• Tidak ada hasil yang ditemukan

paper 17-18-2009. 97KB Jun 04 2011 12:03:07 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "paper 17-18-2009. 97KB Jun 04 2011 12:03:07 AM"

Copied!
5
0
0

Teks penuh

(1)

AN INTEGRAL OPERATOR ON ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Mugur Acu1, Sevtap Sumer Eker

Abstract. In this paper we consider an integral operator on analytic functions and prove some preserving theorems regarding some subclasses of analytic functions with negative coefficients.

2000 Mathematics Subject Classification:30C45

Keywords and phrases: Function with negative coefficients, integral op-erators, S˘al˘agean operator

1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U, A = {f ∈ H(U) : f(0) = f′

(0) − 1 = 0}, Hu(U) = {f ∈ H(U) :

f is univalent in U} and S ={f ∈A:f is univalent in U}.

We denote with T the subset of the functionsf ∈S, which have the form

f(z) =z−

X

j=2

ajzj, aj ≥0, j ≥2, z∈U (1)

and with T∗

= T T

S∗

, T∗

(α) = TT

S∗

(α), Tc = T T

Sc and Tc(α) =

T T

Sc(α), where 0α <1.

Theorem 1.1 [5] For a function f having the form (1) the following

assertions are equivalents:

(i)

X

j=2

jaj ≤1 ;

(ii) f ∈T;

(2)

(iii) f ∈T∗

.

Regarding the classes T∗

(α) and Tc(α) with 0 α < 1, we recall here

the following result:

Theorem 1.2 [5]A function f having the form (1) is in the class T

(α)

if and only if:

X

j=2 j−α

1−αaj ≤1, (2)

and is in the class Tc(α) if and only if:

X

j=2

j(j−α)

1−α aj ≤1. (3)

Definition 1.1 [2] Let S

(α, β) denote the class of functions having the form (1) which are starlike and satisfy

zf′(z)

f(z) −1

zf′(z)

f(z) + (1−2α)

< β (4)

for 0≤α <1 and 0< β≤1. And let C∗

(α, β) denote the class of functions such that zf′

(z) is in the class S∗

(α, β).

Theorem 1.3[2]A functionf having the form (1) is in the classS

(α, β)

if and only if:

X

j=2

{(j−1) +β(j+ 1−2α)}aj ≤2β(1−α), (5)

and is in the class C∗

(α, β) if and only if: ∞

X

j=2

j{(j−1) +β(j+ 1−2α)}aj ≤2β(1−α). (6)

Let Dn be the S˘al˘agean differential operator (see [3]) defined as:

Dn:AA , n N and D0f(z) = f(z) D1f(z) = Df(z) = zf

(z) , Dnf(z) = D(Dn−1

(3)

In [4] the author define the classTn(α, β), from which by choosing different

values for the parameters we obtain variously subclasses of analytic functions with negative coefficients (for example Tn(α,1) = Tn(α) which is the class

of n-starlike of order α functions with negative coefficients and T0(α, β) = S∗

(α, β)T

T, where S∗

(α, β) is the class defined by (4)).

Definition 1.2 [4] Let α [0,1), β (0,1] and n N. We define the class Sn(α, β) of the n-starlike of order α and type β through

Sn(α, β) ={f ∈A; |J(f, n, α;z)|< β}

where J(f, n, α;z) = D

n+1f(z)Dnf(z)

Dn+1f(z) + (12α)Dnf(z), z ∈ U . Consequently

Tn(α, β) =Sn(α, β)TT .

Theorem 1.4 [4] Let f be a function having the form (1). Then f Tn(α, β) if and only if

X

j=2

jn[j−1 +β(j+ 1−2α)]aj ≤2β(1−α). (7)

2. Main results

Let consider the integral operator Iλ,γ : A → A, where 1 < λ < ∞ and

γ = 1,2, . . ., defined by

f(z) = Iλ,γ(F(z)) =λ

1

Z

0

uλ−γ−1

F(uγz)du. (8)

Remark 2.1 For F(z) =z+

P

j=2

ajzj, from (8) we obtain

f(z) = Iλ,γ(F(z)) =z+ ∞

X

j=2

λ

λ+ (j−1)γajz

j.

