• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA - Aplikasi Logika Fuzzy Dalam Penentuan Kepuasan Pasien Rawat Inap (Studi Kasus RSU Herna Medan)

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB II TINJAUAN PUSTAKA - Aplikasi Logika Fuzzy Dalam Penentuan Kepuasan Pasien Rawat Inap (Studi Kasus RSU Herna Medan)"

Copied!
24
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1. Logika Klasik

Notasi logika fuzzy didasarkan dari logika klasik atau sering juga disebut sebagai himpunan tegas (crisp) dengan mengubah menjadi notasi kalkulus, dengan demikian bahwa logika fuzzy disebut dengan bentuk modern dari logika klasik (William,2005).

Unsur dasar dari suatu logika adalah proposisi yang menyatakan apakah sebuah pernyataan itu dapat diterima atau ditolak yang kemudian dapat di simbolkan dengan nilai benar atau salah. Sebuah pernyataan proposisi sederhana adalah “Nama Presiden adalah William” atau “ Umur Presiden adalah 48” atau pernyataan proposisi yang lebih komplex adalah “ Nama Depan Presiden adalah William” DAN “Umur Presiden adalah 48 Tahun “. Dari proposisi itu dapat ditentukan apakan proposisi bernilai benar atau bernilai salah dari nilai-nilai yang ada. Jika proposisi itu diterjemahkan menjadi nilai kalkulus maka akan didapatkan nilai 0 atau 1, dimana 0 adalah nilai untuk salah dan 1 adalah nilai untuk benar. Hukum Exluded Midle mengatakan bahwa sebuah proposisi hanya boleh bernilai benar atau bernilai salah, dan hukum Non-contradiction mengatakan bahwa sebuah proposisi tidak boleh bernilai sama-sama salah atau bernilai sama-sama benar pada waktu yang bersamaan.

2.2 Himpunan Fuzzy

(2)

penalaran logika fuzzy, jika dibandingkan dengan himpunan tegas bahwa dalam logika fuzzy sesuatu proposisi dapat bernilai sama-sama benar atau sama-sama salah pada waktu yang bersamaan (Bing,2010)

Untuk membedakan antara himpunan klasik dan himpunan fuzzy dapat digambarkan secara matematis sebagai berikut :

𝐴= {(𝜇𝐴(𝑥),𝑥)|𝑥𝜖𝑋} .. (2.1) 𝜇𝐴 (x) adalah sebuah nilai yang berada diantara 0 dan 1 yang menggambarkan nilai keanggotaan x dalam himpunan A.

𝜇𝐴 ∶ 𝑋 →[0,1],

𝑥 → 𝜇𝐴(𝑥) Dalam himpunan tegas dapat digambarkan dengan :

𝜇𝐴 �0,𝑥1,∈ 𝐴𝑥 ∈| 𝐴𝑎𝑘𝑎𝑛 | 𝑎𝑘𝑎𝑛𝑏𝑒𝑟𝑛𝑖𝑙𝑎𝑖𝑏𝑒𝑟𝑛𝑖𝑙𝑎𝑖 0 𝑗𝑖𝑘𝑎 1 𝑗𝑖𝑘𝑎𝑥𝑡𝑖𝑑𝑎𝑘𝑥𝑎𝑑𝑎𝑎𝑑𝑎𝑝𝑎𝑑𝑎𝑝𝑎𝑑𝑎𝐴 𝐴

Persamaan diatas jika digambarkan dalam himpunan fuzzy dapat digambarkan dengan fungsi keanggotaan, seperti gambar 2.1 :

b c

0 1

Gambar 2.1. Nilai Keanggotaan Himpunan Fuzzy

𝜇𝐴(𝑥)�

1, 𝑥>𝑐 𝑥 − 𝑏 𝑐 − 𝑏 0, 𝑥 ≤ 𝑏

𝑏< 𝑥 ≤ 𝑐

Untuk lebih mudah memahami himpunan crisp dan himpunan fuzzy dapat dijelaskan dengan contoh berikut. Jika kecepatan kendaraan bermotor dikelompokkan dengan 3 kelompok yaitu lambat,cepat dan sangat cepat. Dimana dikatakan lambat jika kecepatan 0 sampai dengan 60 km/jam, cepat jika kecepatan ...(2.3) ...(2.2)

