28 37,7 5,80

18 144 0,20 0,27 38,4 5,84

19 152 0,20 0,28 31,3 5,83

20 160 0,18 0,27 28,8 5,79

21 168 0,20 0,26 34,7 5,83

22 176 0,17 0,26 35,1 5,92

23 184 0,19 0,27 34,0 5,95

24 192 0,20 0,3 36,1 5,90

25 200 0,20 0,29 35,2 5,82

26 208 0,15 0,25 35,6 5,85

(42)

Tabel 4.3 Data perolehan dari kincir bersudu 6 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin

(Watt) (Volt) (Ampere) (rpm) m/s

1 8 5,90 1,08 248,3 7,50

2 16 5,20 1,36 250,2 7,78

3 24 5,00 1,60 248,1 7,84

4 32 4,40 1,68 239,1 7,80

5 40 4,20 1,87 235,8 7,68

6 48 4,00 1,92 233,5 7,61

7 56 3,80 2,09 227,9 7,70

8 64 3,60 2,10 230,9 7,71

9 72 3,40 2,18 226,7 7,75

10 80 3,40 2,20 226,5 7,66

11 88 3,40 2,22 225,9 7,44

12 96 3,40 2,29 228,4 7,77

13 104 3,30 2,31 223,8 7,56

14 112 3,20 2,29 225,3 7,69

15 120 3,20 2,30 226,3 7,59

16 128 3,10 2,22 220,4 7,49

17 136 3,20 2,32 221,9 7,83

18 144 3,20 2,38 219,2 7,63

19 152 3,20 2,35 216,8 7,82

20 160 3,20 2,33 213,5 7,67

21 168 3,00 2,35 215,1 7,66

22 176 3,00 2,30 218,2 7,58

23 184 3,10 2,38 220 7,56

24 192 2,90 2,23 218,9 7,63

(43)

Tabel 4.3.1 Data perolehan dari kincir bersudu 6 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin (Watt) (Volt) (Ampere) (rpm) m/s

1 8 4,00 1,02 209,5 6,80

2 16 3,20 1,16 191,2 6,35

3 24 3,40 1,32 187,3 6,82

4 32 3,00 1,42 180,7 6,67

5 40 3,00 1,48 180,8 6,59

6 48 2,90 1,55 182,1 6,50

7 56 2,80 1,60 181,1 6,70

8 64 2,70 1,62 179,9 6,73

9 72 2,90 1,76 179,6 6,71

10 80 2,40 1,68 178,5 6,31

11 88 2,60 1,74 175,3 6,60

12 96 2,50 1,65 177,2 6,45

13 104 2,50 1,73 174,9 6,67

14 112 2,30 1,66 164,1 6,87

15 120 2,40 1,65 163,9 6,74

16 128 2,40 1,63 160,8 6,66

17 136 2,30 1,70 161,7 6,60

18 144 2,20 1,69 158,2 6,69

19 152 2,20 1,75 160,5 6,89

20 160 2,10 1,72 165,2 6,70

21 168 2,20 1,82 164,7 6,59

22 176 2,20 1,77 171,0 6,67

23 184 2,10 1,79 165,3 6,73

24 192 2,10 1,80 163,6 6,66

25 200 2,10 1,82 174,3 6,73

26 208 2,2 1,73 168,0 6,44

(44)

Tabel 4.3.2. Data perolehan dari kincir bersudu 6 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin

(Watt) (Volt) (Ampere) (rpm) m/s

1 8 4,00 0,34 162,3 5,53

2 16 3,10 0,58 152,5 5,50

3 24 2,50 0,76 145,3 5,47

4 32 2,20 0,83 133,1 5,57

5 40 2,00 0,94 132,3 5,64

6 48 2,00 1,08 131,2 5,52

7 56 2,00 1,05 128,9 5,60

8 64 1,90 1,02 125,5 5,76

9 72 1,80 1,08 125,2 5,46

10 80 1,70 1,08 123,8 5,61

11 88 1,70 1,13 122,4 5,48

12 96 1,70 1,15 127,3 5,62

13 104 1,60 1,08 119,9 5,53

14 112 1,60 1,12 117,8 5,65

15 120 1,60 1,13 123,4 5,50

16 128 1,60 1,15 118,3 5,55

17 136 1,50 1,07 115,1 5,56

18 144 1,70 1,19 124,7 5,62

19 152 1,70 1,17 121,8 5,68

20 160 1,60 1,22 123,2 5,53

21 168 1,60 1,20 122,1 5,63

22 176 1,60 1,17 120,0 5,75

23 184 1,60 1,18 121,9 5,51

24 192 1,60 1,27 120,0 5,63

25 200 1,60 1,24 121,1 5,52

26 208 1,50 1,22 124,4 5,60

(45)