Also, we notice that 0 < λ

(4)

Remark 2.2 It is easy to prove, by using Theorem 1.1 and Remark 2.1,

that for F(z) ∈ T and f(z) = Iλ,γ(F(z)), we have f(z) ∈ T, where Iλ,γ is the integral operator defined by (8).

By using the previously remark and the Theorem 1.2, we obtain the following result:

Theorem 2.1 Let F(z) be in the class T

(α), α ∈ [0,1), F(z) = z −

P

j=2

ajzj, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F(z)) ∈ T∗(α), where Iλ,γ is the integral operator defined by (8).

Proof. From Remark 2.2 we obtain f(z) =Iλ,γ(F(z))∈T .

From (2) we have

X

j=2 j−α

1−αaj ≤1 and f(z) = z−

P

j=2

bjzj, where

bj =

λ

λ+ (j−1)γaj. By using the fact that 0 <

λ

λ+ (j−1)γ < 1, where 1 < λ < ∞, j ≥ 2, γ = 1,2, . . ., we obtain j−α

1−αbj < j −α

1−αaj and thus

X

j=2 j−α

1−αbj ≤1. This mean (see Theorem 1.2) that f(z) = Iλ,γ(F(z)) ∈ T∗

(α).

Similarly (by using Remark 2.2 and the Theorems 1.3 and 1.4) we obtain: Theorem 2.2 Let F(z) be in the class Tc(α), α [0,1), F(z) = z

P

j=2

ajzj, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F(z)) ∈ Tc(α), where Iλ,γ is the integral operator defined by (8).

Theorem 2.3 Let F(z) be in the class C

(α, β), α ∈ [0,1), β ∈ (0,1],

F(z) = z −

P

j=2

ajzj, aj ≥ 0, j ≥ 2. Then f(z) = Iλ,γ(F(z)) ∈ C ∗

(α, β), where Iλ,γ is the integral operator defined by (8).

Theorem 2.4LetF(z)be in the class Tn(α, β), α[0,1), β (0,1],n

N, F(z) =z

P

j=2

ajzj, aj ≥ 0, j ≥ 2. Then f(z) =Iλ,γ(F(z)) ∈ Tn(α, β), where Iγ,γ is the integral operator defined by (8).

Remark 2.3By choosingβ = 1, respectivelyn = 0, in the above theorem,

(5)

Remark 2.4 If we consider γ = 1 and λ =c+δ, where 0< c < and 1≤δ <∞, we obtain the results from [1].

References

[1] A.M. Acu and E. Constantinescu, Some preserving properties of a integral operator, General Mathematics, Vol. 15, No. 2-3(2007), 184-189.

[2] V.P. Gupta, P.K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14(1976), 409-416.

[3] G.S. S˘al˘agean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.

[4] G.S. S˘al˘agean, Analytic functions with negative coefficients, Mathe-matica, 36(59), 2(1994), 219-224.

[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

Authors:

Mugur Acu

”Lucian Blaga” University Department of Mathematics Str. Dr. I. Ratiu 5-7 550012 Sibiu, Romania

E-mail: acu mugur@yahoo.com

Sevtap S¨umer Eker

Department of Mathematics Faculty of Science and Letters Dicle University

Referensi

Dokumen terkait

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

Dan metode pelatihan terkahir yang digunakan oleh pabrik kecap Wie Sin adalah sesuai dengan metode yang dikemukakan oleh (Dessler, 2003, p.222) yaitu on the job

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja

Dengan ini diberitahukan bahwa, setelah diadakan penelitian dan perhitungan referensi tenaga ahli oleh Pokja Jasa Konsultansi Pekerjaan Revisi Rencana Tata Ruang Wilayah

Perusahaan konsultan yang berminat harus m konsultan yang bersangkutan memenuhi syarat untuk m sunan daftar pendek konsultan (short-list) adalah: (1) san

Dalam penelitian ini peneliti menganalisis strategi bersaing dengan menggunakan Dynamic Capability View karena menurut Zahra (2006) dynamic capability dapat mempertahankan