(3)

antara 60 sampai dengan 100 km/jam dan sangat cepat jika kecepatan diatas 100

Gambar 2.2 Himpuna Lambat, Cepat dan Sangat Cepat

Pada gambar 2.2 dapat dijelaskan bahwa

a. Apabila kecepatan kendaraan 50 km/jam, maka dikatakan lambat,

µlambat

b. Apabila kecepatan kendaraan 61 km/jam, maka dikatakan cepat, dimana

µ

(60)= 1

Cepat

c. Apabila kecepatan kendaraan 100 km/jam, maka dikatakan cepat, dimana

µ

(61)= 1

Cepat

d. Apabila kecepatan kendaraan 101 km/jam, maka dikatakan sangat cepat, dimana µ

(100)= 1

Cepat(101)= 0 dan µSangat Cepat

Penjelasan diatas bisa dikatakan tidak tepat untuk mengatakan kecepatan kendaraan, dimana jika kecepatan kendaraan 100 km/jam masih digolongkan dengan cepat, sementara kecepatan dengan 100,5 km/jam sudah digolongkan dengan kecepatan yang sangat cepat.

(101)= 1

Untuk mengantisipasi ketidak tepatan itu kecepatan kendaraan dapat memasuki 2 himpunan yang berbeda dalam himpunan fuzzy, misalnya lambat dan cepat, cepat dan sangat cepat. Namun seberapa besar ekstensinya dalam himpunan tersebut dapat dilihat pada nilai keanggotaannya. Gambar 2.3 menunjukkan himpunan fuzzy untuk variabel kecepatan.

(4)

0

1

0

60 100

20 40 80

LAMBAT CEPAT SANGAT CEPAT

0,75

0,5

0,25

90

Gambar 2.3. Himpunan fuzzy untuk kecepatan

Dari gambar 2.3. Jika kecepatan kendaraan adalah 90 km/jam maka kecepatan termasuk pada kecepatan cepat dengan µCepat(90)= 0,25 dan juga kecepatan yang

sangat cepat dengan µSangatcepat

Dalam himpunan fuzzy memiliki 2 atribut yaitu linguistik adalah penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami, seperti lambat,cepat dan sangat cepat, dan atribut numeris yaitu berupa angka yang menunjukkan ukuran dari suatu variabel seperti 20,30, 50 dan lain-lain.

(90)= 0,75.

Untuk mengubah himpunan crisp menjadi himpuna fuzzy, ada 4 nilai yang harus di pahami yaitu :

a. Variabel Fuzzy

Variabel fuzzy merupakan variabel yang hendak dibahas dalam suatu system fuzzy.

b. Himpunan Fuzzy

Himpunan fuzzy merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy.

c. Semesta pembicaaran

(5)

d. Domain

Domain himpunan fuzzy adalah keseluruhan nilai yang diizinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy.

2.3. Fungsi Keanggotaan

Fungsi keanggotaan dari suatu himpunan fuzzy dinyatakan dengan derajat keanggotaan suatu nilai terhadap nilai tegasnya yang berkisar antara 0.0 sampai dengan 1.0. Jika A adalah himpunan fuzzy, µA :fungsi keanggotan, dan X adalah semesta, maka fungsi keanggotaan dalam suatu himpunan fuzzy dapat dinyatakan dengan :

A={(x, µA(x))|x€X}

Fungsi keanggotaan adalah sebuah kurva yang menunjukkan titik input kedalam nilai keanggotaanya. Untuk mendapatkan nilai keanggotaan dapat menggunakan pendekatan fungsi sebagai berikut :

a. Representasi Linier

Pada representase linier, pemetaan input ke derajat keanggotaannya digambarkan sebagai garis lurus. Bentuk ini adalah menjadi paling sederhana dan menjadi pilihan yang baik untuk mendekati suatu konsep yang kurang jelas.

Ada 2 keadaan himpunan fuzzy yang linier, yaitu kenaikan himpunan dimulai dari nilai domain yang memiliki nilai keanggotaan 0 bergerak ke kanan menuju nilai domain yang memiliki derajat keanggotaan yang lebih tinggi, dan himpunan yang dimulai dari nilai domain yang memiliki nilai keanggotaan 1 akan bergerak ke kanan menuju nilai domain yang memiliki nilai keanggotaan 0, seperti pada gambar 2.4 dan gambar 2.5.

