• Tidak ada hasil yang ditemukan

3.1 KLASIFIKASI SUMBERDAYA DAN CADANGAN BATUBARA

N/A
N/A
Protected

Academic year: 2021

Membagikan "3.1 KLASIFIKASI SUMBERDAYA DAN CADANGAN BATUBARA"

Copied!
21
0
0

Teks penuh

(1)

III-1

BAB III

DASAR TEORI

3.1 KLASIFIKASI SUMBERDAYA DAN CADANGAN BATUBARA

Klasifikasi sumberdaya dan cadangan batubara berdasarkan BSN, 1999 : • Sumberdaya batubara hipotetik (hypothetical coal resource): jumlah

batubara di daerah penyelidikan atau bagian dari daerah penyelidikan yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap survey tinjau.

• Sumber daya batubara tereka (inferred coal resource): jumlah batubara di daerah penyelidikan atau bagian dari daerah penyelidikan yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap prospeksi.

• Sumberdaya batubara terindiksi (indicated coal resource): jumlah batubara di daerah penyelidikan atau bagian dari daerah penyelidikan yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap eksplorasi pendahuluan.

• Sumberdaya batubara terukur (measured coal resource): jumlah batubara di daerah penyelidikan atau bagian dari daerah penyelidikan yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap eksplorasi rinci.

• Cadangan batubara terkira (probable coal reserve): Sumberdaya batubara terindikasi dan sebagian sumberdaya terukur, tetapi berdasarkan kajian kelayakan semua faktor yang terkait telah terpenuhi sehingga penambangan dapat dilakukan secara layak.

• Cadangan batubara terbukti (proved coal reserve): Sumberdaya batubara terukur yang berdasarkan kajian kelayakan semua faktor yang terkait telah terpenuhi sehingga penambangan dapat dilakukan secara layak.

(2)

III-2 Klasifikasi sumberdaya batubara merupakan upaya pengelompokan sumberdaya batubara berdasarkan keyakinan geologi dan kelayakan ekonomi. Persyaratan jarak titik informasi untuk setiap kondisi geologi dan kelas sumberdaya diperlihatkan pada Tabel III.1.

Tabel III.1.

Jarak titik informasi menurut kondisi geologi (BSN, 1999)

Kondisi

Geologi Kriteria

Sumberdaya

Terukur Terunjuk Tereka Hipotetik

Sederhana jarak titik informasi

(m) x≤500m 500<x≤1000m 1000<x≤1500m

Tidak terbatas Moderat x≤250m 250<x≤500m 500<x≤1000m Tidak terbatas Kompleks x≤100m 100<x≤200m 200<x≤400m Tidak terbatas

Uraian tentang batasan umum untuk masing-masing kondisi geologi diatas adalah sebagai berikut:

1. Kondisi geologi sederhana Dengan ciri sebagai berikut:

a. Endapan batubara umumnya tidak dipengaruhi oleh aktivitas tektonik seperti sesar, lipatan, dan intrusi.

b. Lapisan batubara umumnya landai, menerus secara lateral sampai ribuan meter, dan hampir tidak memiliki percabangan.

c. Ketebalan lapisan batubara secara lateral dan kualitasnya tidak menunjukkan variasi yang berarti.

d. Contoh batubara di Bangko Selatan dan Muara Tiga Besar (Sumsel), Senakin Barat (Kalsel), dan cerenti (Riau).

(3)

III-3 2. Kondisi geologi moderat

a. Endapan batubara sampai tingkat tertentu telah mengalami pengaruh deformasi tektonik.

b. Pada beberapa tempat, intrusi batuan beku mempengaruhi struktur lapisan dan kualitas batubaranya.

c. Dicirikan oleh kemiringan lapisan dan variasi ketebalan lateral yang sedang.

d. Sebaran percabangan batubara masih dapat diikuti sampai ratusan meter. e. Contoh batubara di Senakin, Formasi Tanjung (Kalsel), Loa Janan-Loa

Kulu, Petanggis (Kaltim), Suban dan Air Laya (Sumsel), serta Gunung Batu Besar ( Kalsel).

