• Tidak ada hasil yang ditemukan

I= 10exp {-(IlJr). Lx)}

N/A
N/A
Protected

Academic year: 2021

Membagikan "I= 10exp {-(IlJr). Lx)}"

Copied!
6
0
0

Teks penuh

(1)

Prosiding Seminar Teknologi dan Keselamalnn PLTN serln Fasililas Nuklir

Serpong, 9-10 Februarl1993 PRSG. PPTKR - BATAN

ANALISIS PEMBANGKITAN BAHANG GAMMA

(GAMMA HEATING) TERAS RSG GAS

Oleh

Setlyanto, Hudihastowo

Pusat Reaktor Serba Guna - Badan Tenaga Atom Nasional Susyadi

Mahasiswa Teknik Nuklir Fakultas Teknik, Universitas Gadjah Mada

ABSTRACT

ANALISIS PEMBANGKITANBAHANGGAMMA (GAMMAHEA TING) TERAS RSG-GAS. Telah dilakukan perhitungan dan analisis pembangkitan bahang gamma (gamma heating) teras RSG-GAS. Perhitungan dilakukan dengan peket program GAMSET yang telah disesuaikan dengan kondisi dan karateristik teras RSG-GAS. Diperoleh hasil bahwa bahang gamma maksimum sebesar 6.25

Wig

dalam grafit, terjadi pad posisi CIP-2. Dari hasil tersebut serta analisis yang dibuat, dapat disimpulkan bahwa: (1) Besarnya bahang gamma RSG-GAS tersebut dapat diterima (layak). dan (2) Bahwa salah satu keuntungan bagi reaktor riset seperti RSG-GAS yang menggunakan elemen bakar pengkayaan rendah, adalah pembangkitan bahang gammanya lebih rendah bila dibandingkan dengan reaktor sepadan yang menggunakan eleme~ bakar pengayaan tinggi.

ABSTRACT

ANALYSIS OF THE GAMMA HEA TING GENERATION IN THE RSG-GAS CORE. The analysis of the gamma heating in the RSG-GAS reactor core has been done using the modified GAMSET computer code. The maximum value of gamma heating is 6.52

Wig

for graphite, obtained in the CIP-2 position. From the calculation result and analysis, it can be concluded that: (1) the result is reasonable, and (2) The gamma heating in the LEU core is smaller than that in the REU core.

PENDAHULUAN

Reaktor Serba Guna G.A Siwabessy (RSG-GAS) yang telah beroperasi selama kurang lebih 5 tahun telah mencapai daya kerja 30 MW. Reaktortersebuttermasuk jenis reaktor riset generasi baru yang menggunakan

elemen bakar U)OgAI dengan pengayaan rendah (20%) dan reflektor blok berilium pada dua buah sisinya, serta memiliki bentuk teras dengan "Central Irradiation tion" (CIP) pada pusatnya, beberapa "Irradiation Posi-tion" (IP) baik di teras maupun di reflektornya. Dengan kondisi teras seperti ini, RSG-GAS memiliki parameter fisika (spektrum neutron, dimensi kritis, bahang gamma, dan lain-lain) yang berbeda bila dibandingkan dengan reaktor lain yang beroperasi pada daya yang sepadan.

Sesuai dengan fungsinya, dimana RSG-GAS merupakan reaktor riset dan reaktor uji material, besaran bahang gamma (gamma heating) merupakan parameter yang harus diketahui, karena sangat diperlukan sebagai masukan dalam pembuatan analisis keselamatan bagi fasilitas eksperimen yang akan ditempatkan di dalam teras reaktor.

Dalam makalah ini disampaikan analisisl perhitungan distribusi bahang gamma di berbagai posisi iradiasi di dalam teras reaktor RSG-GAS. Perhitungan dilakukan dengan menggunakan paket program GAMSET, sedangkan scbagai teras acuan digunakan

te-ras RSG-GAS dalam kondisi TWC (Typical Working Core). Paket program GAMSET, pertama kali dipersiapkan untuk menghitung bahang gamma pada teras reaktor SILOE di Perancis (daya 35 MW), dengan hasil yang memuaskan (I),dan saat ini program tersebut telah berhasil diadaptasikan untuk RSG-GAS.

