• Tidak ada hasil yang ditemukan

Pendekatan Analitik dan Empirik

N/A
N/A
Protected

Academic year: 2018

Membagikan "Pendekatan Analitik dan Empirik"

Copied!
36
0
0

Teks penuh

(1)
(2)

Pendekatan Analitik dan Empirik

• Mobile Radio Channel Characterisation

• Theoretical approach

– Free space loss

– Plane earth path loss

– Diffraction loss

• Empirical/prediction approach

– Okumura-Hatta - Blomquist-Ladel

– Lee - Alsebrook

– Egli - Ibrahim Parson

• Measurement of large scale and application in coverage prediction

(3)

MODEL PROPAGASI SISTEM SELULAR

Model untuk memperkirakan redaman :

• Model teoretis

• Model empiris

• Model Lee

• Persamaan Umum Redaman Propagasi

• Perkiraan Titik demi Titik

• Model Okumura-Hatta

• Faktor Koreksi Undulasi

• Faktor Koreksi Kemiringan

Model Teoretis Sederhana

h1

(4)

Karakterisasi Propagasi

Mobile Radio Propagasi

Large-scale propagation

Small-scale propagation

Mean signal

Signal Variation

Time

spreading of

signal

Time

variation of

channel

•Theoretical approach

•Empirical/prediction approach

•Statistical modelling

(5)

Model Teoretis Sederhana

Daya yang diterima melalui gelombang langsung :

Pt = Daya pancar

Gt = Gain antena pemacar (BS)

Gt = Gain antena penerima (MS)

d = Jarak pemancar - penerima

= Panjang gelombang yang dipakai

Daya yang diterima melalui gelombang langsung dan gelombang pantul:

(6)

Model Teoretis Sederhana

Dengan menurunkan persamaan dalam tanda mutlak, maka diperoleh persamaan sederhana sebagai berikut :

Persamaan tersebut menghasilkan dua kondisi yang sesuai dg percobaan, yaitu :

• Path loss sebesar 40 dB / dekade (sebanding dengan d-4) atau 12 dB /

oktaf.

Penambahan path loss dari jarak d1 ke d2 = 40 log d2/d1

• Pertambahan gain sebesar 12 dB/dekade atau 6 dB/oktaf untuk setiap

penambahan ketinggian antena BS.

Penambahan gain antena dari h1 ke h2 = 20 log h2/h1

Sedangkan hasil yang tidak sesuai dg percobaan dan perlu faktor koreksi , yaitu:

• Tidak terdapat faktor interferensi (pjg gel.)

Rumus empiris : Pr = f-n dengan 2 < n < 3

• Teoretis : penambahan tinggi antena pada MS : 6 dB/oktaf

empiris : pengurangan tinggi antena 1/2 - nya : gain berkurang 3 dB.

(7)

Theoretical approach

Free space formula

Received power density at distance

d

when Tx antena gain

G

t

is

Received power when Rx antenna gain

G

t

is

(8)

Plane earth propagation

Ratio of Rx/Tx power is

(9)

Diffraction Loss

The difference of path length between direct and diffracted ray is

T

x

d

R

x

1

d

2

h (positif)

T

x

d

1

d

2

R

x

h (negatif)

2 1

2 1

2

d

d

d

d

(10)

Fresnel zone (path clearance)

The phase difference when

h

<<

d

1

and

h

<<

d

2

is

with

v

is diffraction parameter which can be expressed as

The n-th Fresnel zone is area between Tx and Rx inside the

ellipsoide with radius of its cross section of

r

n

where

(11)

Diffraction Loss

Diffraction loss can be computed from

When v=0 (h=0) diffraction

loss is 6 dB above free space loss

When v=-0.8 diffraction

loss is negligible (56 % of

The 1

st

Fresnel zone is clear)

v

0

4

8

12

16

20

24

(12)

Empirical Prediction Approach

Based on signal measurement

– Okumura - Blomquist-Ladel

– Lee - Alsebrook

– Egli - Ibrahim-Peterson

Mathematical Formulation based on signal measurement

– Hatta (Japan)

(13)

Okumura Model

• Okumura develop propagation model based on extensive signal measurements in Kanto (near Tokyo) areas.