Tabel 4.4. Data perolehan dari kincir bersudu 12 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin

(Watt) (Volt) (Ampere) (rpm) m/s

1 8 6,80 0,43 268,5 7,42

2 16 6,00 0,81 259,4 7,76

3 24 5,80 1,08 254,6 7,14

4 32 5,00 1,30 248,9 7,71

5 40 4,90 1,52 247,6 7,66

6 48 4,20 1,62 238,7 7,64

7 56 4,00 1,88 246,3 7,72

8 64 4,00 1,92 243,1 7,56

9 72 3,80 2,02 239,2 7,11

10 80 3,80 2,15 242,2 7,60

11 88 3,80 2,26 239,9 7,72

12 96 3,90 2,36 234,0 7,57

13 104 3,60 2,26 233,5 7,26

14 112 3,60 2,35 239,5 7,60

15 120 3,40 2,39 238,7 7,75

16 128 3,40 2,43 239,5 7,65

17 136 3,20 2,30 237,0 7,33

18 144 3,20 2,39 233,3 7,29

19 152 3,00 2,13 227,3 7,41

20 160 3,30 2,47 230,0 7,59

21 168 3,40 2,49 225,0 7,53

22 176 3,20 2,54 228,3 7,58

23 184 3,00 2,30 224,8 7,22

24 192 3,00 2,42 221,6 7,00

25 200 3,00 2,45 221,8 7,45

26 208 3,00 2,41 223,0 7,51

(46)

Tabel 4.4.1 Data perolehan dari kincir bersudu 12 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin

(Watt) (Volt) (Ampere) (rpm) m/s

1 8 5,80 0,39 222,3 6,40

2 16 5,00 0,74 220,7 6,57

3 24 4,50 0,99 217,3 6,82

4 32 4,40 1,23 214,1 6,54

5 40 4,00 1,35 212,9 6,83

6 48 3,80 1,48 206,5 6,63

7 56 3,80 1,53 202,4 6,72

8 64 3,60 1,79 208,2 6,87

9 72 3,40 1,84 202,5 6,78

10 80 3,20 1,84 197,3 6,46

11 88 3,00 1,87 202,0 6,93

12 96 3,00 1,92 206,7 6,95

13 104 3,00 2,03 201,7 6,90

14 112 2,80 2,04 198,0 6,85

15 120 2,80 2,05 195,5 6,84

16 128 3,00 2,10 205,2 6,85

17 136 2,80 2,12 204,6 6,77

18 144 2,80 2,07 199,2 6,90

19 152 2,70 2,14 194,9 7,00

20 160 2,70 2,07 195,9 6,69

21 168 2,80 2,09 198,5 6,81

22 176 2,80 2,05 195,2 7,14

23 184 2,70 2,07 195,7 6,93

24 192 2,60 2,09 194,1 7,07

25 200 2,90 2,15 204,2 6,81

26 208 2,60 2,15 202,5 6,91

(47)

Tabel 4.4.2 Data perolehan dari kincir bersudu 12 dengan variasi kecepatan Angin berbeda-beda.

No. Beban Tegangan Arus Putaran (N)

kec angin

(Watt) (Volt) (Ampere) (rpm) m/s

1 8 5,00 0,36 187,2 6,29

2 16 4,10 0,66 181,3 6,23

3 24 3,60 0,88 175,9 5,90

4 32 3,20 1,05 174,4 6,23

5 40 3,10 1,25 184,2 6,09

6 48 2,90 1,29 170,4 6,14

7 56 2,80 1,32 167,9 6,09

8 64 2,60 1,40 163,9 6,00

9 72 2,60 1,43 166,3 6,10

10 80 2,40 1,41 153,3 6,27

11 88 2,50 1,46 169,1 6,08

12 96 2,30 1,49 165,1 6,00

13 104 2,40 1,48 163,2 6,08

14 112 2,40 1,57 163,8 5,92

15 120 2,20 1,53 163,0 6,02

16 128 2,30 1,50 157,9 6,14

17 136 2,40 1,56 165,3 6,12

18 144 2,40 1,58 163,2 5,90

19 152 2,20 1,53 162,0 5,91

20 160 2,20 1,56 168,7 5,96

21 168 2,30 1,63 166,3 5,93

22 176 2,20 1,64 166,1 6,06

23 184 2,10 1,53 159,5 5,87

24 192 2,20 1,65 163,8 6,08

25 200 2,20 1,57 158,2 6,06

26 208 2,10 1,61 160,9 6,06

27 216 2,20 1,66 157,6 6,02

4.2 Pengolahan dan Perhitungan Data

Pada Perhitungan data, dipakai data dari sudu 2 dengan kecepatan angin berbeda-beda.