Berdasarkan persetujuan international, dimana satuan standar bahang gamma adalah watt/gram di dalam grafit, dan sekaligus untuk menunjang rencana pengukuran bahang gamma dengan kalorimeter grafit, maka perhitungan inijuga dilakukan untuk menghitung pemanasan dalam bahan grafit.

TEORI DASAR

Apabila berkas radiasi gamma dengan intensitas 10

gamma/s melewati medium setebal x em, maka intensitasnya akan berkurang menjadi I, di mana:

I

=

10

exp

{-(IlJr).

Lx)}

sedangkan intensitas yang terserap la adalah :

la

=

10

[1 -

exp

{-(Ill r). r

.x}] dengan

III

r

=

adalah koefisien serapan massa dari bahan/me dium, dan

r

=

adalah massa jenis bahan.

(2)

Prosiding Seminar Teknofogi dan Kesefama~1I PLTN ser~ Fasililas Nuklir

Penurunan intensitas tersebut juga disertai dengan kehilangan sebagian energi yang di transfonnasikan menjadi bahang di dalam medium, dan besar bahang tersebut adalah :

cI> =k . la . E

dimana :

k

=

1.610-13 J/Mev. E = Energi gamma (MeV).

Ketiga persamaan diatas adalah persamaan dasar yang hanya berlaku pada keadaan khusus dengan energi gamma tunggal, namun apabila spektrum energi gammanya diperhitungkan, di mana hal tersebut sangat mempengaruhi harga koefisien serapan III

r,

maka untuk berbagai lapisan medium, persamaan (3) menjadi :

cI> =kJ:.Ia(i).E(i)

dengan .

la(i) =lo(i) [1 - exp{

-~(Ill

n(Ij)'

r

G) .xU)}] dimana,

i = adalah kelompok energi gamma. j = jenis bahan yang dilewati.

Kedua persamaan terakhir diatas adalah persamaan dasar yang digunakan pada program GAMSET dalam menghitung besamya bahang gamma dalam sua~u target. Disamping itu GAMSET membagi energi dalam tiga kelompok (i=3), masing-masing 0.1; 0.5 dan 1.5 MeV, dan mampu menghitung bahang dalam 99 jenis

\ \ \.

\

Serpollg. 9-10 Februari 1993 PRSG. PPTKR -BATAN

bahan

(j

= 99) yang tersusun dalam geometri silinder sepusat dengan jumlah lapisan sebanyak 30 lapis. GAMSET juga menghitung besamya koreksi bahang yang diakibatkan oleh neutron cepat dan radiasi dari tangkapan radiatif dalam target dan dalam struktur penunjangnya.

Dalam perhitungannya GAMSET mengasumsikan bahwa sumbergamma berasal dari masing-masing elemen bakar intensitas awal 10(1) proporsional terhadap kontribusi daya yang diberikanoleh clemen bakartersebut (Iihat tabel : I). Selanjutnya intensitas gamma tersebut dianggap terkonsentrasi pada pusat clemen bakar sehingga merupakan sumber garis setinggi elemen bakar itu sendiri. (lihat gambar: I).

DATA DAN PERHITUNGAN.

Kondisi teras Reaktor

Perhitungan bahang gamma dilakukan untuk daya 30 MW pada posisi iradiasi

erp

(4 posisi) dan

rp

(4 posisi), dimana pada posis tersebut diperkirakan mempunyai bahang gamma yang tinggi dan paling efektif digunakan sebagai tempat eksperimen. Berikut adalah susunan elemen bakar dalam teras dan distribusi daya yang diberikan oleh setiap elemen bakar :

I

I I

/\

a. Modelisasi sumber gamma dari elemen bakar.

Sumber' gamma

gar·is.

Target

Sumber

ganuna

titik

b. Model geometri target dan perambatan gamma Gambar 1.