Derajat Keanggotaan

µ(x)

0 1

a b

Gambar 2.4 Representasi Linier Naik

(6)

Fungsi keanggotaan :

Gambar 2.5 Representasi Linier Turun

Fungsi keanggotaan

b. Representase Kurva Segitiga

Kurva segitiga pada dasarnya merupakan gabungan dari 2 garis linier yang disajikan pada gambar 2.6

Derajat

(7)

c. Representasi Kurva Travesium

Kurva travesium pada dasarnya sama dengan kurva segitiga, namun ada beberapa titik yang memiliki nilai keanggotaan 1, yang disajikan pada gambar 2.7

a b c d

Derajat Keanggotaan

µ(x)

0 1

. Gambar 2.7. Himpuna Fuzzy dengan kurva Travesium Fungsi Keanggotaan

𝜇(𝑥) =

⎩ ⎪ ⎨ ⎪

⎧𝑥−𝑎0, 𝑥<𝑎𝑎𝑡𝑎𝑢𝑥 ≥ 𝑑 𝑏−𝑎, 𝑎 ≤ 𝑥<𝑏

1, 𝑏 ≤ 𝑥<𝑐 𝑑−𝑥

𝑑−𝑐, 𝑐 ≤ 𝑥 <𝑑

d. Representasi Kurva- S

Kurva pertumbuhan dan penyusutan merupakan kurva-S (sigmoid) yang berhubungan dengan kenaikan dan penururan permukaan secara tak linier. Kurva S untuk pertumbuhan akan bergerak dari sisi paling kiri untuk nilai keanggotaan 0 ke sisi paling kanan yang nilai keanggotaan 1. Pada kurva ini bawha nilai keanggotaannya akan bertumpu pada 50% nilai keanggotaannya atau yang sering disebut dengan titik infeksi (Cox, 1994)

Dari gambar 2.8, nilai keanggotaan µ(x)=0 yang disimbolkan dengan α, nilai keanggotaan µ(x)=0,5 yang disimbolkan dengan β dan nilai keanggotaan µ(x)=1 disimbolkan dengan 𝛾 .

(8)

c

Gambar 2.8 Himpunan Fuzzy dengan Kurva S Fungsi keanggotaan untuk Kurva-S adalah

𝜇(𝑥;𝛼,𝛽,𝛾) =

e. Representase Kurva Bahu

(9)

Fungsi keanggotaan untuk kurva bahu, dimana setiap variabel fuzzy akan memiliki nilai keanggotaan yang berbeda seperti yang ada pada gambar 2.9 1. Fungsi keanggotaan untuk variabel V1

𝜇𝑣1(𝑥)�

0 𝑥>𝑏 𝑏−𝑥

𝑏−𝑎 𝑎 <𝑥 ≤ 𝑏 1 𝑥 ≤ 𝑎

2. Fungsi keanggotaan untuk variabel V2

𝜇𝑣2(𝑥)

3. Fungsi keanggotaan Untuk variabel V3

𝜇𝑣3(𝑥)

4. Fungsi keanggotaan untuk variabel V4

𝜇𝑣4(𝑥)�

0 𝑥 ≤ 𝑐 𝑥 − 𝑐

𝑑 − 𝑐 𝑐 <𝑥 ≤ 𝑑 1 𝑥>𝑑

f. Representase Kurva Bell

Bentuk lain dari kurva fuzzy adalah kurva bell, dimana nilai keanggotaan dipengaruhi oleh nilai tengah dari domain. Kurva bell terdiri dari 3 kelas dimana ketiga kelas ini dibedakan pada kurva gradiennya, ketiga kelas ini adalah kurva Pi, Kurva beta dan Kurva Gauss.

(10)

1. Kurva Pi

Kurva Pi berbentuk Lonceng (bell) dengan derajat keanggotaan 1 terletak pada nilai tengah domain (γ) dan lebar kurva (β) seperti terlihat pada gambar 2.10.