(48)

r = Jari - jari sudu = 0,45 m d = diameter poros kincir = 0,025 m

alt

d = diameter generator = 0,016 m

dpulikecil = diameter puli kecil = 0,076 m

dpulibesar = diameter puli besar = 0,38 m

1. Luas penampang kincir (Per sudu)

Luas penampang sudu dapat diperoleh dari rumus luas lingkaran A = πr2

=3,14x(0,45)2 = 0,63585 m2

2. Daya keluaran (Pout) yang dihasilkan generator

Dari persamaan (1) dapat diperoleh daya keluaran (Pout) generator

Pout = VxI (watt)

dengan keterangan :

Pout = daya output (watt)

V = tegangan ( volt ) I = arus ( ampere )

Contoh data perhitungan diambil dari salah satu jumlah sudu 2 : V =3,8 Volt

I =0,24 Ampere

Pout = 3,8 Volt x 0,24 Ampere

=0,91 watt

(49)

I =0,40 Ampere

Pout = 5,8 Volt x 0,40 Ampere

=2,32 watt

Contoh data perhitungan diambil dari salah satu jumlah sudu 6 : V =5,9 Volt

I =1,08 Ampere

Pout = 5,9 Volt x 1,08 Ampere

=6,37 watt

Contoh data perhitungan diambil dari salah satu jumlah sudu 12 : V =6,8 Volt

I =0,43 Ampere

Pout = 3,8 Volt x 0,24 Ampere

=2,92 watt

3. Daya yang tersedia Pin pada angin

Dari persamaan (2) dapat diperoleh daya yang tersedia (Pin) pada

angin

P

in

=

0

,

6

A

v

3

dengan keterangan :

Pin = daya angin, (watt)

A = luas penampang kincir, (m2) V3 = kecepatan angin, (m/s)

(50)

dengan sudu 2:

Pin = 0,6 x 0,63585 x 5,833

= 75,59 Watt dengan sudu 3:

Pin = 0,6 x 0,63585 x 7,453

= 157,75 Watt dengan sudu 6:

Pin = 0,6 x 0,63585 x 7,53

= 160,95 Watt dengan sudu 12:

Pin = 0,6 x 0,63585 x 7,423

= 155,85 Watt 4. Menghitung kecepatan bagian ujung sudu

Dari persamaan (4) dapat diperoleh kecepatan ujung sudu

= 2. . . 60

dengan keterangan sebagai berikut : u = Kecepatan ujung sudu, (m/s) n= Putaran sudu, (rpm)

r0= jari-jari terluar sudu (m)

Perhitungan kecepatan ujung sudu diambil dari data sudu 2 :

= 2 3,14 190,1 0,45 60

= 8,95 m/s

(51)

= 2 3,14 252,2 0,45 60

= 11,88 m/s

Perhitungan kecepatan ujung sudu diambil dari data sudu 6 :

= 2 3,14 248,3 0,45 60

= 11,69 m/s

Perhitungan kecepatan ujung sudu diambil dari data sudu 12 :

= 2 3,14 268,5 0,45 60

= 12,65 m/s

5. Menghitung TSR (tip speed ratio) dan CP

Dari persamaan (5) dan (8) dapat diperoleh TSR dan CP

=

=

dengan keterangan :

TSR = Tip speed ratio

CP = Koefisien Daya

u = Kecepatan ujung sudu (m/s)

V = kecepatan Angin (m/s)

Perhitungan TSR dan CP dengan data sudu 2 sebagai berikut :

(52)

= 1,54

= 0,91 75,59

=0.012

Perhitungan TSR dan CP dengan data sudu 3 sebagai berikut :

= 11,88 7,45

= 1,59

= 2,32 157,75

=0.014

Perhitungan TSR dan CP dengan data sudu 6 sebagai berikut :