Model sumber-target dalam GAMSET

(3)

HASIL PERHITUNGAN DAN PEMBAHASAN

Prosiding Seminar Teknologi dan Keselama/an PLTN

ser/a Fasililas Ntiklir

Tabel: 1.

Susunan perbandingan kontribusi daya tiap-tiap elemen bakar teras RSG-GAS pada daya 30 MW kondisi TWC dalam satuan MW. 5 Aluminium 6 Air Serpong, 9-10 Februari 1993 PRSG. PPTKR - BATAN 1.27 - 1.60 1.60 - 2.26 0.610.5440.550.500.40.6 8 0.469 0.713 11'1 0.5 88 0.6940.46 0.694 0.688 0.7440.738 0.700 kJ.7880.713 0.513 0.6130.700 Icll'0.7812 11'2 0.600 0.600 11'3 0.70630.6810.6560.7194 0.669 0.6810.650 0.6811 0.6810.7()(0.65( 0.713 0.45( 0.6690.57~0.469P.71911'4 0.619 0.463 0.5000.5810.6190.469 Hasil Pcrhitungan

Dengan data seperti tersebut diatas, diperoleh nilai bahang gamma, bahang dari neutron cepat, interaksi radiatif dan bahang grafit dan stmktur pendukungnya sebagai berikut :

Tabel 2.

Hasil Perhitungan bahang dari gamma teras, neutron termal, neutron cepat dan bahang total yang terjadi pada seluruh bahan kalorimeter dan struktur.

Dengan komposisi elemen bakar U30gAI dengan pengayaan 20% U-235 besarnya intensitas gamma untuk setiap kelompok energi diperoleh :

- Kclompok - Energi (MeV) - Spektmm - Intensitas (10) (oox 1017 gamma/MW S) 1 0.1 6 10.04 2 0.5 3.7 6.19

3

1.5 1 1.67 a. Posisi : IP-I

Besar bahang (WIg)

Jenis Bahan gamma lera: n. tennal n. cepat total 1. Grafit 5.23 0.28 u.42.5.93 2. SS-304 8.19 0.360.028.57 3. Air 5.85 0.22 5.6311.70 4. Aluminium 5.38 0.33 0.085.79

Fluks neutron pada ke delapan posisi adalahsebagai berikut :

Posisi Fluks neutron(00 x 1014n/cm2 s) termal cepa t CIP-I 2.31360.5793 CIP-2 2.35810.5984 CIP-3 2.26870.5592 CIP-4 2.32870.5814 IP-I 2.32870.6470 IP-2 2.08560.7612 IP-3 1.85890.6699 IP-4 1.86340.6650

Dimensi Target.

Untuk mcndukung rencana penentuan distribusi bahang gamma dengan pengukuran langsung, maka dalam perhitungan ini diambil sebagai targetnya adalah sebuah kalorimeter dengan bahan sensor dari grafit. Disamping itu di luar kalorimeter juga terdapat tabung pengarah serta bahan-bahan stmktur lainnya yang berfungsi sebagai penyangga kalorimeter. Dimensi keseluruhan bahan-bahan tersebut adalah :

b. Posisi : CIP-2

Besar bahang (WIg)

enis Bahan gamma lera:

D.lennal D.cepat total 1. Grafit 5.79 0.340.396.52 2. SS-304 8.91 0.440.029.39 3. Air 5.48 0.275.2011.93 4. Aluminium 5.95 0.41 0.076.43 Tabel3.

