• Tidak ada hasil yang ditemukan

BAB II - Perkuatan Struktur Beton Bertulang Pasca Kebakaran (Studi Kasus di Gedung Fakultas Matematika dan Ilmu Pengetahuan Alam)

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB II - Perkuatan Struktur Beton Bertulang Pasca Kebakaran (Studi Kasus di Gedung Fakultas Matematika dan Ilmu Pengetahuan Alam)"

Copied!
26
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 Beton Bertulang

Beton terdiri atas agregat, semen dan air yang dicampur bersama-sama dalam keadaan plastis dan mudah untuk dikerjakan. Sesaat setelah pencampuran, pada adukan terjadi reaksi kimia yang pada umumnya bersifat hidrasi dan menghasilkan sesuatu pengerasan dan pertambahan kekuatan (Ahmad, 2009). Beton memiliki sifat utama, yaitu relatif kuat menahan beban tekan, namun lemah terhadap beban tarik. Sedangkan baja tulangan memiliki sifat utama, yaitu relatif kuat menahan beban tarik, namun lemah terhadap tekan. Berdasarkan sifat dari kedua bahan tersebut, beton dan baja tulangan dapat dipadukan menjadi satu-kesatuan menjadi material komposit yang disebut beton bertulang.

Beton bertulang mempunyai sifat sesuai dengan sifat bahan penyusunnya, yaitu sangat kuat terhadap beban tarik maupun beban tekan. Beban tarik pada beton bertulang ditahan oleh baja tulangan, sedangkan beban tekan cukup ditahan oleh beton (Asroni, 2010). Sehingga, penggunaan beton bertulang pada komponen strukural bangunan seperti balok, dapat menahan gaya tekan maupun tarik secara bersamaan akibat berat sendiri ataupun pengaruh gaya aksial.

(2)

masuk ke bagian dalam struktur beton tersebut. Pada struktur beton bertulang, tebal selimut beton harus memenuhi kriteria perencanaan tebal selimut minimum yang mana telah diatur nilai untuk masing-masing komponen struktur berdasarkan jenis beton bertulang itu sendiri. Tebal selimut beton sangat berpengaruh terhadap besar nilai tegangan leleh baja jika terjadi peningkatan temperatur pada permukaan struktur. Pada suatu kondisi dimana tingginya temperatur yang dapat mencapai lebih dari 500 0C dapat mengurangi kuat tekan beton dan tegangan leleh baja secara signifikan. Ditambah dengan besar gaya luar yang bekerja pada struktur seperti, gaya aksial, lentur dan geser, maka dapat berpotensi menyebabkan keruntuhan struktur bangunan.

2.2 Elemen Struktur Gedung

(3)

2.2.1 Balok

Balok adalah elemen struktur yang dirancang sebagai pendukung beban vertikal dan horizontal. Beban vertikal yaitu beban mati dan beban hidup yang bekerja di sepanjang bentang balok seperti, pelat, dinding penyekat, termasuk berat sendiri balok tersebut. Sedangkan beban horizontal yaitu beban angin dan beban gempa yang suatu waktu dapat terjadi pada struktur.

(4)

Tabel 2.1. Tebal Minimum Balok Non-Prategang Atau Pelat Satu Arah Bila Lendutan Tidak Dihitung (SNI 03-2847-2002)

Resultan tegangan tarik baja, T:

T = As fy

dimana As adalah luas penampang tulangan (mm2) dan fy adalah tegangan tarik

baja (MPa).

Resultan tegangan tekan beton, c: c = 0,85f’c a b

(5)

Dengan menerapkan persamaan keseimbangan, diperoleh momen batas (ultimate):

Mn = T x jd = c x jd

Dimana jd adalah tinggidari titik berat gaya c terhadap posisi baja tulangan.

Menurut SNI 03-2847-2002 tentang Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung, persyaratan kekuatan lentur untuk balok dengan tulangan tunggal adalah:

Mu ≤ ϕ Mn

Dimana ϕ untuk lentur murni adalah 0,8

Gaya-gaya pada balok dengan tulangan tunggal akibat lentur dapat dilihat pada gambar berikut.