= 11,69 7.5

= 1,56

= 6,37 160,95

=0.039

Perhitungan TSR dan CP dengan data sudu 12 sebagai berikut :

= 12,65 7.42

(53)

= 2,92 155,85

=0.018

Dari perhitungan diatas, data yang lain digunakan cara yang sama. Hasil lengkapnya dapat dilihat pada Tabel (4.5) sampai dengan Tabel (4.8)

Tabel 4.5 Data Perhitungan, Kecepatan angin, Pout, Pin, kecepatan ujung

sudu, TSR, dan CP dengan variasi jumlah sudu 2 Kecepatan

angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

5,70 0,400 70,65 5,28 0,93 0,006

5,62 0,336 67,72 5,25 0,93 0,005

5,74 0,280 72,15 4,46 0,78 0,005

5,78 0,210 73,67 4,51 0,78 0,003

5,37 0,150 59,08 3,30 0,61 0,003

5,40 0,220 60,07 3,09 0,57 0,004

4,99 0,128 47,40 2,84 0,57 0,002

5,13 0,144 51,51 3,23 0,63 0,003

5,22 0,160 54,26 2,87 0,55 0,002

5,11 0,125 50,91 3,66 0,72 0,002

5,90 0,128 78,35 2,68 0,46 0,001

6,00 0,105 82,41 2,82 0,47 0,001

6,22 0,128 91,81 2,92 0,47 0,001

6,30 0,152 95,40 2,44 0,39 0,002

6,37 0,140 98,61 2,82 0,44 0,001

6,22 0,098 91,81 2,84 0,46 0,001

6,38 0,108 99,08 2,68 0,42 0,001

6,27 0,120 94,04 2,78 0,44 0,001

6,37 0,109 98,61 2,76 0,43 0,001

(54)

Tabel 4.6 Data Perhitungan kecepatan angin, Pout, Pin, kecepatan ujung sudu

, TSR, dan CP dengan variasi jumlah sudu 3 kec

angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

7,45 2,32 157,75 11,88 1,59 0,01 7,57 3,85 165,50 11,56 1,53 0,02 7,63 4,00 169,46 9,80 1,28 0,02 7,67 4,56 172,14 9,39 1,22 0,03 7,44 3,66 157,12 8,27 1,11 0,02

7,5 2,86 160,95 7,81 1,04 0,02

7,49 2,86 160,31 7,34 0,98 0,02

7,5 2,74 160,95 7,75 1,03 0,02

7,34 2,70 150,87 6,93 0,94 0,02 7,44 2,73 157,12 7,31 0,98 0,02 7,45 2,88 157,75 6,30 0,85 0,02 7,41 2,38 155,22 7,03 0,95 0,02 7,45 2,57 157,75 6,76 0,91 0,02

7,4 2,43 154,60 6,38 0,86 0,02

7,38 2,11 153,35 6,50 0,88 0,01 7,36 2,47 152,10 6,52 0,89 0,02 7,34 2,29 150,87 6,09 0,83 0,02

7,4 2,04 154,60 6,42 0,87 0,01

7,54 2,21 163,54 6,61 0,88 0,01

7,3 1,65 148,41 5,40 0,74 0,01

7,48 1,80 159,67 5,23 0,70 0,01

7,3 2,14 148,41 5,14 0,70 0,01

7,5 2,50 160,95 5,15 0,69 0,02

7,5 1,89 160,95 5,10 0,68 0,01

7,34 1,78 150,87 4,74 0,65 0,01 7,61 1,99 168,14 5,19 0,68 0,01 7,63 1,94 169,46 5,21 0,68 0,01

7,6 1,78 167,47 5,77 0,76 0,01

(55)