3. Kondisi geologi kompleks

a. Umumnya telah menglami deformasi tektonik yang intensif.

b. Pergeseran dan perlipatan akibat aktivitas tektonik menjadikan lapisan batubara sulit dikorelasikan.

c. Perlipatan yang kuat juga mengakibatkan kemiringan lapisan yang terjal. d. Sebaran lapisan batubara secara lateral terbatas dan hanya dapat diikuti

sampai puluhan meter.

e. Contoh batubara di Ambakiang, Formasi Warukin, Ninian, Belahiang dan Upau (Kalsel), Sawahluhung (Sumbar), Air Kotok (Bengkulu), Bojongmanik (Jabar), serta daerah batubara yang mengalami ubahan intrusi batuan beku di Bunian Utara (Sumsel).

3.2 PERHITUNGAN SUMBER DAYA DAN CADANGAN BATUBARA

Secara umum, pemodelan dan perhitungan cadangan batubara memerlukan data-data dasar sebagai berikut (Syafrizal, 2006) :

(4)

III-4 ƒ Data penyebaran singkapan batubara (telah disesuaikan dengan format/datum

peta)

ƒ Data dan sebaran titik bor

ƒ Peta geologi lokal (meliputi litologi, stratigrafi, dan struktur geologi)

ƒ Peta situasi dan data-data yang memuat batasan-batasan alamiah seperti aliran sungai, jalan, perkampungan, dan lain-lain.

Data penyebaran singkapan batubara berguna untuk mengetahui cropline batubara, yang merupakan posisi dimana penambangan dimulai. Dari pemboran diperoleh hasil berupa data elevasi atap/roof dan lantai/floor batubara. Peta situasi dan data-data yang memuat batasan-batasan alamiah(aliran sungai, jalan, perkampungan, dan sebagainya) berguna untuk menentukan batas/boundary perhitungan cadangan. Endapan batubara yang tidak dapat ditambang karena batasan-batasan alamiah tersebut tidak diperhitungkan dalam perhitungan cadangan.

Dari data-data dasar tersebut akan dihasilkan data olahan, yaitu data dasar yang diolah untuk mendapatkan model endapan batubara secara 3 (tiga) demensi untuk selanjutnya akan dilakukan penghitungan cadangan endapan batubara. Data olahan ini terdiri atas:

• Peta isopach; merupakan peta yang menunjukkan kontur penyebaran

ketebalan batubara. Data ketebalan pada peta ini merupakan tebal sebenarnya yang dapat diperoleh dari data bor, uji paritan, uji sumur, atau dari singkapan. Peta ini juga dapat disusun dari kombinasi peta iso struktur. Selain itu tujuan penyususnan peta ini adalah untuk menggambarkan variasi ketebalan

batubara di bawah permukaan.

• Peta kontur struktur; menunjukkan kontur elevasi yang sama dari top atau

bottom batubara. Untuk elevasi top atau bottom batubara dapat diperoleh dari

data bor. Peta kontur struktur berguna untuk mengetahui arah umum/jurus masing-masing seam batubara, sekaligus sebagai dasar untuk menyusun peta

isooverburden.

(5)

III-5 batubara. Peta ini berguna untuk menentukan daerah-daerah yang memenuhi syarat kualitas untuk ditambang.

• Peta Iso overburden; menunjukkan kontur ketebalan overburden (lapisan penutup) yang sama. Ketebalan tersebut dapat diperoleh dari data bor atau dari peta iso struktur dimana ketebalan overburden dapat dihitung dari perpotongan kontur iso struktur dengan kontur topografi. Peta Iso overburden cukup penting sebagai dasar evaluasi cadangan selanjutnya, dimana ketebalan tanah penutup ini dapat digunakan sebagai batasan awal dari penentuan pit potensial.

• Penampang geologi; Disusun dari kombinasi antara peta cropline batubara dengan data pemboran (log bor). Perlapisan batubara disusun dengan melakukan interpolasi antar data seam pada setiap titk bor yang berdekatan. Garis penampang sebaiknya selalu diusahakan tegak lurus jurus cropline batubara. Selanjutnya penampang seam batubara berguna untuk memudahkan perhitungan sumberdaya sekaligus cadangan batubara dengan metode mean

area. Selain itu dapat juga digunakan untuk menghitung cadangan tertambang

(mineable reserve) dengan memasukkan asumsi sudut lereng dengan SR.

3.3. METODE PERHITUNGAN CADANGAN

Pemilihan metode perhitungan cadangan didasari oleh faktor geologi endapan, metode eksplorasi, data yang dimiliki, tujuan perhitungan, dan tingkat kepercayaan yang diinginkan.