(6)

Dengan menetapkan harga regangan beton, c = 0,003 dalam kondisi batas (ultimate), ada tiga jenis kemugkinan keruntuhan yang terjadi, yaitu:

1) Keruntuhan tarik (under-reinforced)

Keruntuhan tarik terjadi bila regangan pada baja tulangan lebih besar dari regangan lelehnya, yang berarti regangan tarik baja telah mencapai titik leleh sedangkan regangan tekan beton belum mencapai regangan batas 0,003, atau s = y tetapi c’ cu’. Pada kondisi keruntuhan ini, penampang balok memiliki rasio tulangan (⍴) yang kecil. Persamaan keseimbangan dapat dilihat sebagai berikut.

Maka,

(

)

⍴ (

)

(7)

2) Keruntuhan tekan (over-reinforced)

Keruntuhan tekan terjadi bila regangan pada baja tulangan lebih kecil dari regangan lelehnya, yang berarti regangan tekan beton telah mencapai regangan batas 0,003 sedangkan regangan tarik baja tulangan belum mencapai titik leleh, atau c’ = cu’ tetapi s y. Pada kondisi keruntuhan ini, penampang balok memiliki rasio tulangan (⍴) yang besar.

( )

( )

karena a = β1 c, maka:

( )

Persamaan keseimbangan:

( )

( )

Dari kedua harga di atas, diambil nilai a yang paling kecil, sehingga diperoleh:

(8)

3) Keruntuhan seimbang (balanced reinforced)

Keruntuhan seimbang terjadi bila regangan pada baja tulangan mencapai titik leleh bersamaan dengan regangan beton yang telah mencapai regangan batas 0,003, atau c’ = cu’ dan s = y. Pada kondisi keruntuhan ini, beton dan rasio tulangan seimbang (balance).

dimana cb adalah tinggi garis netral pada kondisi seimbang.

(

)

( )

Dari persamaan keseimbangan:

Dalam keadaan keruntuhan seimbang:

(9)

( ) ( )

Jika modulus elastisitas baja, Es = 200000 Mpa, diperoleh:

( ) ( )

2.2.2 Kolom

Kolom adalah batang tekan vertikal dari rangka (frame) struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi bawah hingga akhirnya sampai ke tanah memalui pondasi (Negara, 2009). Berdasarkan bentuk dan susunan tulangan, kolom dibedakan menjadi:

1) Kolom segi empat dengan tulangan memanjang dan sengkang

2) Kolom bulat dengan tulangan memanjang dan tulangan lateral berbentuk spiral

3) Kolom komposit yang terdiri dari beton dan baja profil di dalamnya

(10)

Keruntuhan pada kolom struktural seharusnya dihindari karena mengakibatkan risiko runtuhnya komponen struktur di atasnya yang dipikul kolom tersebut. Risiko fatal yang dapat terjadi adalah keruntuhan batas total (ultimate total collapse) beserta keseluruhan bangunan. Beban aksial yang terjadi pada kolom sangat dominan, sehingga berpengaruh terjadinya keruntuhan tekan tergantung besarnya beban yang diterima. Apabila beban bertambah, maka akan terjadi perubahan mikrostruktur pada sisi luar kolom berupa retak-retak di lokasi tulangan sengkang. Pada batas keruntuhan (limit state of failure), selimut beton akan terpisah dari tulangan sengkang, sehingga tulangan memanjang mulai terlihat. Apabila beban semakin bertambah, akan terjadi tekuk lokal (local buckling) pada tulangan memanjang, sehingga pada kondisi ini kolom telah

mencapai batas keruntuhan, dimana daya lekat beton dan baja tulangan telah hilang.

Kolom dibedakan menjadi 2 jenis berdasarkan angka kelangsingan, yaitu:

o Kolom pendek ;

o Kolom langsing ;

2.2.2.1 Kolom pendek

Kapasitas beban sentris maksimum pada kolom diperoleh dari kontribusi beban yang dipikul beton sebesar Pc = (Ag – Ast) 0,85f’c, dan beban yang dipikul

baja sebesar Ps = Ast fy. Dengan demikian, diperoleh beban sentris maksimum

(11)

P0 = 0,85f’c(Ag – Ast) + Ast fy

dimana, Ag = luas bruto penampang beton

Ast = luas total baja tulangan = As+ A’s

Namun, pembebanan sentris (e = 0) hampir tidak mungkin terjadi pada strukur aktual, karena dipengaruhi beberapa faktor seperti, ketidaktepatan letak dan ukuran kolom, perbedaan besar beban pada pelat di sekitar kolom, dan sebagainya. Berikut persamaan besar beban aksial nominal Pn dengan

eksentrisitas e yang bekerja pada kolom dengan penulangan simetris yang mengalami beban eksentris.