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

6,35 0,21 97,68 2,90 0,46 0,002 6,26 0,26 93,59 2,76 0,44 0,003 6,27 0,23 94,04 2,88 0,46 0,002 6,22 0,20 91,81 2,82 0,45 0,002 6,40 0,23 100,01 2,74 0,43 0,002 6,38 0,24 99,08 2,86 0,45 0,002 6,42 0,16 100,95 2,46 0,38 0,002 6,48 0,23 103,81 2,71 0,42 0,002 6,12 0,21 87,45 2,74 0,45 0,002 6,44 0,32 101,90 2,64 0,41 0,003 6,45 0,34 102,37 3,01 0,47 0,003 6,40 0,31 100,01 2,76 0,43 0,003 6,36 0,32 98,15 2,75 0,43 0,003 6,40 0,32 100,01 2,91 0,45 0,003 6,23 0,34 92,25 2,70 0,43 0,004 6,35 0,27 97,68 2,88 0,45 0,003 6,43 0,34 101,42 2,86 0,45 0,003 6,40 0,28 100,01 2,98 0,47 0,003 6,45 0,22 102,37 2,77 0,43 0,002 6,55 0,34 107,21 2,68 0,41 0,003 6,65 0,28 112,19 2,87 0,43 0,002 5,83 0,10 75,60 2,34 0,40 0,001 5,79 0,08 74,05 2,08 0,36 0,001 5,70 0,06 70,65 1,98 0,35 0,001 5,69 0,08 70,28 1,95 0,34 0,001 5,79 0,05 74,05 1,88 0,33 0,001 5,78 0,05 73,67 1,91 0,33 0,001 5,83 0,06 75,60 1,83 0,31 0,001 5,81 0,05 74,82 1,59 0,27 0,001 5,71 0,05 71,03 1,64 0,29 0,001 5,77 0,05 73,29 1,60 0,28 0,001 5,75 0,06 72,53 1,46 0,25 0,001 5,74 0,05 72,15 1,42 0,25 0,001 5,82 0,07 75,21 1,53 0,26 0,001 5,80 0,06 74,44 1,71 0,30 0,001

Lanjutan Tabel 4.6 Data Perhitungan kecepatan angin, Pout, Pin, kecepatan

(56)

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

5,75 0,05 72,53 1,26 0,22 0,001 5,71 0,05 71,03 1,43 0,25 0,001 5,80 0,05 74,44 1,78 0,31 0,001 5,84 0,05 75,99 1,81 0,31 0,001 5,83 0,06 75,60 1,47 0,25 0,001 5,79 0,05 74,05 1,36 0,23 0,001 5,83 0,05 75,60 1,63 0,28 0,001 5,92 0,04 79,15 1,65 0,28 0,001

Daya output tertinggi didapat = Pout= 4,56 Watt

Tabel 4.7 Data Perhitungan kecepatan angin, Pout, Pin, kecepatan ujung sudu, TSR, dan CP kincir dengan variasi jumlah sudu 6 kec

angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

7,50 6,37 160,95 11,69 1,56 0,04 7,78 7,07 179,66 11,78 1,51 0,04 7,84 8,00 183,85 11,69 1,49 0,04 7,80 7,39 181,05 11,26 1,44 0,04 7,68 7,85 172,82 11,11 1,45 0,05 7,61 7,68 168,14 11,00 1,45 0,05 7,70 7,94 174,17 10,73 1,39 0,05 7,71 7,56 174,85 10,88 1,41 0,04 7,75 7,41 177,59 10,68 1,38 0,04 7,66 7,48 171,47 10,67 1,39 0,04 7,44 7,55 157,12 10,64 1,43 0,05 7,77 7,79 178,97 10,76 1,38 0,04 7,56 7,62 164,84 10,54 1,39 0,05 7,69 7,33 173,49 10,61 1,38 0,04 7,59 7,36 166,81 10,66 1,40 0,04 7,49 6,88 160,31 10,38 1,39 0,04 7,83 7,42 183,14 1045 1,33 0,04 7,63 7,62 169,46 10,32 1,35 0,04 7,82 7,52 182,44 10,21 1,31 0,04 7,67 7,46 172,14 10,06 1,31 0,04

Lanjutan Tabel 4.6 Data Perhitungan kecepatan angin, Pout, Pin, kecepatan

(57)

