• Tidak ada hasil yang ditemukan

BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH"

Copied!
13
0
0

Teks penuh

(1)

BAB 4

MODEL MATEMATIKA

PENGARUH TERAPI OBAT

TERHADAP DINAMIKA VIRUS

HIV DALAM TUBUH

Sejak beberapa tahun yang lalu, ilmuwan asal Amerika Martin Nowak dan Sebastian Bonhoeffer mencoba memplot data dari penelitian obat anti-HIV. Data yang didapat menggambarkan penurunan jumlah virus HIV. Nowak menyatakan bahwa daur hidup HIV yang digambarkan oleh diagram model dasar telah terganggu oleh obat anti-HIV. [5]

Model dasar dinamika virus seperti pada sebagian besar persamaan matematika biologi, adalah berbentuk nonlinear. Sistem nonlinear ini adalah sistem persamaan yang sulit untuk dipahami atau dicari solusi analitiknya. Sebaliknya, sistem persamaan linier lebih mudah dicari solusi analitiknya. Dalam hal ini, terapi obat membuat sistem persamaan dinamika virus menjadi linier.

Pembahasan model matematika dinamika virus dengan menggunakan terapi obat, dibagi menjadi dua bagian, yaitu reverse transcriptase inhibitors dan protease

(2)

inhibitors. Disini kita akan membahas model matematika dari masing-masing obat

tersebut. Asumsi yang akan digunakan adalah terapi obat dilakukan pada saat model dasar berada dalam kesetimbangan.

4.1 Reverse Transcriptase Inhibitors

Salah satu jenis obat yang berfungsi sebagai penghambat reproduksi HIV adalah reverse transcriptase inhibitors (RTI). Beberapa jenis obat yang termasuk RTI adalah AZT (zidovudine), ddI (didanosine), ddC (zalcitabine), 3TC (lamivudine), d4T (stavudine), dan lain-lain.

Pada infeksi HIV, reverse transcriptase inhibitors (RTI) bekerja mencegah penularan sel baru. Pada bagian ini, asumsikan bahwa virus HIV yang ada dalam tubuh memiliki jenis virus yang sama. Pertama-tama, anggap bahwa obat tersebut 100% efektif, sehingga kita bisa memasukkan nilai β =0 pada Persamaan 3.1-33, akibatnya dinamika sel terinfeksi dan virus bebas menjadi:

y& = −ay (4.1)

v&=ky uv− (4.2)

Diagram model untuk dinamika virus menggunakan RTI dengan β =0 terdapat pada Gambar 4.1 dibawah ini.

k d Sel Terinfeksi Virus bebas Sel Sehat a u λ

Gambar 4.1 Diagram model dengan reverse transcriptase inhibitors Dinamika Virus HIV

(3)

Berdasarkan diagram diatas, suatu reverse transcriptase inhibitors HIV mencegah partikel virus bebas menginfeksi sel. Kumpulan virus yang menyerbu sel tidak bisa melengkapi tahap reverse transcription, sehingga sel tetap tidak terinfeksi. Model dasar dinamika virus terbagi menjadi dua bagian yang tidak saling berhubungan. Bagian pertama adalah dinamika sel sehat dan bagian kedua menjelaskan dinamika sel terinfeksi dan virus bebas.

Solusi analitik dari Persamaan (4.1) dan (4.2) adalah sebagai berikut:

Solusi analitik pertama RTI

ay y& =− ay dt dy = (4.3) 0 = + ay dt dy (4.4)

Kalikan kedua ruas dengan faktor integrasi eat, yaitu:

0 = +e ay dt dy eat at (4.5)

Perhatikan bahwa ruas kiri dari persamaan diatas, tidak lain adalah ( at)

d ye dt

Pengintergralan menghasilkan solusi:

at

ce t

y( )= − (4.6)

Untuk mencari nilai c, maka kita masukkan nilai awal t = 0, sehingga didapatkan

c y(0)=

Karena terapi obat diasumsikan dimulai dalam keadaan setimbang, maka y(0) = y* sehingga didapatkan solusi analitik pertama adalah

at

e y t

(4)