Lebar (β)

Domain Pusat (γ)

Derajat Keanggotaan

µ(x)

0.5

0 1

Titk infleksi

Gambar 2.10. Himpunan Fuzzy dengan kurva Pi Fungsi keanggotaan

∏(𝑥,𝛽,𝛾 =�𝑠 �𝑥

;𝑦 − 𝛽,𝑦 −𝛽

2,𝑦� 𝑥 ≤ 𝛾 1− 𝑆 �𝑥;𝛾,𝛾+𝛽

2,𝛾+𝛽� 𝑥> 𝛾

2. Kurva Beta

Kurva beta secara umum sama dengan kurva Pi, namun kurva beta bentuk loncengnya lebih rapat. Kurva ini juga didefenisikan dengan 2 parameter yaitu nilai domain yang menunjukkan pusat kurva (γ) dan setengan lebar kurva (β) seperti terlihat pada gambar 2.11

(11)

Domain Pusat (γ)

Derajat Keanggotaan

µ(x)

0.5

0 1

γ − β γ + β

Gambar 2.11 Himpuna Fuzzy dengan Kurva Beta

Fungsi Keanggotaan

B=�1/(1 +𝑥−𝛾𝛽 )2

3. Kurva Gauss

Jika pada kurva Pi dan Beta menggunakan dua parameter yaitu γ dan β, Kurva Gaus juga menggunakan γ untuk menunjukkan nilai domain pada pusat kurva, dan k untuk menunjukkan lebar kurva. Gambar 2.12 menunjukkan nilai keanggotaan x.

Domain Pusat (γ) Derajat

Keanggotaan

µ(x)

0.5

0 1

K (lebar)

Gambar 2.12 Himpunan Fuzzy dengan kurva Gauss

Fungsi Keanggotaan untuk kurva Gauss :

𝐺

(

𝑥

;

𝑘

,

𝛾

) =

𝑒

−𝑘(𝛾−𝑥)2

...(2.15)

(12)

2.4 Fuzzy Membership Operation

Seperti pada himpunan klasik, himpunan fuzzy juga memiliki operasi himpunan yang sama yaitu gabungan (union), irisan (intersection) dan komplemen. Sebelumnya akan didefinisikan dulu mengenai himpunan bagian yang memiliki peranan penting dalam himpunan fuzzy.

2.4.1 Union

Gabungan dari dua buah himpunan fuzzy A dan B adalah himpunan fuzzy C ditulis sebagai atau , memiliki fungsi keanggotaan yang berhubungan dengan A dan B yang didefinisikan sebagai berikut:

dengan adalah operator biner untuk fungsi S dan biasa disebut sebagai operator T-conorm atau S-norm, yang memiliki sifat-sifat sebagai berikut:

;

S(1,1) = 1, S(0,a) = S(a,0) = a (boundary); S(a,b) S(c,d) jika a c dan b d (monotonicity); S(a,b) = S(b,a) (commutativity); S(a,S(b,c)) = S(S(a,b),c) (associativity).

2.4.2 Intersection

Irisan dari dua buah himpunan fuzzy A dan B adalah himpunan fuzzy C dituliskan

sebagai atau , memiliki fungsi keanggotaan yang

berhubungan dengan A dan B yang didefinisikan sebagai berikut:

;

,

dengan adalah operator bineri untuk fungsi T, yang biasa disebut sebagai operator T-norm, yang memiliki sifat-sifat sebagai berikut:

...(2.17)...(2.17)

(13)

T(0,0) = 0, T(a,1) = T(1,a) = a (boundary); T(a,b) T(c,d) jika a c dan d (mo notonicity); T(a,b) = T(b,a) (commutativity); T(a,T(b,c)) = T(T(a,b),c) (associativity).

2.5 Fuzzy IF-Then Rule

Kaidah fuzzy If-Then (dikenal juga sebagai kaidah fuzzy, implikasi fuzzy atau pernyataan kondisi fuzzy) diasumsikan berbentuk:

Jika x adalah A maka y adalah B

Dengan A dan B adalah nilai linguistik yang dinyatakan dengan himpunan fuzzy dalam semesta pembicaraan X dan Y. Sering kali “x adalah A” disebut sebagai antecedent atau premise, sedangkan “y adalah B” disebut consequence atau conclusion.