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

7,66 7,05 171,47 10,13 1,32 0,04 7,58 6,90 166,16 10,28 1,36 0,04 7,56 7,38 164,84 10,36 1,37 0,04 7,63 6,47 169,46 10,31 1,35 0,04 7,71 6,64 174,85 10,22 1,33 0,04 6,80 4,08 119,96 9,87 1,45 0,03 6,35 3,71 97,68 9,01 1,42 0,04 6,82 4,49 121,02 8,82 1,29 0,04 6,67 4,26 113,21 8,51 1,28 0,04 6,59 4,44 109,18 8,52 1,29 0,04 6,50 4,50 104,77 8,58 1,32 0,04 6,70 4,48 114,74 8,53 1,27 0,04 6,73 4,37 116,29 8,47 1,26 0,04 6,71 5,10 115,26 8,46 1,26 0,04 6,31 4,03 95,85 8,41 1,33 0,04 6,60 4,52 109,68 8,26 1,25 0,04 6,45 4,13 102,37 8,35 1,29 0,04 6,67 4,33 113,21 8,24 1,24 0,04 6,87 3,82 123,70 7,73 1,13 0,03 6,74 3,96 116,81 7,72 1,15 0,03 6,66 3,91 112,70 7,57 1,14 0,03 6,60 3,91 109,68 7,62 1,15 0,04 6,69 3,72 114,23 7,45 1,11 0,03 6,89 3,85 124,79 7,56 1,10 0,03 6,70 3,61 114,74 7,78 1,16 0,03 6,59 4,00 109,18 7,76 1,18 0,04 6,67 3,89 113,21 8,05 1,21 0,03 6,73 3,76 116,29 7,79 1,16 0,03 6,66 3,78 112,70 7,71 1,16 0,03 6,73 3,82 116,29 8,21 1,22 0,03 6,44 3,81 101,90 7,91 1,23 0,04 6,70 3,65 114,74 7,84 1,17 0,03 5,47 1,90 64,52 6,84 1,25 0,02 5,57 1,83 63,47 6,27 1,13 0,03 5,64 1,88 62,44 6,23 1,10 0,03

(58)

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

5,52 2,16 65,93 6,18 1,12 0,03 5,60 2,10 68,45 6,07 1,08 0,03 5,76 1,94 64,17 5,91 1,03 0,03 5,46 1,94 67,00 5,90 1,08 0,03 5,61 1,84 72,91 5,83 1,04 0,03 5,48 1,92 62,10 5,77 1,05 0,03 5,62 1,96 67,36 6,00 1,07 0,03 5,53 1,73 62,78 5,65 1,02 0,03 5,65 1,79 67,72 5,55 0,98 0,03 5,50 1,81 64,52 5,81 1,06 0,03 5,55 1,84 68,81 5,57 1,00 0,03 5,62 2,02 63,47 5,87 1,05 0,03 5,68 1,99 65,22 5,74 1,01 0,03 5,53 1,95 65,57 5,80 1,05 0,02 5,63 1,92 67,72 5,75 1,02 0,03

5,75 1,87 69,91 5,65 0,98 0,03

5,51 1,89 64,52 5,74 1,04 0,03 5,63 2,03 68,08 5,65 1,00 0,03 5,52 1,98 72,53 5,70 1,03 0,03 5,60 1,83 63,82 5,86 1,05 0,03 5,45 2,02 68,08 5,79 1,06 0,03

Daya output tertinggi didapat = Pout = 8.0 Watt

Tabel 4.8 Data Perhitungan kecepatan ujung sudu,Pout, Pin, TSR, dan CP kincir dengan variasi jumlah sudu 12

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

7,14 6,26 155,85 11,99 1,68 0,02 7,71 6,50 178,28 11,72 1,52 0,03 7,66 7,45 138,87 11,66 1,52 0,05 7,64 6,80 174,85 11,24 1,47 0,04 7,72 7,52 171,47 11,60 1,50 0,04 7,56 7,68 170,13 11,45 1,51 0,04 7,11 7,68 175,53 11,27 1,58 0,04

(59)

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

7,60 8,17 164,84 11,41 1,50 0,05 7,72 8,59 137,12 11,30 1,46 0,06 7,57 9,20 167,47 11,02 1,46 0,05 7,26 8,14 175,53 11,00 1,51 0,05 7,60 8,46 165,50 11,28 1,48 0,06 7,75 8,13 145,99 11,24 1,45 0,06 7,65 8,26 167,47 11,28 1,47 0,05 7,33 7,36 177,59 11,16 1,52 0,05 7,29 7,65 170,80 10,99 1,51 0,05 7,41 6,39 150,25 10,71 1,44 0,05 7,59 8,15 147,80 10,83 1,43 0,05 7,53 8,47 155,22 10,60 1,41 0,04 7,58 8,13 166,81 10,75 1,42 0,05 7,22 6,90 162,89 10,59 1,47 0,05 7,00 7,26 166,16 10,44 1,49 0,05 7,45 7,35 143,59 10,45 1,40 0,05 7,51 7,23 130,86 10,50 1,40 0,06 7,56 7,87 157,75 10,32 1,37 0,05 6,82 4,46 161,59 10,23 1,50 0,04 6,54 5,41 164,84 10,08 1,54 0,05 6,83 5,40 100,01 10,03 1,47 0,02 6,63 5,62 108,19 9,73 1,47 0,03 6,72 5,81 121,02 9,53 1,42 0,04 6,87 6,44 106,72 9,81 1,43 0,05 6,78 6,26 121,55 9,54 1,41 0,04 6,46 5,89 111,19 9,29 1,44 0,05 6,93 5,61 115,77 9,51 1,37 0,05 6,95 5,76 123,70 9,74 1,40 0,05 6,90 6,09 118,90 9,50 1,38 0,05 6,85 5,71 102,85 9,33 1,36 0,06 6,84 5,74 126,97 9,21 1,35 0,04 6,85 6,30 128,07 9,66 1,41 0,04 6,77 5,94 125,33 9,64 1,42 0,05 6,90 5,80 122,62 9,38 1,36 0,05 7,00 5,78 122,09 9,18 1,31 0,05