Berdasarkan metode (teknik/asumsi/pendekatan), maka penaksiran dan perhitungan sumberdaya atau cadangan terdiri dari metode konvensional yang terbagi menjadi dua, yaitu metode penampang vertikal dan metode penampang horizontal.

3.3.1 Metode Penampang Vertikal

(6)

III-6 tanah penutup (overburden) pada penampang-penampang vertikal. Perhitungan luas masing-masing elemen tersebut dilakukan pada masing-masing penampang. Metode penampang vertikal dilakukan dengan cara sebagai berikut (Hustrulid, & kutcha 1995):

a. Penentuan lintasan penampang.

b. Konstruksi penampang (permukaan, geometri endapan, geometri pit, serta faktor pembatas lainnya).

c. Perhitungan luas masing-masing elemen. d. Pemilihan rumus perhitungan.

e. Perhitungan volume dan tonase.

a. Perhitungan volume dengan 1 (satu) penampang

Perhitungan volume dengan menggunakan satu penampang digunakan jika diasumsikan bahwa 1 penampang mempunyai daerah pengaruh hanya terhadap penampang yang dihitung saja. Volume yang dihitung merupakan volume pada areal pengaruh penampang tersebut.

Penam pang 1 Jarak pengaruh Penampang - 1 (d1)

Luas Overburden Pada Penampang - 1

Jarak pengaruh Penampang - 1

(d2)

(7)

III-7 Rumus perhitungan volume dengan menggunakan satu penampang adalah:

dimana : A = luas overburden

d1 = jarak pengaruh penampang ke arah 1 d2 = jarak pengaruh penampang ke arah 2 b. Perhitungan volume dengan 2 (dua) penampang

Perhitungan volume dengan menggunakan dua penampang digunakan jika diasumsikan bahwa volume dihitung pada areal di antara 2 penampang tersebut. Yang perlu diperhatikan adalah variasi (perbedaan) dimensi antara kedua penampang tersebut. Jika tidak terlalu berbeda, maka dapat digunakan rumus mean area dan rumus kerucut terpancung, tetapi jika perbedaannya terlalu besar maka dapat digunakan rumus obelisk.

Penam pang

1

Luas Overburden Pada Penampang - 1

Jarak antara

Penampang-1 & Penampang-2

Luas Overburden Pada Penampang - 2

Penam pang

2

Gambar 3.2. Perhitungan volume menggunakan dua penampang Volume = (A x d1) + (A x d2)

(8)

III-8 Adapun rumus yang digunakan sebagai berikut:

Rumus Mean Area

S1

S2

L

Rumus Kerucut Terpancung

S2 S1 L

(

)

2 2 S + 1 S L V =

S1,S2 = luas penampang endapan

L = jarak antar penampang V = volume cadangan

(

)

V = L

3 S1 + S2 + S1 S2

S1 = luas penampang atas

S2 = luas penampang alas

L = jarak antar S1 dan S2

(9)

III-9 Rumus Obelisk a2 S2 S1 a1 b1 b2

c. Perhitungan volume dengan 3 (tiga) penampang

Metoda 3 (tiga) penampang ini digunakan jika diketahui adanya variasi (kontras) pada areal di antara 2 (dua) penampang, maka perlu ditambahkan penampang antara untuk mereduksi kesalahan. Perhitungan menggunakan rumus prismoida.

Jarak antara Penampang-1 & Penampang-2

Penam pang 1 Penam pang 2

Luas Overburden Pada

Penampang - 1 Luas Overburden PadaPenampang - 2

Penam pang

3

Luas Overburden Pada Penampang - 3

Jarak antara Penampang-2 & Penampang-3

Gambar 3.3. Perhitungan volume menggunakan tiga penampang Rumus prismoida sebagai berikut:

(

S1 + 4M + S2

)

6 L V =

(

) (

)

M = a 1 + a 2 b 1 + b 2 2 2

S1 = luas penampang atas

S2 = luas penampang alas

(10)

III-10 S2 M S1 L 1/2 L

3.3.2 Metode penampang Horizontal

Metode penampang horizontal yang bisa digunakan adalah metode poligon, isoline, triangulasi, dan metode circular USGS 1983.