Kaidah fuzzy if-then “jika x adalah A maka y adalah B” sering kali disingkat

dalam bentuk A B yang merupakan suatu bentuk relasi fuzzy biner R pada produk

ruang X ´ Y. Terdapat dua cara untuk menyatakan A B, yaitu sebagai A coupled with

B dan A entails B. Jika dinyatakan sebagai A coupled with B maka didefinisikan

sebagai berikut:

dengan adalah operator T-norm. Sedangkan jika dinyatakan sebagai A entails B maka didefinisikan sebagai berikut:

- material implication: adalah operator T-norm.

(14)

2.6 Fuzzy Reasoning

Kaidah dasar dalam menarik kesimpulan dari dua nilai logika tradisional adalah modus ponens, yaitu kesimpulan tentang nilai kebenaran pada B diambil berdasarkan kebenaran pada A. Sebagai contoh, jika A diidentifikasi dengan “tomat itu merah” dan B dengan “tomat itu masak”, kemudian jika benar kalau “tomat itu merah” maka “tomat itu masak”, juga benar. Konsep ini digambarkan sebagai berikut:

premise 1 (kenyataan) : x adalah A,

premise 2 (kaidah) : jika x adalah A maka y adalah B. Consequence (kesimpulan) : y adalah B.

Secara umum dalam melakukan penalaran, modus ponens digunakan dengan cara pendekatan. Sebagai contoh, jika ditemukan suatu kaidah implikasi yang sama dengan “jika tomat itu merah maka tomat itu masak”, misalnya “tomat itu kurang lebih merah,” maka dapat disimpulkan “tomat itu kurang lebih masak”, hal ini dapat dituliskan seperti berikut:

premise 1 (kenyataan) : x adalah A',

premise 2 (kaidah) : jika x adalah A maka y adalah B. Consequence (kesimpulan) : y adalah B'.

Dengan A’adalah dekat ke A dan B’adalah dekat ke B. Ketika A, B, A’ dan B’adalah himpunan fuzzy dari semesta yang berhubungan, maka penarikan kesimpulan seperti tersebut dinamakan penalaran dengan pendekatan (approximate reasoning) yang disebut juga dengan generalized modus ponens (GMP).

Untuk mendefinisikan penalaran fuzzy, dimisalkan A, A’ dan B adalah himpunan fuzzy dari X, X dan Y, dengan A B adalah suatu relasi R pada XxY. Kemudian himpunan fuzzy B diinduksikan oleh “x adalah A” dan kaidah fuzzy “jika x adalah A maka y adalah B” didefinisikan sebagai berikut:

...(2.25)

(15)

atau sama dengan

2.7. Kaidah Tunggal dengan Antecedent Tunggal

Kaidah tunggal dengan antecedent tunggal merupakan contoh yang paling sederhana dari formula pada persamaan diatas dan setelah disederhanakan akan menghasilkan persamaan berikut :

dengan persamaan ini, terlebih dahulu dicari nilai maksimum dari (daerah warna gelap pada bagian antecedent pada Gambar 2.13, selanjutnya fungsi keanggotaan B' adalah bagian warna gelap pada Gambar 2.13 yang merupakan fungsi keanggotaan B yang terpotong oleh w.

Sumber : Jyh,1997

Gambar .2.13. Penjelasan secara grafis dari GMP menggunakan implikasi mamdani dan komposisi max-min.

...(2.27)

...(2.28)

(16)

2.8 Kaidah Tunggal dengan Antecedent Jamak

Kaidah fuzzy if-then dengan dua antecedent, biasanya ditulis sebagai “jika x adalah A dan Y adalah B maka z adalah C”. Masalah yang berhubungan dengan GMP dijelaskan dengan:

premise 1 (kenyataan) : x adalah A' dan y adalah B', premise 2 (kaidah) : jika x adalah A dan y adalah B

maka z adalah C. Consequence (kesimpulan) : z adalah C'.