(60)

kec angin

Pout Pin Kecepatan ujung

sudu

TSR CP

(m/s) (Watt) (Watt) (m/s)

6,69 5,59 122,62 9,23 1,38 0,05 6,81 5,85 118,38 9,35 1,37 0,05 7,14 5,74 125,33 9,19 1,29 0,05 6,93 5,59 130,86 9,22 1,33 0,04 7,07 5,43 114,23 9,14 1,29 0,05 6,81 6,24 120,49 9,62 1,41 0,05 6,91 5,59 138,87 9,54 1,38 0,04 6,83 5,72 126,97 9,34 1,37 0,04 5,90 3,17 134,82 8,28 1,40 0,04 6,09 3,88 120,49 8,68 1,42 0,05 6,14 3,74 125,88 8,03 1,31 0,04 6,09 3,70 121,55 7,91 1,30 0,05 6,00 3,64 94,94 7,72 1,29 0,02 6,10 3,72 92,25 7,83 1,28 0,03 6,27 3,38 78,35 7,22 1,15 0,04 6,08 3,65 92,25 7,96 1,31 0,04 6,00 3,43 86,17 7,78 1,30 0,04 6,08 3,55 88,31 7,69 1,26 0,04 5,92 3,77 86,17 7,71 1,30 0,04 6,02 3,37 82,41 7,68 1,28 0,04 6,14 3,45 86,60 7,44 1,21 0,04 6,12 3,74 94,04 7,79 1,27 0,04 5,90 3,79 85,75 7,69 1,30 0,04 5,91 3,37 82,41 7,63 1,29 0,04 5,96 3,43 85,75 7,95 1,33 0,04 5,93 3,75 79,15 7,83 1,32 0,05 6,06 3,61 83,23 7,82 1,29 0,04 5,87 3,21 88,31 7,51 1,28 0,04 6,08 3,63 87,45 7,71 1,27 0,04 6,06 3,45 78,35 7,45 1,23 0,05 6,06 3,38 78,75 7,58 1,25 0,04 6,02 3,65 80,77 7,42 1,23 0,04

Daya output tertinggi didapat = Pout = 9,20 Watt

(61)

4.3. Grafik Hasil Perhitungan.

Dari data hasil penelitian dan perhitungan yang telah didapatkan di atas, maka didapatkan perbedaan. Perbedaan tersebut disebabkan oleh beberapa faktor yang terjadi selama penelitian. Untuk mengetahui data-data dan hasil perhitungan maka dapat dibuat grafik-grafik untuk memudahkan analisa kerja turbin.

Grafik 4.1. Grafik hubungan kec angin dengan daya output pada variasi jumlah sudu 2

Pada gambar 4.1. didapatkan daya output tertinggi 0,4 watt pada Kecepatan angin 5,7 m/s, ini menunjukan bahwa semakin besar kecepatan angin dan luas penampang kincir, maka daya output yang dihasilkan akan semakin besar. Didapatkan dengan persamaan y=-0,299x2+3,390x-9,369 pada R2=0,445

y = -0.299x2+ 3.390x - 9.369

R² = 0.445

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500

5 5.3 5.6 5.9 6.2 6.5

P

o

u

t

(W

a

tt

)

(62)

Grafik 4.2. Grafik hubungan kec angin dengan daya output pada variasi jumlah sudu 3

Pada gambar 4.2. didapatkan daya output tertinggi 2,88 watt pada kec angin 7,45 m/s ini menunjukan bahwa semakin besar kecepatan kec angin dan luas penampang kincir, maka daya output yang dihasilkan akan semakin besar. Didapatkan dengan persamaan y=0,721x2-8,223x+23,45 pada R2=0,926