Metode poligon sebenarnya merupakan contoh penerapan nearest point. Metode poligon adalah suatu perhitungan dengan konsep dasar yang menyatakan bahwa seluruh karakteristik endapan suatu daerah diwakili oleh satu titik tertentu. Jarak titik bor di dalam poligon dengan batas poligon sama dengan jarak batas poligon ke titik bor terdekat. Di dalam poligon nilai kadar diasumsikan konstan sama dengan kadar pada titik bor di dalam poligon (Hustrulid & Kutcha, 1995).

10 2 3 9 8 7 4 5 6 1

Gambar 3.4. Contoh konstruksi metode poligon Perhitungan volume dengan rumus sebagai berikut:

V = A.t dimana V = volume A = luas poligon

t = tebal lapisan batubara di titk conto V = ( S1 + 4M + S2 ) L

6 S1, S2 = luas penampang ujung

M = luas penampang tengah L = jarak antara S1 dan S2

V = volume cadangan

• Titik bor/sumur uji daerah pengaruh

(11)

III-11 Metode isoline adalah suatu metode yang menggunakan prinsip dasar

isoline. Isoline adalah kurva yang menghubungkan titik-titik yang memiliki nilai

kuantitatif sama. Metode ini digunakan dengan asumsi nilai yang berada diantara 2 buah titik kontinu dan mengalami perubahan secara gradual. Volume dapat dihitung dengan cara menghitung luas daerah yang terdapat di dalam batas kontur.

Gambar 3.5. Metode Isoline

Metode triangulasi dilakukan dengan konsep dasar menjadikan titik yang diketahui menjadi titik sudut suatu prisma segitiga. Prisma segitiga diperoleh dengan cara menghubungkan titik-titik yang diketahui tanpa berpotongan.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(12)

III-12 1 2 3 t2 t1 t3

Gambar 3.6. Metode triangulasi (triangular grouping)

3.4 PEMODELAN ENDAPAN BATUBARA DENGAN SOFTWARE

MINESCAPE 4.115c

Tahapan dan kegiatan pemodelan endapan batubara dapat dilaksanakan dengan menggunakan Software Minescape 4.115c. Pemodelan dengan software ini dilakukan dengan aplikasi modul STRATMODEL.

Stratmodel didasarkan pada prinsip umum stratigrafi terutama tentang urutan lapisan yang diendapkan pada suatu periode tertentu yang menerus atau selaras. Urutan lapisan selaras dalam Stratmodel dikenal dengan istilah

conformable sequence. Secara stratigrafi conformable sequence adalah merupakan

suatu paket endapan yang mempunyai karakteristik stratigrafi dan struktural yang sama. Stratmodel dapat membuat suatu model geologi yang terdiri dari beberapa

conformable sequence yang selaras maupun tidak satu sama lainnya.

Dalam Software Minescape 4.115c untuk tahapan pekerjaan model geologi terdiri atas beberapa tahapan sebagai berikut:

• Validasi Data • Topo Model • Schema

• Load Drill hole

• Pemeriksaan Drill hole • Patahan (Jika ada)

Volume = 1

3(t1 + t2 + t3) S

S = luas segitiga 123 t1 , t2 , t3 = ketebalan endapan pada

(13)

III-13 • Model

• Pemeriksaan Model

Dalam Software Minescape 4.115c data yang diperlukan antara lain: • Data topografi (dalam bentuk ASCII atau DXF)

• Data pemboran (survei & litologi) • Data quality (jika ada)

• Data fault / patahan (jika ada) • Data outcrop / singkapan (jika ada) 3.4.1 Topo Model

Topo model merupakan surface topografi yang akan digunakan sebagai batas paling atas dalam pemodelan. Surface topo yang digunakan dapat berupa

surface dari grid, triangle, expression dan lain-lain.

Tahapan pembuatan topo model adalah sebagai berikut: • Memasukkan data topo kedalam design.

• Membuat sheet spesification. • Membuat grid spesification. • Membuat grid file.

• Interpolasi data ke dalam grid. 3.4.2 Schema

Schema adalah salah satu fasilitas dalam Stratmodel yang berfungsi untuk

mendefinisikan stratigrafi dan parameter-parameter model yang akan digunakan sebagai dasar pembuatan model stratigrafi serta pemeriksaan model.