• Propagation environments are classified into:

• Urban areas (highly dense populated areas)

• Suburban areas (moderate population)

• Open/rural areas (few population, rare building/structure)

• Okumura develop propagation loss (mean and variance) in the form of curves of propagation loss vs distance for different parameters, such as frequencies, antenna heights, ground curvature/undulation, etc).

(14)

• Masaharu Hatta makes use of Okumura model and transform Okumura curves into Hatta mathematical formulas, therefore the name of Okumura-Hatta model.

• Project COST - 231 in Europe further develop mathematical formula of Hatta model for use in DCS/PCS frequencies (1800 MHz).

• Hatta model is valid for urban area, and corrections factors are provided for suburban and open areas.

• Hatta dan COST-231 models are the most common models used in cellular system due to their simple use with reasonable accuracy.

(15)

Okumura

Hatta Model

Lp(open) = Lp(urban) –4.78(logf)2 + 18.33 log f40.94

For urban area:

(16)

Model Okumura - Hatta

• Okumura melakukan percobaan di daerah Tokyo dg menggunakan :

• Tinggi antena BS : 200 m

• Tinggi antena Ms : 3 m

• Hatta menyatakan hasil percobaan Okumura dalam bentuk persamaan :

KLASIFIKASI

DAERAH

PELAYANAN

RUMUS REDAMAN PERAMBATAN

Urban Area

Lu = 69,55 +26,16 log fc – 13,82 log hb – a (hm) + (44,9 – 6,55 log hb) log R………..(dB)

Faktor koreksi untuk tinggi antena stasiun mobil

yang bergantung kepada tipe daerah urban yang

dibagi sebagai berikut :

Medium – small city :

a (hm) = (1,1 log fc – 0,7) hm – (1,56 log fc – 0,8) ….(dB)

Large City

a (hm) = 8,29 (log fc 1,54 hm)2 – 1,1 , fc < 200 MHz

a (hm) = 3,2 (log fc 11,75 hm)2 – 4,97 , fc > 400 MHz

Sub Urban Area Lsu = Lu (urban area) – 2 [log (fc/28)]2 – 5,4 ….(dB)

Open Area Lo = Lu (urban area) – 4,78 (log fc)2 + 18,33 log fc – 40,94 ….(dB)

Keterangan :

fc = frekuensi kerja yang berharga : 150 MHz – 1500 MHz

hb = tinggi antena stasiun tetap (RBS) : 30 m – 200 m

(17)

Model Lee...

Dua pendekatan umum untuk menentukan 2 parameter tsb. :

• Jika tipe daerah atau struktur bangunan tidak sama dengan hasil

pengukuran yang telah ditabelkan di atas, maka harus dilakukan pengukuran.

r = jarak dari BS ke MS dlm km

ro = jarak dari BS ke MS 1,6 km.

= konstanta propagasi dalam dB/dekade

o = faktor koreksi parameter terhadap keadaan sebenarnya, antara lain

(18)

Model Lee...

Kondisi standar yang digunakan Lee, dalam mencari konstanta propagasi :

• Frekuensi fo : 900 MHz

• Tinggi BS : 30,48 m (100 ft)

• Daya pada antena BS : 10 Watt (40 dBm)

• Gain antena BS : 6 dB terhadap dipole

• Tinggi antena MS : 3 m (6 ft)

• Gain antena MS : 0 dB terhapadap dipole

(19)

Model Lee

(Persamaan Umum)

Perkiraan area ke area menurut Model Lee membutuhkan 2 parameter :

• Daya pada jarak tertentu biasanya 1,6 km / mil (Pro)

• Kemiringan redaman atau path loss slope ( ).

Dua pendekatan umum untuk menentukan 2 parameter tsb. :

(20)

Lee Model

Lee formulated the path loss of being

L

p

[dB] =

L

0

+ log

d

;

with

L

0

is path loss at

d

= 1 km and is the

path loss slope

.

Area L0 [dB] (dB/decade]

Free space 91.2 20

Open/rural area 90.4 43.5

Suburban area 104.3 38.4

New Ark 105.5 43.1

Philadelphia 112.8 36.8

New York City 117.5 48

(21)

Egli Model

Based on Plane Earth Theoretical model with correction factors

Lp [dB] = 120 + 40 log d – 20 log ht 20 log hr +

• Where ht and hr is Tx and Rx antenna height respectively, d is path length and = 20 log (f/40) in dB for correction of carrier frequency.