Besamya gamma (total) di dalam grafit sebagai fungsi posisi (CIP dan IP)

No. BahangtotalPosisi (WIg)

1. CIP-I 5.84 2. CIP-2 6.52 3. CIP-3 5.73 4. CIP-4 5.83 5. IP-I 5.93 6. IP-2 6.20 7. IP-3 5.84 8. IP-4 5.83

No. Jenis bahan 1 Grafit 2 Gas Helium 3 SS-304 4 Air Radius ( Cm ) 0.0 - 0.25 0.25 - 0.40 0.40-0.45 0.45 - 1.27 Pcmbahasan

Dari tabel diatas terlihat bahwa bahang gamma teras RSG-G AS maksimum dalam grafit sebesar 6.52

WI

g, yaitu pada posisi CIP-2. Harga tersebutjauh lebih kecil dari harga estimasi yang diberikan oleh disainer

(4)

Prosiding Seminar Teknologi dan KeselamalDlI PLTN serlD Fasililas Nuklir

reaktor (Interatom), yaitu diperkirakan sekitar 12

Wig.

Namun bila dibandingkan dengan bahang gamma pada reaktor sepadan, misalnya reaktor SILOE di Perancis yang memiliki harga bahang total 9.25

Wig,

(yang dihitung dengan program yang sarna dan telah diverifikasi dengan pengukuran langsung) (I),maka hasil perhitungan untuk RSG-GAS tersebut tidakjauh berrbeda. Adapun selisih yang timbul dapat berasal dari perbedaan karakteristik reaktor yang dapat diterangkan sebagai berikut :

RSG-GAS SILOE

Serpong. 9-10 Februari 1993 PRSG. PPTKR -BATAN

menggunakan elemen bakar pengkayaan rendah, membutuhkan jumlah elemen bakar yang lebih banyak. Hal ini berarti volume teras menjadi lebih besar, sehing-ga kerapatan radiasi sehing-gammanya menunm, demikianjusehing-ga pemanasan gammanya juga berkurang seperti hasil perhitungan yang ditunjukkan diatas.

Hasil tersebut merupakan informasi penting dan keuntungan bagi RSG-GAS dan reaktor sejenis yang menggunakan elemen bakarpengkayaan rendah, dimana bahang gammanya menurun, sehingga efek pemanasannya terhadap fasilitas iradiasijuga berkurang.

Dari perbedaan daya bahang gamma di RSG-GAS hanya 85 % dari bahang di reaktor SILOE, sehingga apabila daya kedua reaktortersebutsama, maka perbedaan bahang gamma yang sebenamya hanya sekitar 20 %. Perbedaan tersebut berasal dari tingkat pengakayaan elemen bakaryangjauh berbeda, diman RSG-GAS yang

Daya termal Pengkayaan 30MW 20% 35MW 90 % KESIMPULAN

Dari hasil perhitungan dan analisis tersebut diatas, dapat disimpulkan bahwa :

- Bahanggamma maksimum yang diperoleh sebesar 6.52 W /g cukup baik dan dapat diterima.

- Reaktor dengan elemen bakar penga yaan rendah mem-berikan keuntungan khusus, yaitu efek pemanasan gammanya lebih kecil bila dibanding dengan reaktor sepadan yang menggunakan elemen bakar pengayaan tinggi.

DAFfAR PUSTAKA

1. SETIY ANTO, "Puissance deposee par Ie rayonnement gamma dans Ie reacteur SILOE. Mesures par calorimatrie et et ca1cul par Ie code GAMSET. Applications aux experiences complexes. "Desertasi doktor pada Institut National Polytechique de Grenoble - France. Maret 1991.

2. IAEA, "Detem1ination of absorbed dose in reaktor." Technical report series no. 127 - 1971

3. H.PETITCOLAS, "Calorimetre de type TG pour la mesure des de[ots d'energie dans Ie reacteur, discription et principle d'ulitisation." CENG/Piles/Dos - 5/1982.

DISK US I

BAMBANG HERUT0MO :

1. Seberapa besar pengaruh bahang gamma terhadap kenaikan Temperatur CIP cel 2. Program apa yang digunakan untuk menghitung pembangkitan bahang gamma di RSG

3. Kriteria-kriteria apa yang saudara ambil dalam mengelompokkan spektrum gamma. Mohonjelaskan. SETIY ANTO :

1. Tergantung bahan penyerap yang ada di CIP tersebut. Misal : Grafit,Al atau Zirconiun1, dl1. Semakin besar no-atom penyerap, semakin tinggi efek pemanasannya.