Suatu Schema terdiri dari 9 (sembilan) bagian definisi yang berbeda, yaitu: • Model Parameters

• Modeling Default • Lithology Codes

(14)

III-14 • Elemental Units • Compound Units • Survey • Conformable Sequences • Limits • Faults

Interpolator dalam Minescape • Inverse : Inverse Distance

• Planar : Triangulasi dengan extrapolasi

• Height : Mincom interpolator, inverse distance dan trend • FEM : Finite Element Method

Tabel III.2.

Interpolar Minescape

3.4.3 Drill Hole

Drill Hole dapat diimport melalui modul Stratmodel dan dilakukan

pemeriksaan drill hole yang berfungsi untuk memeriksa data drill hole dengan tujuan untuk menemukan kesalahan-kesalahan dari data tersebut, sebelum dibuat model.

(15)

III-15 • Informasi : statistik dan laporan

• Grafis : kontur, post dan section

Pada saat melakukan pemeriksaan database dibutuhkan dua hal sebagai acuan, yaitu:

• Nama design file dan layer dimana data drill hole disimpan. • Nama schema yang digunakan.

3.4.4 Patahan (Faults)

Faults merupakan sebuah elemen garis dalam design file yang dapat terdiri

dari beberapa vertex hingga maksimum 500 buah. Berbeda dengan elemen garis biasa, patahan pada setiap vertex-nya selain menyimpan data koordinat juga menyimpan data nilai Throw dan Dip (nilai ini didapat pada saat pengukuran patahan di lapangan). Ketentuan untuk membuat sebuah garis patahan adalah bahwa bagian bidang patahan yang naik (Upthrow) berada di sebelah kanan dari garis patahan, kalau dilihat dari arah posisi titik awal ke titik akhir garis tersebut.

(16)

III-16 3.4.5 Model

Pembuatan model dapat dilakukan pada modul Stratmodel. Pemeriksaan model dapat dilakukan baik terhadap table file maupun grid file. Model dari table

file biasanya digunakan bila jumlah data drill holes tidak terlalu banyak, hal ini

disebabkan karena mengolah random data prosesnya sangat lambat terutama jika menyangkut jumlah data yang besar. Oleh karena itu untuk jumlah data yang banyak, akan lebih efisien jika kita memeriksa model grid. Contoh model endapan batubara dapat dilihat pada Gambar 3.8.

Gambar3.8.

Contoh Model Endapan Batubara

3.4.6 Contour

Contour merupakan tampilan garis kontur dari setiap interval yang

didefenisikan dalam schema. Dapat dibuat dari modul Stratmodel dan dibuat untuk setiap interval maupun surface.

(17)

III-17 3.4.7 Quality

Quality adalah definisi untuk menentukan semua parameter yang

berhubungan dengan suatu nilai kualitas batubara tertentu dan akan diakses oleh semua modul Minescape yang berhubungan dengan quality.

Import Quality Data

Data quality dapat dimasukkan ke dalam Minescape tabel dengan berbagai macam format seperti Miner2 atau format yang dibuat pengguna.

Terdapat dua metoda dalam memasukkan data quality:

– Memasukkan data ASCII quality dengan menyertakan koordinat X,Y ke dalam tabel (disebut ASCII Load).

– Memasukkan data ASCII quality yang berkaitan dengan data koordinat drill

hole dan interval ke dalam tabel atau mempergunakan data koordinat drill hole (disebut DH - Load Predefined atau DH - User Defined).

Komposit Quality

Komposit dapat dilakukan terhadap semua interval dengan menggunakan koordinat untuk menentukan letak surface atau dapat dilakukan menggunakan lokasi drill hole dan data interval.

Komposit quality melaksanakan 3 (tiga) fungsi yang penting, yaitu:

– Ply - per - ply data dikompositkan kedalam seam, dapat pula termasuk dilution.

– Format data yang asli diformat ulang kedalam format yang sesuai untuk pemeriksaan langsung dari nilai quality interval, misalnya membuat kontur A seam Ash.

– Membuat tabel surface yang akan dibutuhkan pada saat penghitungan reserve dilakukan.

(18)

III-18 Output grafis dari quality adalah berupa kontur quality atau table quality. Kemudian kontur quality dan kontur interval (untuk setiap interval) di-overlay untuk mendapatkan pit potensial berdasarkan batasan parameter kualitas batubara.