Solusi analitik kedua RTI v&=kyuv uv ky dt dv − = (4.7)

Substitusikan nilai y(t)yang telah diperoleh sebelumnya, yaitu ke Persamaan (4.7), yaitu: at e y t y( )= * − uv e y k dt dv = −at − ) * ( (4.8) ) * (y e at k uv dt dv+ = − (4.9)

Kalikan kedua ruas pada Persamaan (4.9) dengan faktor integrasi ut, menjadi

e ) * ( at ut ut ut e y k e uv e dt dv e + = − (4.10) t a u ut e ky dt ve d ( ) * ) ( = − (4.11)

Pengintegralan menghasilkan solusi persamaan diferensial:

dt e ky e t v( )= −ut

* (ua)t (4.12) ) * ( ) ( e( ) c a u ky e t v ut u at + − = − − (4.13)

Untuk mencari nilai c, substitusikan nilai awal t = 0 ke Persamaan 4.13, sehingga diperoleh: c a u ky v + − = * ) 0 ( (4.14) a u ky v c − − = (0) * (4.15)

Substitusikan nilai c ke persamaan v(t), menjadi:

) * ) 0 ( * ( ) ( ( ) a u ky v e a u ky e t v ut u at − − + − = − − (4.16)

(5)

ut ut t a u ut e a u ky e v e a u ky e t v − − − − − − + − = * (0) * ) ( ( ) (4.17) ut ut at e a u ky e v e a u ky t v − − − − − + − = * (0) * ) ( (4.18) ut ut at e v a u e e ky t v − − − + − − = *( ) (0) ) ( (4.19)

Karena terapi dimulai dalam keadaan setimbang, maka v(0) = v*, sehingga diperoleh solusi kedua, yaitu:

ut ut at e v a u e e ky t v − − − + − − = *( ) * ) (

Berikut ini adalah grafik fungsi virus bebas dengan menggunakan β =0. Grafik fungsi ini akan dibandingkan dengan simulasi numerik dinamika virus HIV.

0 5 10 15 20 25 30 35 40 45 50 -20 0 20 40 60 80 100 120 140 160 180

Grafik Fungsi Virus Bebas

t(hari) v( t) beta = 0 0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300 t(hari) V ir u s B ebas

Gambar 4.2 Perbandingan grafik fungsi dengan simulasi numerik virus HIV

Perhatikan Gambar 4.2 diatas. Pada gambar tersebut, untuk nilai β =0

terlihat bahwa jumlah virus terus menurun. Pada waktu tertentu, jumlah virus terus mendekati titk nol. Artinya, hampir semua virus tidak bisa menginfeksi sel sehat dan selanjutnya virus lama kelamaan akan mati secara alami. Namun pada kenyataannya, virus HIV dalam tubuh manusia sangat mudah bermutasi bahkan sebelum dilakukan

(6)

terapi obat, sehingga RTI tidak lagi berfungsi untuk virus mutan, sehingga kondisi grafik seperti Gambar 4.2 tidak mungkin terjadi.

Pada kasus yang terjadi, umumnya RTI tidak bekerja secara efektif 100%, oleh karena itu kita harus menempatkan nilai β pada Persamaan (3.1-3.3) yang memenuhi β =sβ dengan 0 < s <1 atau bisa kita tuliskan bahwa β β< . Dengan demikian, akan diperoleh model dinamika virus dengan RTI sebagai berikut:

x&= −λ dx−βxv y& =βxvay

v&=kyuv

Analisis model dan simulasi numerik dengan RTI sama seperti pada model dasar dinamika virus HIV dengan mengganti nilai β menjadi β .

Dibawah ini adalah simulasi numerik persamaan (6-8). Parameter yang digunakan sama seperti pada simulasi numerik model dasar Gambar 3.3.a-3.3.c yaitu : λ=25,

,

0, 2

d = β =0, 01, a=0, 7, k= dan 5 u=0, 9. Akan tetapi nilai β =0.01 diganti dengan nilai yang lebih kecil, misalkan β =0, 0012.