2. Program GAMSET (telah ditulis dalam makalah dan diuraikan dalam penyajian) 3. - Sifat fisis bahan penyerap senagai fungsi energi gamma

- Jenis interaksi gamma-materi

- model spektrum gamma didalam teras

DARYONO:

Perbedaan hasil pengukuran yang dilakukan disini dan informasi dari designertersebut, apakah dengan menggunakan prosedur yang sarna ?

1. Pengukuran real time? 2. Delay time?

SETIY ANTO :

1. Yang telah dilakukan di RSG-GAS baru perhitungan saja, sedang pengukurannya belum 2. Namun demikian, rencana pengukuran yang akan dilakukan adalah pengukuran real time.

(5)

Prosiding Seminar Tekn%gi dan Kese/amaliln PLTN serlil Fasililas Nuk/ir

Serpong, 9-10 Februari 1993 PRSG. PPTKR - BATAN

PENGUKURAN SPEKTRUM NEUTRON PADA

SISTEM RABBIT RSG-GAS

Oleh

Surlan Plnem, Iman Kuntoro

Pusat Reaktor Serba Guna - Badan Tenaga Atom Nasional

ABSTRAK

PENGUKURAN SPEKTRUM NEUTRON PADA SISTEM RABBIT RSG-GAS. Pengu-kuran spektrum neutron pada sistem rabbit RSG-GAS telah dilakukan dengan metode aktivasi. Detek-tor keping sebanyak 12 jenis digunakan dalam eksperimen yang dapat mendeteksi neutron termal sampai neutron cepat. Untukdaerah termal dan epitermal kepingdibungkus dengan cadmium. Laju reaksi dari keping diukur dengan detektor Ge (Li) dan Multi-Channel Analyzer (MCA) dengan kesalahan sekitar 5 %. Kode komputer yang digunakan dalam menentukan spektrum neutron ada-lah SAND PO1. Hasil integral fluks neutron pada fasilitas sistem rabbit RSG-GAS adaada-lah 1,59.1013

n/cm .s pada day a 1MW.

ABSTRACT

NEUTRON SPECTRUM MEASUREMENT ON RABBIT SYSTEM RSG-GAS. The neu-tron spectrum on rabbit system RSG-GAS has been performed by activation method. Total 12kind of foils detector used in the experiment that can detected thermal neutron until fast neutron. For thermal and epithermal region the foil were covered by cadmium. The Rate reaction of foils measured by Ge (Li) detector and Multi-Channel Analyzer (MCA) with error 5 %. Computer code used for determine neutron spectrum is SAND PO

1.

Results of integral neutron flux on the rabbit system RSG-GAS is 1.59.1013 n/cm.s at 1 MW.

PENDAHULUAN

Pengukuran karakteristik spektrum neutron di dalam reaktor pada daerah energi termal sampai neutron cepat sangat penting bagi pemanfaatan reaktor. Banyak metode yang sudah dikembangkan untuk tujuan ini. Metode aktivasi mempunyai keuntungan dimana ukuran keping sangat kecil sehingga dapat ditempatkan pada daerah yang diinginkan, selain itu intensitas gammanya baik dan radiasi latar belakang tidak mempengaruhi harga fluks yang sebenarnya.

Dalam makalah ini akan dijelaskan pengukuran spektrum neutron padasistem rabbitRSG G.A. Siwabessy dan evaluasi karakteristik spektrum neutron. Program unfolding yang digw1akan dalam percobaan ini adalah SANDPOl'). Pengukuran spektrum dalam program ini memerlukan input berupa data aktivitas jenuh neutron, data tampang lintang tergantung energi dan spektrum awa1.U mumn ya metode aktivasi kep ing sangat sederhana, tetapi ketelitian dari hasil pengukuran tergantung kepada pemilihan keping, massa, waktu iradiasi, pencacahan aktivitas, faktor dipressi flux dan perisai diri. Keping yang digunakan dalam eksperimen ini sangat tipis dimana teba\ maksimum 0,25 mm untuk neutron cepat dan 0,05 mm untuk neutron termal dan epiterma\ sehingga kesalahan akibat depresi fluks dari perisai diri pada per-hitungan aktivitas jenuh diabaikan.