• Egli model is derived from propagation measurement using the carrier frequencies of between 90 and 1000 MHz.

(22)

Blomquist-Laded Model

This model considers the combination of free space, plane earth,

and diffraction loss models together.

The model is expressed as

Lp [dB] = Lfree space +{(Liplane earth Lfree space)2 + (L

diffraction)2}1/2

For more than one diffraction mechanisms, diffraction loss is

computed using multiple diffraction loss from Bullington, Epstein

Peterson, and Deygout models.

For situation with no diffraction, this model become the plane earth

(23)

Alsebrook Model

• Based on measurement in British cities areas (Birmingham and Bath at frequencies of between 75 and 450 MHz.

• For flat areas Lp [dB] = Lplane earth +LB + , where LB is correction for building and is correction for UHF frequencies.

• For hilly areas Lp [dB] = Lfree space +{(Liplane earth Lfree space)2 + (L

diffraction)2}1/2 + LB

+

• Correction for building is

– Where ho is average height of building, hm is mobile antenna height, effective width of street, and f is carrier frequency

• Correction of carrier frequency is increasing linearly from 0 to 15 dB as frequency increases from 200 to 500 MZ

(24)

Ibrahim-Peterson Model

• Based on measurement in London areas at freq 168 – 900 MHz with Base antenna height 46 m.

• Semi empirical formula based on regression analysis from signal measurement, which is then correlated with plane earth model for corrections.

• Path loss model is Lp [dB] = 40 log d 20 log(hbhm) +

= 20 + f/40 +0.18 L 0.34 H +K

Where

L = land use factor (percentage of area covered by building)

H = terrain factor (different of average ground height between Tx and Rx)

(25)

Path Loss Measurement

The received signal looks like this

• The proper measurement distance is L = 2 because if measurement distance is too short  may not give the mean value (signal still

varying) and if too long  may average out large scale (large scale variation is smoothed out).

• The number of measurement samples n >36 for 90 % confidence interval.

(26)

Regression from Measurement Data

Select several locations at d1

And perform measurement For the mean path loss

Repeat for d2 and d3, etc

Plot the mean value of Path loss as a function of Distance

See next page

Cell site (Tx)

d1 d

2

(27)

Obtain the Mean and Std Deviation

Measurement for urban, suburban, and open areas

At a constant radius,

path loss can be difference

From regression we can

obtain the best fit for the mean as well as the std deviation around the mean

Example for urban : path loss Slope = 33.2 dB/decade and Std dev. = 7 dB

Distance d [km]

(28)

Application in Coverage prediction

• Example at distance d2 = 4 km (see previous page for urban area)

• Path loss at 4 km is 79 dB.

• This path loss is designed for the mean value at 50 % confidence level

Since std. Dev for urban in

this example is 7 dB, therefore to obtain

confidence level of 84 % (1 ) need margin of 7 dB and for confidence of 97.7 % (2 ) need margin of 14 dB

Cell site (Tx)

d1

(29)

JARAK JANGKAU BTS

• Contoh data :

Frekuensi kerja BS : 800 MHz

Sistem modulasi FM dengan F : 12 KHz

Daya pancar BS : 10 Watt

faktor derau : 7 dB

Tinggi antena BS : 40 m

Tinggi antena MS : 1,5 m

Gain antena BS : 8,5 dB

Gain antena MS : 2 dB

Redaman feeder di BS : 3,2 dB per 40

a. Menghitung nilai ambang penerimaan dg keandalan thd. Fading cepat

• kTB = 10 log (1,38 x 10-23 . 300 . 2 (12+3,4) )

= - 128,9 dBm

• Faktor derau= 7 dB

(30)

Perhitungan Jarak Jangkau RBS

• Cadangan fading cepat = 8,7 dB

(untuk keandalan 90 %)

TOTAL = - 103,2 dBm

b. Nilai ambang penerimaan dengan keandalan terhadap fading lambat

Nilai ambang sesungguhnya (misal keandalan didasarkan pada 90% fading cepat dan 90% pada fading lambat) dihitung sbb. :

md = nilai rata-rata sinyal penerimaan pada jarak d dari BS (logaritmik, dBm)

(31)

Perhitungan Jarak Jangkau RBS

c. Redaman di daerah Urban (contoh di daerah urban) :