0 5 10 15 20 25 30 35 40 45 50 20 40 60 80 100 120 140 160 180

Grafik Fungsi Virus Bebas

t(hari) v( t) beta = 0,0012 0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300 t(hari) V ir u s B e bas

(7)

Pada Gambar 4.3, terlihat bahwa setelah terapi obat menggunakan RTI, jumlah virus turun menuju ke titik kesetimbangannya. Jika sebelum diberi RTI, jumlah virus setimbang pada angka 178,4, maka setelah terapi obat dengan RTI, jumlah virus dalam keadaan setimbang turun menjadi. Oleh karena itu, jelas bahwa terapi obat dengan RTI pada penderita HIV dapat mengurangi jumlah virus HIV yang berkembang dalam tubuh.

Pada kenyataannya, sampai saat ini belum ada obat yang bisa menyembuhkan HIV dengan sempurna. Sampai saat ini, obat yang diberikan kepada penderita HIV hanya berfungsi untuk menurunkan jumlah virus dan mengurangi gejala-gejala penyakit yang diakibatkan oleh menurunnya sistem kekebalan tubuh manusia. Oleh karena itu, model dengan β =0 tidak sesuai dengan kenyataan pada kasus yang terjadi selama ini. Sehingga, model dengan β =sβ untuk 0 < s <1 lebih mendekati kenyataan pada kasus yang terjadi.

4.2 Protease Inhibitors

Selain RTI, obat pencegah pertumbuhan HIV yang lain adalah protease

inhibitors (PI). Beberapa jenis obat yang termasuk PI adalah amprenavir (Agenerase),

indinavir (Crixivan), lopinavir/ritonavir (Kaletra), ritonavir (Norvir), saquinavir (Fortovase), dan nelfinavir (Viracept), dan lain-lain. Obat ini berfungsi mencegah sel terinfeksi menghasilkan partikel virus yang dapat menular. Partikel virus bebas yang telah dihasilkan sebelum terapi dimulai, untuk sementara akan terus menginfeksi sel sehat, tetapi sel yang terinfeksi akan menghasilkan partikel virus yang tidak menular, yang dinotasikan dengan w, sehingga diperoleh diagram model dinamika virus dengan protease inhibitors adalah sebagai berikut:

(8)

d Sel Terinfeksi Virus infectious Sel Sehat + k a u λ u Virus non-infectious β Protease Inhibitors HIV

Gambar 4.4 Diagram model dengan Protease Inhibitors

Dari diagram model diatas, diperoleh model matematika dinamika virus HIV dengan menggunakan terapi PI yang berupa persamaan diferensial linier. Kita asumsikan bahwa untuk beberapa saat, banyaknya sel sehat (x) dalam tubuh adalah konstan.

y&=βxvay (4.20)

v&= −uv (4.21)

w& =kyuw (4.22)

Persamaan (4.20-4.22) merupakan persamaan diferensial linier, sehingga bisa dicari solusi analitiknya, yaitu:

Solusi analitik pertama PI

uv v&=− uv dt dv − = 0 = + uv dt dv

Kalikan kedua ruas dengan faktor integrasi eut, yaitu:

0 = +e uv dt dv eut ut (4.23)

(9)

( ut)

d ve dt

Pengintegralan menghasilkan solusi:

ut

ce t

v( )= − (4.24)

Untuk mencari nilai c, untuk nilai awal t = 0, diperoleh

c v(0)=

Karena terapi obat diasumsikan dimulai dalam keadaan setimbang, maka v(0) = v* sehingga didapatan solusi analitik pertama, yaitu

ut

e v t

v( )= * −

Solusi analitik kedua PI

y& =βxvay dy

xv ay

dt =β −

Substitusikan nilai v(t)= *v eutkedalam v, yaitu

* ut ( dy ) xv e ay t dt β − = − (4.25) ( ) * ut dy ay t xv e dt β − + = (4.26)