TEOR!

Bila keping aktivasi di iradiasi pada waktu t, maka aktivitas yang dihasilkan adalah :

t

A =A. No

I

a

(E)

I

cj> (E,t) dt dE o 0 dimana : A.

=

konstanta peluruhan No

=

jumlah atom

a =

tampang \intang cj>

=

fluks

Aktivitas dapat diukur dengan mengiradiasi keping di dalam reaktor.

Aktivitas keping setelah diiradiasi dengan waktu ti dan waktu tunggu tw adalah :

M

D

C

= ---.

---No.1ll (l-e->..tl) (e >..'W)

dimana:

M

=

massa atom keping (gram) No

=

bilangan Avogadro

C

=

aktivitas keping yang teriradiasi di reaktor (dps/gr).

(6)

Prosidillg Semillar Tekllologi daJl Keselamalall PLTN serla Fasililas Nuklir

ti = waktu iradiasi (detik) tw = waktu tunggu (detik)

J...

=

konstanta peluruhan

m

=

massa (gram)

Efek perisai diri neutron dari keping tidak dihitung. Menurut laporan W.L. Zijp, semua keping yang digunakan dalam eksperimen ini mempunyai kesalahan sekitar 1,76 %.

Aktivitas jenuh diperoleh dari keping-keping yang berbeda dan spektrum awal pada posisi yang diukur digunakan sebagai informasi input dari SAND PO 1.

Spektrum awal yang digunakan adalah 5) : - Fungsi spektrum Maxwell untuk temperatur293 ,58

K.

'XIIE(E)

=

1,562395 1015 E.exp (-3,952714107 E) - Spektrum lIE

'XIII!(E)

=

lIE antara 0,563.10.6 dan 1,05 MeV 'XIII! (E)

=

0 diluar interval energi ini

- Spektrum neutron fisi

vktt

c1IE (E)

=

0,484 sinh ( 2E ) e·E

Harga energi E di dalam ketiga persamaan adalah MeV.

TATAKERJA

Eksperimen dilakukan pada fasilitas iradiasi sistem rabbit yang berada pada daerah reflektor. Konfigurasi teras dan lokasi fasilitas sistem rabbit dapat dilihat pada Gambar 1.

Keping aktivasi diiradiasi sebanyak 12jenis dan 4 keping aktivasi dibungkus dengan cadmium. Pembungkus cadmium digunakan sebagai filter neutron termal yang mempunyai ketebalan 0,5 mm dan diameter 12,5 mm. Data data nuklir dari keping yang digunakan disajikan dalam Tabel1.

Keping aktivasi diiradiasi pada daya 200 KW untuk daerahtemlal dan epitermaldanpadadaya 1 MW untuk kepingpada daerah neutron cepat. Fasilitas sistem rabbit RSG-GAS mempunyai sistem kontrol automatiksehingga

Serpong. 9-10 Febrtiari 1993 PRSG. PPTKR -BATAN

kesalahan lamanya iradiasi dapat diabaikan. Data-data iradiasi yangdigunakan dalam eksperimen ini ditwljukkan dalam Tabel 2.