Kaidah fuzzy pada premise 2 dapat dibawa ke bentuk sederhana yaitu “AxB C ” yang kemudian dapat diubah menjadi relasi fuzzy ternary Rm, berdasarkan fungsi implikasi Mamdani yaitu:

C' yang dihasilkan dapat dinyatakan sebagai

sehingga

dimana w1 dan w2 adalah nilai maksimum dari fungsi keanggotaan A ∩ A’ dan B ∩ B’. Secara umum w1 adalah merupakan derajat kompatibilitas antara A dan A’, demikian juga dengan w2. Karena bagian antecedent pada kaidah fuzzy dibangun dengan penghubung “and”, maka w1 w2 disebut firing strength atau derajat pencapaian dari kaidah fuzzy, yang menggambarkan derajat pencapaian dari kaidah untuk bagian antecedent. Secara grafis, proses ini ditunjukkan oleh Gambar 2.14, dimana nilai keanggotaan yang dihasilkan yaitu

...(2.30)

...(2.31)

...(2.32)

(17)

C’ adalah sama dengan nilai keanggotaan C yang dipotong oleh firing strength w.

Sumber : Jyh, 1997

Gambar 2.14. Aproximate reasoning untuk antecedent jamak.

2.9. Kaidah Jamak dengan Antecedent Jamak

Untuk menjelaskan kaidah jamak, biasanya menganggap sebagai gabungan dari relasi fuzzy yang berhubungan dengan kaidah fuzzy. Karena itu, permasalahan GMP dituliskan sebagai:

premise 1 (kenyataan) : x adalah A' dan y adalah B',

premise 2 (kaidah 1) : jika x adalah A1 dan y adalah

B1 maka z adalah C1

Premise 3 (kaidah 2)

.

: jika x adalah A2 dan y adalah

B2 maka z adalah C2

Consequence (kesimpulan)

.

: z adalah C'.

Proses di atas secara grafis dijelaskan pada Gambar 2.15.

Sumber : Jyh, 1997

(18)

Proses di atas dapat dibuktikan dengan menggunakan dua buah relasi R1= A1xB1 C1 dan R2= A2xB2 C2, karena operator adalah bersifat

distributif terhadap operator U, maka selanjutnya gabungan dari dua relasi tersebut menjadi

2.10 Fuzzy Inference System

Fuzzy Inferece System memiliki 3 struktur dasar yaitu Rule Base yang

digunakan untuk melakukan selecsi terhadap aturan fuzzy. Database, komponen ini digunakan untuk mendefenisikan nilai keanggotaan dari himpunan fuzzy dan mekanisme penalaran yang digunakan untuk menghasilkan output dari operasi yang dilakukan terhadap himpunan fuzzy (Jang,1987).

Pada dasarnya input yang diberikan pada fuzzy inference system adalah berupa himpunan tegas dan akan menghasilkan output berupa himpunan fuzzy tergantung kepada situasi dimana fuzzy inference system digunakan. Gambar 2.16 menggambarkan bagaimana proses mulai dari input sampai dengan output yang dimulai dari Fuzzyfikasi, Rule Base, Agregator dan Defuzzyfikasi.

Sumber : Jyh, 1997

Gambar 2.16 Blok diagram dari fuzzy Inference system

(19)

Fuzzyfikasi adalah proses untuk mengubah himpunan crisp menjadi himpunan

fuzzy untuk mencari nilai keanggotaan dalam himpunan fuzzy. Rule base adalah aturan if-then dalam himpunan fuzzy, aggregator adalah operasi dalam himpunan fuzzy dan Defuzzyfikasi adalah proses pengubahan himpunan fuzzy menjadi himpunan tegas.

2.10.1 Model Fuzzy Mamdani

Metode Mamdani sering juga dikenal dengan nama Metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Untuk mendapatkan output, diperlukan 4 tahapan:

1. Pembentukan himpunan fuzzy (Fuzzyfikasi) 2. Aplikasi fungsi implikasi (Rule Base) 3. Komposisi aturan (aggregator) 4. Penegasan (deffuzyfikasi)

1. Pembentukan himpunan fuzzy

Pada Metode Mamdani, baik variabel input maupun variabel output dibagi menjadi satu atau lebih himpunan fuzzy.