Nilai fc = 800 MHz,

Tinggi antena BS hb = 40 m

Tinggi antena MS hm = 1,5 m

Redaman dapat dinyatakan sebagai fungsi radius sel sbb. :

L = 69,55 + 26,16 log (800) - 13,82 log 40 - 0 +

(44,9 - 6,55 log (40)) log R

L = 123, 35 + 34,4 log R

d. Jarak jangkau sebuah BS

(32)

Perhitungan Jarak Jangkau RBS

d. Jarak jangkau sebuah BS Jarak jangkau dihitung sbb. :

Pr = Pt - T + Atx - L + Arx - a

-94,36 = 40 - 2,5 8,5 - L + 2 - 3,2

L = 139,16

Dari persamaan di halaman sebelumnya (49) diperoleh :

L = 123,35 + 34,4 log R

R = 2,88 km.

Jarak jangkauan BS tersebut dengan contoh data sederhana yang disajikan di atas menghasilkan radius sel = 2,88 km.

(33)

Contoh persoalan : Model Lee

(Perhitungan Titik Demi Titik)

• Kondisi Dengan Penghalang

Contoh :

Terdapat kontur sbb. :

Frekuensi kerja sistem tersebut = 900 MHz.

Hitung redaman total sistem dengan penghalang tersebut.

5 m 3 m 35 m

25 m

60 m

hp

(34)

Jawaban : Soal Model Lee

(Perhitungan Titik Demi Titik)

• Kondisi Dengan Penghalang

(35)

Example

• A mobile terminal located at the cell’s edge is receiving signal from a BTS in

urban area. The minimum signal level (receicer sensitivity) of the MS is – 100 dBm. BTS Tx power is 10 W at 40 m high, feeder loss at BTS is 7 dB, BTS Tx antenna gain is 13 dB, mobile Rx antenna gain is 3 dB, handset body loss is 3 dB. Operating carrier freq is 1.8 GHz.

– Compute cell radius using Okumura-Hatta Model.

– If it were in free space condition, compute the received signal level at the MS.

Answer

Rx_min = Tx – Lf + Gt – Lu +Gr – LB  Lu=40 -7+13 +100+3-3 = 146 dB

Hatta Lpu=69.55+26.16 log(1.8x103)-13.82 log(40) + [44.9-6.55 log(40)] log R

146 = 154.7 – 22.14 + 34.4 log R  R = 2.5 km (cell radius).

Lfreespace = 32.45 + 20 log (1.8x103) + 20 log (2.5) = 105.5 dB

(36)

Ringkasan

Propagation path loss (Large scale path loss) is a measure of path

loss expressed in terms of the mean value and its variation around

the mean.

Large scale path loss is well known to be lognormally distributed

(Normal distribution in dB scale).

Large scale path loss is useful for prediction of the received signal,

coverage prediction, and hand-off control.

Reliability (confidence level) of the received signal can be computed

Referensi

Dokumen terkait

Demikian Pengumuman Pemenang Lelang ini dibuat dan ditandatangani pada hari, tanggal dan bulan sebagaimana tersebut di atas untuk dipergunakan sebagaimana mestinya.

Peserta yang memasukkan penawaran dapat menyampaikan sanggahan secara elektronik melalui aplikasi SPSE atas penetapan pemenang kepada Pokja dengan disertai bukti

Hasil perhitungan diperoleh hasil signifikansi sebesar 0,891,dimana hasilnya menunjukkan bahwa TBH tidak berpengaruh positif terhadap pembiayaan Mudharabah, Secara Teori

[r]

• Fungsi ini berguna untuk mencari nilai dalam suatu kolom tabel atau digunakan untuk membaca tabel. vertikal dengan mengunakan kunci pembanding, serta ofset kolom yang

dalam Rekonpensi telah melakukan perbuatan melawan hukum karena telah mengolah/mengerjakan beberapa bidang tanah milik para Pembanding semula para Penggugat dalam

his study is outcome of primary survey conducted in the Sangli District, which covers Marketing of Turmeric and suggest remedies to Agricultural Produce Market Committee (APMC)

Sehubungan dengan dilaksanakannya proses evaluasi dokumen penawaran dan dokumen kualifikasi, Kami selaku Panitia Pengadaan Barang dan Jasa APBD-P T. A 2012 Dinas Bina Marga