HASIL DAN PEMBAHASAN

Laju reaksi dari masing-masing keping dicacah dengan menggunakan detektor semi konduktor HPGe. Dengan menggunakan aktivitas jenuh, data tampang lintang dan spektrum awal ditentukan spektrum dan besaran fluks neutron. Bentuk spektrum awal yang digunakanditunjukkan dalam Gambar 2. Kode komputer yang digunakan untuk menentukan spektrum dan besaran fluks neutron adalah SAND POL Diagram alir spektrum neutron dapat dilihat pada Gambar 3. Iterasi dilakukan sehingga bentuk spektrum yang diperoleh dapat diterima sebagai penyelesaian pendekatan dari persamaan aktivasi dimana perbandingan antara pengukuran dan perhitungan sekitar 5 %. Daerah energi penyelesaian spektrum adalah 1O-loMeV sampai 18 MeV. Hasil perhitungan aktivitas dan perbandingan antara pengukuran dan perhitungan aktivitas ditunjukkan dalam Tabel3. Bentuk spektrum neutron pada sistem rabbit secara gratis disajikan pada Gambar4, besamya integral fluks sebagai fungsi energi disajikan dalam Tabel 4. Integral fluks neutron pada daerah energi 1,0-10Me V - 18 MeV adalah 1,59.1013 n/cm.s pada daya 1 MW. Pada daerah energi 10 Me V-I 0 Me V terdapat puncak-puncakdan ini disebabkan oleh tampang lintang karena pada daerah terse but terdapat banyak puncak, maka seharusnya banyak digunakan keping dan dibungkus dengan cadmium.

KESIMPULAN

Dari hasilpengukuran pada fasilitas sistem rabbit dapat disimpulkan bahwa neutron yang terdeteksi dan 10 -loMeV -18 MeVdan integral fluks neutron 1,59.1013

n/cm .s. pada daya 1 MW. Fluks termal pada energi termal (0,025 eV) adalah 1,29.1011 n/cm .s dan puncak spektrum pada energi 0,04 eV,jadi spektrum maxwell bergerak ke energi yang lebih tinggi.

DAFT AR PUST AKA

1. W.E. Feudenreich, H.J. Nolthenius, "Neutron Spectrum Unfolding Code SANPOl", ECN, Petten, June 1987. 2. Park, Sang Jun, "Measurement of Neutron Spectrum by Activation Detectors", Korea Atomic Energy Research

Institute, 1990.

3. W.E. Freudenreich, "CHARDAT a program package for calculation of neutron spectrum characteristics", ECN, Petten, April 1989.

4. W.P. Voorbraak, "Neutron Metrology in the High Flux Reactor", ECN, Petten, November 1991.

5. W.E. Freudenreich, H.J. Nolthenius, "Input description for SANDPO 1", ECN, Petten, April 1987 . 6. Willem L. Zijp, H.J. Nolthenius, "Cross-section Library DOSCROS84", ECN, Petten, October 1984.

7. W.L. Zipj and H.J. Nolthenius, "Neutron Self-shielding of Activation Detector Used in Spectra Unfolding, RCN, Petten, 1975.

Referensi

Dokumen terkait

Untuk berbagai perlakuan kecepatan pengadukan (rendah, sedang, tinggi) menghasilkan kecepatan putaran motor dan daya motor saat terdapat sampel irisan mangga yang

Kemudian pembahasan diakhiri dengan penjelasan perancangan perangkat lunak, Berupa program pada mikrokontroler untuk mengolah data dari sensor maupun dari

Perlu dilakukan usaha terus-menerus, baik ada dana penelitian atau tidak, untuk menemukan kolaborasi metode yang efektif dengan media software fluidsim ini agar dapat

online sehingga pasien merasa kecewa karena harus mengantri dan menunggu lama saat melakukan pendaftaran. Belum tersosialisasinya informasi dan prosedur penggunaan BPJS

Bekerja secara kooperatif dengan orang lain, membangun kerja tim yang efektif untuk mencapai tujuan organisasi, menjadi bagian dalam tim, membangun kerja sama antar anggota tim,

Kecuali untuk tujuan pendidikan yang tidak ada kepentingan komersial, tidak dibenarkan sesiapa ada kepentingan komersial, tidak dibenarkan sesiapa mengeluarkan atau

Salah satu cara untuk meningkatkan nilai kapasitansi spesifik adalah dengan memanfaatkan efek pseudokapasitansi yang tergantung pada sifat fungsional permukaan karbon

Alasan penelitian ini dibatasi agar lebih terarah dan tidak menyimpang dari yang dipersoalkan dan juga dapat mencapai sasaran yang diharapkan.Penelitian ini terkhusus