Pn = 0,85f’c ba + A’sf’s– As fs

Mn = Pne = 0,85f’c ba(y –

a

/

2) + A’sf’s(y –d’) – As fs(d - y)

dimana, a = tinggi blok tegangan ekuivalen = β1c

f’s = tegangan baja pada kondisi tekan

fs = tegangan baja pada kondisi tarik

Mn = momen tahanan nominal

Peraturan SNI-03-2847-2002 mensyaratkan faktor reduksi untuk kapasitas beban aksial nominal pada kolom. Besar beban aksial nominal kolom Pn pada

(12)

ϕPn (max) = 0,80ϕ [0,85f’c(Ag – Ast) + Ast fy]

untuk kolom bersengkang dengan faktor reduksi sebesar 20 %, dan ϕPn (max) = 0,85ϕ [0,85f’c(Ag – Ast) + Ast fy]

Untuk kolom berspiral dengan faktor reduksi sebesar 15 %.

Gambar 2.3. Tekan Eksentris, Kekuatan Batas (Winter, 1993)

2.2.2.2 Kolom langsing

Kolom langsing memiliki angka kelangsingan melebihi batas dari kolom pendek dimana kolom ini akan mengalami tekuk (buckling) sebelum mencapai batas keruntuhan materialnya. Hal ini dipengaruhi oleh adanya momen tambahan akibat PΔ, dimana P adalah beban aksial yang terjadi pada kolom, dan Δ adalah defleksi kolom yang tertekuk pada penampang yang ditinjau.

Menurut peraturan ACI 318, nilai faktor panjang efektif k dapat ditentukan berdasarkan hal berikut.

(13)

k = 0,7 + 0,05 (ψA + ψB) ≤ 1,0

k = 0,85 + 0,05 ψ min ≤ 1,0

harga k yang diambil adalah nilai terkecil dari kedua persamaan di atas.

Dimana, ψA = faktor jepitan kolom atas

ψB = faktor jepitan kolom bawah

ψmin = faktor jepitan terkecil antara ψA dan ψB

persamaan untuk faktor jepitan ψ adalah:

balok (unbraced system) yang tertahan pada kedua ujung kolom.

(14)

3) Batas atas faktor panjang efektif k untuk batang tekan tanpa pengaku (unbraced system) yang kedua ujung sendi-sendi.

k = 2,0 + 0,3 ψ

2.3 Pengaruh Temperatur Tinggi Terhadap Sifat Fisis Beton Bertulang

Pengaruh yang ditimbulkan kebakaran terhadap struktur terutama beton dapat secara langsung dilihat melalui pengamatan visual. Hal ini bertujuan untuk mengetahui tingkat kerusakan bangunan secara umum yang terjadi pasca kebakaran. Perubahan kondisi fisik komponen struktur dapat dievaluasi berdasarkan parameter pengamatan yang telah ditentukan sebelumnya seperti, perubahan warna pada permukaan beton, terjadinya spalling dan crazing, serta retak atau cracking. Berikut dijelaskan parameter pengamatan visual yang digunakan, meliputi:

1. Pengamatan permukaan

Jelaga yang melekat pada permukaan beton berupa butir asap yang halus berwarna hitam mengindikasikan bahwa temperatur yang terjadi pada saat kebakaran relatif rendah, karena jika temperatur telah mencapai 800 0C, seluruh jelaga akan terbakar habis tanpa bekas.

2. Perubahan warna

(15)
(16)
(17)

Gambar 2.6. Retak (cracking) Pada Balok

5. Pengamatan lendutan

Pengamatan ini dilakukan terhadap lendutan yang terjadi pada komponen struktur seperti balok dan pelat lantai yang kemudian dikontrol terhadap lendutan izin maksimum.