2. Aplikasi fungsi implikasi

Pada Metode Mamdani, fungsi implikasi yang digunakan adalah Min. 3. Komposisi Aturan

Tidak seperti penalaran monoton, apabila sistem terdiri dari beberapa aturan, maka inferensi diperoleh dari kumpulan dan korelasi antar aturan. Ada 3 metode yang digunakan dalam melakukan inferensi sistem fuzzy, yaitu: max, additive dan probabilistik OR (probor).

a. Metode Max (Maximum)

(20)

merefleksikan konstribusi dari tiap-tiap proposisi. Secara umum dapat dituliskan:

µ

sf [xi] ← max(µsf[xi], µkf[xi

Dimana :

])

µsf[xi] = nilai keanggotaan solusi fuzzy sampai aturan ke-i; µkf[xi] = nilai keanggotaan konsekuen fuzzy aturan ke-i;

b. Metode Additive (Sum)

Pada metode ini, solusi himpunan fuzzy diperoleh dengan cara melakukan bounded-sum terhadap semua output daerah fuzzy. Secara umum dituliskan:

µsf [xi] ← min(1,µsf[xi] + µkf[xi dengan:

])

µsf[xi] = nilai keanggotaan solusi fuzzy sampai aturan ke-i; µkf[xi] = nilai keanggotaan konsekuen fuzzy aturan ke-i;

c. Metode Probabilistik OR (probor)

Pada metode ini, solusi himpunan fuzzy diperoleh dengan cara melakukan

product terhadap semua output daerah fuzzy. Secara umum dituliskan:

µsf [xi] ← (µsf[xi] + µkf[xi]) - (µsf[xi] * µkf[xi])

dengan:

µsf[xi] = nilai keanggotaan solusi fuzzy sampai aturan ke-i;

µkf[xi] = nilai keanggotaan konsekuen fuzzy aturan ke-i;

4. Penegasan (defuzzyfikasi)

Input dari proses defuzzifikasi adalah suatu himpunan fuzzy yang diperoleh dari

komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu

bilangan pada domain himpunan fuzzy tersebut. Sehingga jika diberikan suatu

himpunan fuzzy dalam range tertentu, maka harus dapat diambil suatu nilai

crsip tertentu sebagai output seperti terlihat pada Gambar 2.17.

...(2.36)

...(2.37)

(21)

Sumber Jang/www.trensain.com/fuzzy.htm

Gambar 2.17. Proses Defuzzyfikasi

Ada beberapa metode defuzzifikasi pada komposisi aturan Mamdani, antara lain: a. Metode Centroid (Composite Moment)

Pada metode ini, solusi crisp diperoleh dengan cara mengambil titik pusat (z*) daerah fuzzy. Secara umum dirumuskan:

b. Metode Bisektor

Pada metode ini, solusi crisp diperoleh dengan cara mengambil nilai pada domain fuzzy yang memiliki nilai keanggotaan setengah dari jumlah total nilai keanggotaan pada daerah fuzzy. Secara umum dituliskan:

...(2.39)

(22)

c. Metode Mean of Maximum (MOM)

Pada metode ini, solusi crisp diperoleh dengan cara mengambil nilai rata-rata domain yang memiliki nilai keanggotaan maksimum.

d. Metode Largest of Maximum (LOM)

Pada metode ini, solusi crisp diperoleh dengan cara mengambil nilai terbesar dari domain yang memiliki nilai keanggotaan maksimum.

e. Metode Smallest of Maximum (SOM)

Pada metode ini, solusi crisp diperoleh dengan cara mengambil nilai terkecil dari domain yang memiliki nilai keanggotaan maksimum.

2.10.2 Model Fuzzy Sugeno

Penalaran dengan metode Sugeno hampir sama dengan penalaran Mamdani, hanya saja output (konsekuen) sistem tidak berupa himpunan fuzzy, melainkan berupa konstanta atau persamaan linear. Metode ini diperkenalkan oleh Takagi-Sugeno Kang pada tahun 1985.

a. Model Fuzzy Sugeno Orde-Nol

Secara umum bentuk model fuzzy Sugeno Orde-Nol adalah:

IF (x1 is A1) • (x2 is A2) • (x3 is A3) • ... • (xN is AN) THEN z=k

Dengan Ai adalah himpunan fuzzy ke-i sebagai anteseden, dan k adalah suatu konstanta (tegas) sebagai konsekuen.

b. Model Fuzzy Sugeno Orde-Satu

Secara umum bentuk model fuzzy Sugeno Orde-Satu adalah:

IF (x1 is A1) • ... • (xN is AN) THEN z = p1*x1 + … + pN*xN + q

dengan Ai adalah himpunan fuzzy ke-i sebagai anteseden, dan pi adalah suatu konstanta (tegas) ke-i dan q juga merupakan konstanta dalam konsekuen. Apabila komposisi aturan menggunakan metode Sugeno, maka deffuzifikasi dilakukan dengan cara mencari nilai rata-ratanya.