III.4 PERHITUNGAN SUMBER DAYA DAN CADANGAN DENGAN SOFTWARE MINESCAPE 4.115c

Penghitungan cadangan dilakukan dengan aplikasi modul OPEN CUT, dengan beberapa tahapan, yaitu:

• Penentuan pit potensial.

• Pembuatan blok tambang dengan spesifikasi ukuran tertentu. • Penghitungan cadangan per blok tambang.

• Akumulasi cadangan seluruh blok.

Dalam menentukan jumlah cadangan per blok tambang, aplikasi modul Open Cut akan menggunakan tahapan berikut:

– Penghitungan luas area batubara per blok; luas areal yang dihitung merupakan luas areal yang memiliki seam batubara, sedangkan daerah yang tidak memiliki batubara tidak dihitung.

– Penghitungan volume batubara per blok; luas areal tersebut akan dikalikan dengan ketebalan sebenarnya (true thickness) dari seam batubara sehingga didapat volume seam batubara per blok.

– Penghitungan insitu mass per blok; volume batubara per blok akan dikalikan dengan relatif density blok yang didapat dari quality model.

(19)

III-19 3.5 KONSEP PENENTUAN KONDISI BATAS UNTUK

PERHITUNGAN CADANGAN

Geometri lereng merupakan salah satu faktor penting dalam perhitungan cadangan. Hal ini berkaitan dengan perhitungan ekonomi cadangan bahan galian tersebut. Penentuan letak pit limit, desain pit, serta besar sudut lereng yang dibuat merupakan faktor-faktor yang perlu diperhatikan. Untuk mentukan pit limit, dapat digunakan perhitungan stripping ratio. Dengan melihat volume overburden yang harus dikupas untuk mendapatkan tonase batubara, maka diketahui pada pit limit mana dapat menghasilkan keuntungan.

Pit limit sebagai salah satu kondisi batas untuk perhitungan cadangan perlu

didefenisikan dengan menggunakan model. Gambar3.9. menunjukkan cara menggunakan pit limit untuk mendapatkan final pit dengan memperhitungkan faktor ekonomi. Perhitungan dilakukan secara berulang-ulang hingga mendapatkan stripping ratio yang sesuai. Dengan mengekspresikannya dalam suatu model, maka geometri pit limit dapat di ubah-ubah untuk menghasilkan

stripping ratio yang diinginkan.

Gambar 3.9.

(20)
(21)

Gambar

Tabel III.1.
Gambar 3.1. Perhitungan volume menggunakan satu penampang
Gambar 3.2. Perhitungan volume menggunakan dua penampang Volume = (A x d1) + (A x d2)
Gambar 3.3. Perhitungan volume menggunakan tiga penampang
+6

Referensi

Dokumen terkait

Walaupun pada penelitian ini tidak terdapat hubungan yang bermakna/signifikan (p-value &gt; 0,05) antara konsumsi susu denga osteopenia, akan tetapi ada

Lampiran: Gambar 4 Penari perempuan dan penari laki – laki beserta pimpinan sanggar Dapur Seni Fitria Kota Cimahi

Pada hari ini Jum’at tanggal Tiga Puluh Satu bulan Oktober tahun Dua Ribu Empat Belas bertempat di Kantor Unit Layanan Pengadaan Pemerintah Provinsi Jawa Barat Jalan

Secara teoritis hasil penelitian pelatihan ladder practice berpengaruh terhadap peningkatan kecepatan dan dapat dijelaskan sebagai berikut: pelatihan ladder

Ditambah lagi dengan sisa ketidakefisienan yang mewarnai aparat pemerintahan Portugal serta peraturan untuk akuntabilitas yang baru dan berlebihan, yang hasilnya adalah kelumpuhan

Hasil pengamatan peredaman radikal bebas DPPH dari ekstrak Etanol wortel lokal secara kualitatif (reaksi warna) dapat dilihat pada Gambar 1. Analog untuk wortel impor,

Keterlibatan pembangunan berkelanjutan di bidang air minum dalam tahap ini menjadi bagian terpenting dalam mengembangkan keterlibatan warga negara dalam pembangunan

Karena tidak didapatkan pengaruh yang signifikan antara turnover intension dan konflik santri-keluarga terhadap kepuasan studi di pondok pesantren maka perl dilakukan