Kalikan kedua ruas dengan faktor integrasi eut, menjadi

( ) ( * ) at dy at ut at e e ay t xv e dt β − + = e (4.27) at ut at e e xv dt ye d ) * ( ) ( = β − (4.28)

Pengintegralan menghasilkan solusi persamaan diferensial:

dt e xv e t y( )= −at

β * (au)t (4.29)

(10)

* ( ) xv ut at y t e ce a u β − − = + − (4.30)

Untuk mencari nilai c, dengan mensubstitusikan nilai awal t = 0 ke Persamaan (4.30) diperoleh: c u a xv y + − = * ) 0 ( β u a xv y c − − = (0) β *

Substitusikan nilai c ke Persamaan (4.30), menjadi:

at ut e u a xv y e u a xv t y − − − − + − = * ( (0) *) ) ( β β (4.31) at at ut e y u a e e xv t y − − − + − − = *( ) (0) ) ( β (4.32)

Dengan nilai awal sel terinfeksi dalam keadaan setimbang yaitu y(0) = y*, maka diperoleh: * ( ) ( ) * ut at at xv e e y t y e a u β − − − − = + −

Solusi analitik ketiga PI

w& =kyuw dw

ky uw

dt = −

Substitusikan solusi analitik ( ) *( ) *

ut at at xv e e y t y e a u β − − − − = + − menjadi * ( ) * ut at at dw xv e e k y dt a u β − − − ⎛ − ⎞ = + − ⎝ e ⎠⎟−uw (4.33)

(11)

* ( ) * ut at at dw xv e e uw k y e dt a u β − − − ⎛ − ⎞ + = + − ⎝ ⎠⎟ (4.34) * ( ) * ut at at dw k xv e e uw ky e dt a u β − − − − + = + − (4.35)

Kalikan kedua ruas pada Persamaan (4.35)

*( ) * ut at ut dw k xv e e at ut e uw ky e dt a u β − − − ⎛ − ⎞ ⎛ += + ⎜ ⎟ ⎜ ⎟ ⎠ ⎝e (4.36) *( ) * ut at ut ut dw ut k xv e e e at ut e uwe ky e dt a u β − − − − + = + − e (4.37) ( ) ( ) ( ) * (1 * ut u a t u a t d we k xv e ky e dt u a β − − − = − − ) (4.38)

Pengintegralan menghasilkan solusi persamaan diferensial

( ) ( ) * (1 ) ( ) ( * ) u a t ut u a t k xv e w t e ky e dt u a β − − − − = − −

(4.39) ( ) ( ) * * ( ) (( ) ( ) ) u a t ut ky u a t k xv e w t e e t c u a u a u a β − − − = − − − − − + (4.40) ( ) ( ) * * ( ) ( ) ( ) u a t ut ky u a t k xv e ut ut w t e e t e ce u a u a u a β − − − − = − − − − − − + (4.41) * * ( ) ( ) ( ) at at ut ut ky k xv e w t e te ce u a u a u a β − − − = − − + − − − − (4.42)

Untuk mencari nilai c, substitusikan nilai awal t = 0 ke Persamaan (4.42) sehingga diperoleh * * 1 (0) ky k xv ( ) w t u a u a u a c β = − − − − − + * * 1 (0) ky k xv ( ) c w t u a u a u a β = − + − − − −

Karena pada awal pembahasan diasumsikan bahwa semua virus mempunyai kemungkinan yang sama dalam menginfeksi sel sehat, maka pada awal terapi, tidak terdapat virus yang tidak menular yaitu w(0) = 0, sehingga diperoleh

(12)

* * 1 ( ) ky k xv c t u a u a u a β = − + − − − −

Substitusikan nilai c yang telah diperoleh ke dalam Persamaan (4.42), sehingga dihasilkan solusi analitik ketiga, yaitu:

* * * * 1 ( ) ( ) ( ) ( ) at at ut ut ky k xv e ky k xv w t e te t e u a u a u a u a u a u a β − β − − ⎛ ⎞ = − − + − + − − − − ⎝ − − − ⎠ −

Untuk mengetahui gambaran menurunnya virus HIV dalam tubuh ketika diberikan terapi obat PI, berikut ini disajikan grafik fungsi yang menggambarkan perbandingan jumlah kedua jenis virus yang dihasilkan oleh sel terinfeksi.