Setelah dilakukan pengamatan visual berdasarkan perameter diatas, dapat diketahui kondisi keseluruhan bangunan dengan mengklasifikasikan kelas kerusakan pada elemen struktur. Berikut ditunjukkan pada tabel 2.2.

Tabel 2.2. Klasifikasi “Visual Damage”

KELAS ELEMEN TAMPAK PERMUKAAN TAMPAK STRUKTURAL Plesteran Warna Crazing Spalling Tulangan Retak Lendutan

1

tampak Minor Tidak terekspos Tidak

ada Tidak ada

tampak Minor Tidak terekspos

Tidak

tampak Minor Sedikit terekspos

Tidak

ada Tidak ada

(18)

terlepas sudut 25% tetapi tidak tetekuk

ada

Pelat Banyak

terlepas Pink Tampak

Terlihat

terlepas Pink Tampak

Terbatas pada

2.4 Pengaruh Peningkatan Temperatur Terhadap Sifat Mekanis Beton

Pada temperatur tinggi, beton akan mengalami perubahan mikrostruktur atau perubahan komposisi penyusun beton dalam skala kecil yang disebabkan reaksi fisik maupun reaksi kimia dari material penyusun beton tersebut dan sejalan dengan peningkatan temperatur dan lama pemanasan. Untuk pemanasan pada temperatur 100 0C atau lebih, mulai terjadi penguapan air pada pori-pori beton yang secara bersamaan menyebabkan retak mikro pada dinding pori. Selanjutnya jika temperatur semakin meningkat pada temperatur antara 400-600 0

(19)

terus terjadi, juga akan menyebabkan terjadinya perbedaan pemuaian yang sangat besar antara agregat dan pasta semen sehingga retak mikro akan semakin melebar. Penyusutan pasta semen yang disusul dengan retak-retak mikro dalam beton pada pemanasan yang tinggi akan dapat meningkatkan porositas beton, sehingga kekuatan beton menjadi berkurang (Kumaat, 2003). Jika temperatur mencapai lebih dari 1000 0C, maka akan terjadi proses karbonasi yang membentuk unsur kalsium karbonat (CaCO3) yang berwarna keputihan yang memicu perubahan warna pada permukaan beton menjadi lebih terang. Pada kondisi ini, penurunan kekuatan telah mencapai batas terendah karena pengaruh penurunan lekatan antara agregat dan pasta semen secara menyeluruh yang ditandai banyaknya retak pada permukaan beton.

2.4.1 Kuat tekan beton

(20)

Grafik 2.1. Kuat Tekan Beton Dengan Agregat yang Mengandung Silika (ACI 216R-89)

(21)

Grafik 2.3. Kuat Tekan Beton Dengan Agregat yang Mengandung Karbon (ACI 216R-89)

Grafik 2.4. Hubungan Tegangan Regangan Beton Normal Tanpa Beban Aksial Pada Temperatur Tinggi (Bailey, 2008)

2.4.2 Modulus elastisitas dan modulus geser beton

(22)

yang mana nilainya berbanding lurus dengan kuat tekan beton. Sedangkan modulus geser atau modulus kekakuan (G) didefinisikan sebagai perbandingan tegangan geser dan regangan geser pada dimensi yang sama. Pada gambar di bawah ini dapat dilihat penurunan modulus elastisitas dan modulus geser beton normal untuk ketiga tipe agregat akibat temperatur tinggi. Besarnya penurunan mencapai 50% pada temperatur 300-400 0C dari kondisi semula.

(23)

Grafik 2.6. Modulus Geser Beton Pada Temperatur Tinggi (ACI 216R-89)

2.5 Pengaruh Peningkatan Temperatur Terhadap Sifat Mekanis Baja Tulangan

Material baja tulangan mengandung kadar karbon < 2% dengan titik lebur sekitar 1500 0C. Sama halnya dengan material metal lainnya, baja juga merupakan penghantar panas yang tinggi (high thermal conductivity). Kekuatan ultimit baja cenderung meningkat pada temperatur 300 0C, namun akan menurun seiring meningkatnya temperatur dan durasi pemanasan.