...(2.41)

(23)

2.10.3 Mode Fuzzy Tsukamoto

Pada Metode Tsukamoto, setiap konsekuen pada aturan yang berbentuk IF-Then harus direpresentasikan dengan suatu himpunan fuzzy dengan fungsi keanggotaan yang monoton (Gambar 2.18). Sebagai hasilnya, output hasil inferensi dari

tiap-tiap aturan diberikan secara tegas (crisp) berdasarkan α-predikat (fire strength). Hasil akhirnya diperoleh dengan menggunakan rata-rata terbobot.

Sumber Jang/www.trensain.com/fuzzy.htm

Gambar 2.18.Inferensi dengan menggunakan Metode Tsukamoto

2.11 Kepuasan Konsumen

Secara umum, kepuasan (satisfaction) adalah perasaan senang atau kecewa seseorang

yang timbul karena membandingkan kinerja yang dipersepsikan terhadap ekspektasi

mereka, dimana jika kinerja sesuai dengan ekspektasi, maka pelanggan akan puas

dan jika kinerja melebihi ekspektasi maka pealanggan akan merasa sangat puas atau

senang dan juga sebaliknya jika kinerja tidak sesuai dengan ekspektasi maka

konsumen akan merasa tidak puas atau kecewa (Kotler, 2009).

(24)

marketing menetapkan ekspektasi yang rendah akan mengurangi minat konsumen, namun demikian bahwa untuk peningkatan kepuasan konsumen dengan menambah infrastuktur juga akan berdampak pada peningkatan pendanaan, sementara perusahaan juga memiliki stakeholder (pemangku kepentingan) termasuk karyawan dan juga pemegang saham. Untuk itu perusahaan harus meningkatkan kepuasan konsumen dan kepuasan stakeholder dengan sumberdaya yang dimiliki.

Ada sejumlah metode untuk mengukur kepuasan konsumen seperti melakukan survei berkala yang dapat melacak kepuasan pelanggan secara langsung dan juga mengajukan pertanyaan tambahan apakah mereka akan menggunakan layanan kita kembali dan juga ketersediaan mereka untuk merekomendasikan perusahaan kita kepada orang lain.

Gambar

Gambar 2.1. Nilai Keanggotaan Himpunan Fuzzy
Gambar 2.2 Himpuna Lambat, Cepat dan Sangat Cepat
Gambar 2.3. Himpunan fuzzy untuk kecepatan
Gambar 2.4 Representasi Linier Naik
+7

Referensi

Dokumen terkait

Atribut yang dinilai cukup oleh pelanggan berdasarkan hasil pengukuran IKM UPT, yaitu: 1) efektivitas dan efisiensi pelayanan; 2) kesopanan, keramahan, dan keadilan

Awal masukya Gereja Masehi Advent Hari Ketujuh di Desa Ambia Pada tahun 1942, dirintis oleh seorang Evangelis yang bernama Jeremia Pasirumang. Evangelis ini mengajarkan

Guru membagi siswa menjadi 7 kelompok yang terdiri dari 4-5 siswa. Guru membagikan LKS kepada setiap siswa. Kemudian guru meminta siswa membaca wacana yang terdapat dalam

agar peiepasan bahan obat dari bahan dasar

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber.arya tulis ini tanpa mencantumkan dan menyebutkan

forulation produces &#34;iscuits that are not si!nificantl$ different fro &#34;iscuits 3ithout su&#34;stitution (control) of the de2elopent 2olue and color or!anoleptic% The

Dari hasil penelitian dapat di simpulkan bahwa siswa melakukan bolos sekolah karena merasa malas atau tidak suka terhadap salah satu mata pelajaran dan suasana kelas yang

Hasil penelitian ini menjelaskan bahwa internet merupakan media yang paling sering digunakan oleh remaja di Salatiga dalam mencari informasi dan hal ini menandakan bahwa