0 5 10 15 20 25 30 35 40 45 50 -20 0 20 40 60 80 100 120 140 160 180

Grafik Fungsi dengan Protease Inhibitors

t(hari)

v(

t)

Virus Menular

(13)

0 10 20 30 40 50 60 70 80 90 100 0

0.5 1 1.5

Grafik Fungsi dengan Protease Inhibitors

t(hari)

v(

t)

Virus Menular

Gambar 4.6 Grafik fungsi virus tidak menular dengan Protease Inhibitor

Parameter yang digunakan pada Gambar 4.5 dan 4.6 sama seperti pada simulasi numerik model dasar Gambar 3.3.a-3.3.c yaitu, β =0, 01, a=0, 7, k= 5 dan serta nilai x yang digunakan adalah nilai kesetimbangan sel sehat, yaitu . Setelah beberapa saat tertentu diberikan protease inhibitors, jumlah virus menular pada Gambar 4.5 terus menurun menuju titik nol. Penurunan virus menular, diikuti oleh kenaikan jumlah virus tidak menular seperti pada Gambar 4.6. Setelah mengalami kenaikan, virus tidak menular terus menurun menuju titik nol karena mati secara alami.

0, 9

u=

12, 6

x=

Model dengan PI seperti yang telah dijelaskan diatas, menggunakan asumsi bahwa obat tersebut bekerja 100% efektif. Akan tetapi pada kenyataannya, obat yang berupa PI tidak bisa bekerja 100% efektif dalam memberantas virus HIV. Hal itu diantaranya dikarenakan virus HIV sangat mudah bermutasi dan akhirnya PI tidak lagi berfungsi, sehingga virus menular akan tetap dihasilkan dan menyerang sel sehat.

Gambar

Gambar 4.1 Diagram model dengan reverse transcriptase inhibitors Dinamika Virus HIV
Grafik Fungsi Virus Bebas
Grafik Fungsi Virus Bebas
Gambar 4.4 Diagram model dengan Protease Inhibitors
+2

Referensi

Dokumen terkait

Karena keberaradaan pemimpin adat di desa tenganan sangat di hormati oleh masyarakat dan juga pemimpin adat di tenganan yang merupakan penguasa wilayah, maka ketika ada

Untuk itu kartu menuju sehat atau KMS dapat digunakan sebagai alat yang baik untuk pendidikan dan memonitor kepedulian orang tua terhadap asupan gizi dan kesehatan

Membandingkan ayat-ayat al Qur'an yang memiliki persamaan, yang membicarakan tentang masalah atau perkara yang berbeza dan yang memiliki redaksi yang berbeza bagi masalah atau

Selanjutnya hasil yang dicapai dari kegiatan yang dilaksanakan pada tahun anggaran 2014 ini secara garis besar telah dapat dilaksanakan, dimana dari kegiatan

Berdasarkan pada Peraturan Menteri Negara Riset dan Teknologi Nomor 03/M/PER/VI/2010 tentang Organisasi dan Tata Kerja Kementerian Riset dan Teknologi, Biro Hukum

Penyusunan Rencana Strategis Kecamatan Badas Kabupaten Kediri 2016-2021 pada dasarnya dilatarbelakangi oleh keinginan untuk menjalankan amanat yang ditetapkan dalam

Larva ikan Kerapu Bebek (C. altivelis) yang dipelihara terus mengalami perkembangan morfologi (organoleptik) setelah diberi pakan rotifera yang terlebih dahulu dikayakan

Perbedaan masa tunas denga wakru generasi yaitu Masa tunas ditentukan oleh masuknya unsur penyebab sampai timbulnya gejala penyakit sehingga tidak dapat ditentukan