Grafik 4.3. Grafik hubungan kec angin dengan daya output pada variasi jumlah sudu 6

y = 0.721x2- 8.223x + 23.45

R² = 0.926 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

5 5.3 5.6 5.9 6.2 6.5 6.8 7.1 7.4 7.7 8

P o u t (W a tt )

Kec angin (m/ s)

Kec Angin vs P

out

y = 0.543x2- 4.629x + 10.86

R² = 0.966 0.00 2.00 4.00 6.00 8.00 10.00

5.00 5.30 5.60 5.90 6.20 6.50 6.80 7.10 7.40 7.70 8.00

P o u t (W a tt )

(63)

Pada gambar 4.3 didapatkan daya output tertinggi 8,0 watt pada kecepatan angin 7,84 m/s, ini menunjukan bahwa semakin besar kecepatan angin dan luas penampang kincir, maka daya output yang dihasilkan akan semakin besar. Didapatkan dengan persamaan y=0,543x2-4,629x+10,86 pada R2=0,966

Grafik 4.4. Grafik hubungan kec angin dengan daya output pada variasi jumlah sudu 12

Pada gambar 4.4. didapatkan daya output tertinggi 8,59 watt pada kecepatan angin 7,60. ini menunjukan bahwa semakin besar kecepatan angin dan luas penampang sudu, maka daya output yang dihasilkan akan semakin besar. Didapatkan dengan persamaan y= -0,123x2+4,476x-18,94 pada R2=0,918

y = -0.123x2+ 4.476x - 18.94

R² = 0.918

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

5.00 5.30 5.60 5.90 6.20 6.50 6.80 7.10 7.40 7.70 8.00

P

o

u

t

(W

a

tt

)

(64)

Gambar 4.5. Grafik hubungan daya output dengan putaran sudu pada variasi jumlah suduc 2,3,6, dan sudu 12.

Pada gambar 4.5 Untuk masing-masing variasi jumlah sudu didapatkan daya output tertinggi 8.59 watt pada variasi kincir dengan jumlah sudu 12, ini menunjukan semakin besar kecepatan angin dan luas penampang kincir, maka daya output yang dihasilkan akan semakin besar . Agar memudahkan pembacaan CP dan TSR dari

Gambar

Tabel 1.1 Data angin yang telah dihimpun oleh Pusat Meteorologi dan Geofisika tentang daerah yamg mempunyai kecepatan angin rata-rata 3.5 m/s atau lebih
Gambar 2.1. Grafik Prestasi Untuk Beberapa Jenis Turbin Angin
Tabel 2.1. Unjuk kerja macam-macam kincir angin
Tabel 2.3 : Spesifikasi bahan poros
+7

Referensi

Dokumen terkait

Dalam penelitian ini akan dibangun sebuah media bantu pengambilan keputusan menggunakan metode Plus Minus Interesting.. Media bantu yang dibangun merupakan aplikasi

Rapat yang dipimpin oleh Kasubdit Informasi dan Sosialisasi Tata Ruang dan Pertanahan Bappenas, diselenggarakan di Ruang Rapat Bappeda Provinsi Gorontalo pada tanggal 4 Juni

Di dalam memajukan perekonomian negara, perbankan mempunyai peranan yang sangat penting. Hal ini karena bank mempunyai fungsi utama untuk menghimpun dana dari masyarakat

Berdasarkan uraian latar belakang di atas, maka peneliti tertarik untuk melakukan sebuah studi penelitian dengan menggunakan analisis semiologi untuk mengetahui

Tabulasi Pengaruh Pemberian Labu Siam Terhadap Perubahan Tekanan Darah Ibu Hamil Hipertensi di Wilayah Kerja Puskesmas Wonorejo Kecamatan Ngadiluwih kabupaten Kediri

Dari hasil penelitian menunjukkan, bahwa variabel jumlah tenaga kerja berpengaruh positif dan signifikan terhadap penerimaan retribusi di Provinsi Daerah

Kesimpulan : Ekstrak biji pala ( Myristica fragnans houtt) dengan dosis 1, 3 dan 5 mg/kgBb mencit tidak memberikan pengaruh yang signifikan terhadap waktu induksi tidur

Penelitian ini bertujuan untuk memperoleh deskripsi pelaksanaan mata kuliah konsep dasar IPA dengan metode eksperimen dan dampaknya terhadap aktivitas dan hasil