2.5.1 Kuat tarik baja tulangan

(24)

kekuatan baja tulangan menahan tarik, tetapi sebaliknya akan menambah nilai regangannya. Kriteria ini menunjukkan bahwa penurunan kadar karbon pada permukaan baja tulangan akan menyebabkan terjadinya perubahan komposisi dan mikrostruktur yang sekaligus mempengaruhi perilaku material baja tulangan secara keseluruhan (Kumaat, 2003).

Grafik 2.7. Kuat Tarik Beberapa Jenis Baja Tulangan Pada Temperatur Tinggi (ACI 216R-89)

2.5.2 Modulus elastisitas baja tulangan

(25)

Grafik 2.8. Modulus Elastisitas Baja Tulangan Pada Temperatur Tinggi (ACI 216R-89)

2.6 Jenis dan Klasifikasi Kerusakan Struktur Beton Bertulang Pasca Kebakaran

Berdasarkan pengamatan yang dilakukan pada berbagai kasus kerusakan struktur beton bertulang akibat kebakaran, tingkat kerusakan dapat diklasifikasikan sebagai berikut.

1) Kerusakan ringan

(26)

2) Kerusakan sedang

Kerusakan ini dapat dilihat berupa munculnya retak-retak ringan dengan kedalaman kurang dari 1 mm pada bagian luar beton. Retak-retak ini dipengaruhi oleh penyusutan yang terjadi pada pasta semen pada suhu 200 0

C atau lebih, sehingga menimbulkan tegangan lokal pada bidang batas antara pasta semen dan agregat. Hal ini juga akan mempengaruhi daya lekat kedua bahan tersebut menjadi berkurang yang menyebabkan timbulnya retak-retak tersebut.

3) Kerusakan berat

Pada kondisi ini, retak yang terjadi memiliki ukuran lebih lebar dan dalam dari sebelumnya dan letaknya banyak terlihat di dekat sambungan antara kolom dan balok. Retak yang terjadi pada balok kadang-kadang disertai dengan lendutan yang dapat dilihat jelas secara langsung. Hal ini menunjukkan bahwa pengaruh yang ditimbulkan oleh kebakaran dapat mengurangi kekuatan struktur secara signifikan.

4) Kerusakan sangat berat

Gambar

Tabel 2.1. Tebal Minimum Balok Non-Prategang Atau Pelat Satu Arah Bila
Gambar 2.1. Distribusi Tegangan-Regangan Pada Balok Tulangan Tunggal
Gambar 2.2. Bentuk Penampang Kolom. (a) Kolom Segi Empat; (b) Kolom Bulat;
Gambar 2.3. Tekan Eksentris, Kekuatan Batas (Winter, 1993)
+7

Referensi

Dokumen terkait

Hasil penelitian menunjukan bahwa baik pertumbuhan perusahaan, leverage, maupun kepemilikan manajerial secara parsial tidak berpengaruh terhadap pembagian dividen

Dengan ini saya menyatakan bahwa tesis Evaluasi Penerapan Sanitasi, Sistem Pemotongan, Sistem Jaminan Halal dan Keamanan Daging Sapi di RPH Kota Pekanbaru

Puji syukur alhamdulillah penulis panjatkan atas kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan

Kami menjamin personil yang ditugaskan dalam pelaksanaan IPO PT Wijaya Karya Realty tidak sedang melaksanakan tugas terkait dengan proses penilaian efek pada emisi saham

Di RS PKU Muhammadiyah, Propofol banyak digunakan sebagai induksi anestesi dan anestesi pemeliharaan yang bervariasi.Evaluasi penggunaan anestesi umum bertujuan untuk mengetahui

Al-Qur‟an sebagai pedoman serta petunjuk manusia dalam kehidupan di dunia dan di akhirat, al-Qur‟an merupakan wahyu Allah yang mengandung ajaran dan petunjuk kehidupan

pen- dalam pen- Arah Arah efekt if Nilai Nilai dise lalu arus f ase hijau sit as kejenu-. dekat fase dekat diri law an (m ) dasar suaikan lint as FR PR = det sm p/

Data Identitas Responden Kelompok Tani Limao Kahade III di Desa Terentang III Tahun 2017... Data Identitas Responden Kelompok Tani Kerunse di Desa Terentang III