• Tidak ada hasil yang ditemukan

Perancangan Alat Service Bell Nir-Kabel.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Perancangan Alat Service Bell Nir-Kabel."

Copied!
108
0
0

Teks penuh

(1)

iii

PERANCANGAN ALAT SERVICE BELL NIR-KABEL

Disusun Oleh :

Nama : Budi Hartono Ong

Nrp : 0622005

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,

Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia.

Email : cieloz69@hotmail.com

ABSTRAK

Teknologi wireless adalah teknologi yang sangat berkembang akhir-akhir ini. Hal ini dikarenakan kepraktisan yang ditawarkan oleh teknologi wireless yang tidak memerlukan kabel untuk koneksinya. Teknologi ini dapat diterapkan dalam berbagai aplikasi seperti telepon wireless, sistem central lock pada mobil, mainan remote control, dan masih banyak aplikasi lain yang digunakan untuk kepentingan pelayanan.

Pada Tugas Akhir ini, dirancang satu aplikasi teknologi wireless untuk keperluan pelayanan di tempat-tempat umum khususnya di restoran yang disebut dengan wireless service bell. Pada dasarnya sistem ini terdiri dari dua bagian utama yaitu perangkat pengirim dan penerima. Sistem yang dirancang terdiri dari banyak pengirim dan hanya satu penerima saja. Masing-masing perangkat pengirim akan mengirimkan informasi berupa alamat (yang berfungsi untuk membedakan perangkat pengirim yang satu dengan yang lain) dan data (yang berfungsi untuk membedakan pelayanan yang diminta, seperti meminta bill, menu, air, dsb.) yang dipicu melalui penekanan salah satu push button yang tersedia. Ketika push-button ditekan informasi (alamat dan data) akan dikodekan kemudian dikirimkan ke perangkat pengirim, yang selanjutnya akan ditransmisikan menggunakan gelombang radio 315MHz dengan modulasi ASK (Amplitude Shift Keying). Informasi yang dikirimkan akan diterima oleh perangkat penerima kemudian akan didekodekan untuk mendapatkan informasi sesungguhnya yang dikirimkan berupa alamat dan data. Selanjutnya informasi ini akan diolah oleh mikrokontroler Atmega16 untuk ditampilkan pada perangkat keluaran berupa LCD dan komputer.

Berdasarkan percobaan yang dilakukan, sistem wireless service bell yang dirancang berhasil direalisasikan dengan persentase keberhasilan 100% selama sistem masih berada di dalam batas jangkauan antenna. Jarak maksimum yang dapat dicapai di tempat terbuka (tidak ada halangan) adalah 30.6m dan di tempat tertutup (ada benda-benda pengahalang) adalah 15.2m.

Kata Kunci : Wireless Service Bell, ASK 315MHz, Pengontrol Mikro ATMega16

(2)

iv

THE DESIGNING OF WIRELESS SERVICE BELL

Composed by :

Name : Budi Hartono Ong

Nrp : 0622005

Electrical Engineering, Maranatha Cristian University,

Jl. Prof.Drg.Suria Sumantri, MPH no.65, Bandung, Indonesia.

Email : cieloz69@hotmail.com

ABSTRACT

Now days, wireless technology is a highly developed technology. This is due to the practicality offered by wireless technology that does not require the use of wires. This technology can be applied in various applications such as wireless telephones, central lock system on cars, remote control for toys, and many other applications that are used for the benefit of the service.

In this final project, a wireless technology application will be designed for service in public places, especially in a restaurant which is called wireless service bell. Basically this system consists of two main parts: transmitter and receiver. The designed system consists of many transmitters and one receiver. Each transmitters will send the information in the form of address (which serves to distinguish the individual senders) and data (which serves to distinguish the requested services, such as requesting a bill, menu, water, etc..) that is triggered through suppression of one push-buttons. When the push-button is pressed, the information (address and data) will be encoded and then sent to the transmitter, which would then be transmitted using radio waves 315MHz with ASK (Amplitude Shift Keying) modulation. The information sent will be received by the receiver, then will be decoded to get the real information that is sent in the form of address and data. Further, the information will be processed by the microcontroller ATmega16 to be displayed on 2 output devices : LCD and computer.

Based on the experiments that have been conducted, the system which is designed for wireless service bell can be realized successfully with the successful percentage of 100% as long as the system is still inside the limit range of the antenna. The maximum distance that can be reached outdoors (without obstacle) is 30.6m and indoors (with multiple blocking objects) is 15.2m.

Key words : Wireless Service Bell, ASK 315MHz, ATMega16 Microcontroller

(3)

v

DAFTAR ISI

Halaman

ABSTRAK ... i

ABSTRACT ... ii

KATA PENGANTAR ... iii

DAFTAR ISI ... v

DAFTAR TABEL ... viii

DAFTAR GAMBAR ... ix

DAFTAR RUMUS ... xii

BAB I PENDAHULUAN I.1. Latar Belakang Masalah ... 1

I.2. Identifikasi Masalah ... 1

I.3. Perumusan Masalah ... 2

I.4. Tujuan ... 2

I.5. Batasan Masalah ... 2

I.6. Sistematika Penulisan ... 2

BAB II LANDASAN TEORI II.1. Frekuensi Gelombang Radio (RF/Radio Frequency) ... 4

II.1.1. Spektrum Gelombang Radio ... 4

II.2. Modulasi ... 6

II.3. Rangkaian Timer NE555 ... 7

II.3.1. Operasi Monostable IC NE555 ... 8

II.3.2. Operasi Astable IC NE555 ... 9

II.4. Gerbang Logika NOT (Inverter) ... 11

II.5. Pengkodean ... 12

II.5.1. IC HT12E ... 12

II.5.2. IC HT12D ... 16

(4)

vi

II.7. Mikrokontroler (µC) ... . 20

II.7.1. Fitur ATmega16 ... 20

II.7.2. Konfigurasi Pin ATmega16 ... 21

II.7.3. USART ... 24

II.7.3.1. IC MAX232 ... 28

II.7.4. Blok Diagram ATmega16 ... 28

BAB III PERANCANGAN DAN REALISASI III.1. Perancangan Sistem ... 30

III.2. Perancangan Hardware ... 33

III.2.1. Perancangan Hardware Untuk Transmitter ... 33

III.2.1.1. Perancangan Clock Monostable dengan IC NE555 ... 34

III.2.1.2. Perancangan Clock Astable dengan IC NE555 ... 36

III.2.1.3. Perancangan Encoder dengan IC HT12E ... 39

III.2.1.4. Perancangan Transmitter dengan Modul RF TLP-315. 41 III.2.2. Perancangan Hardware Untuk Receiver ... 41

III.2.2.1. Perancangan Receiver dengan Modul RF RLP-315 ... 42

III.2.2.2. Perancangan Decoder dengan IC HT12D ... 43

III.2.2.3. Perancangan Rangkaian Pengolahan Data dengan Mikrokontroler ATmega16 ... 45

III.3. Algoritma Pemrograman Sistem Wireless Service Bell ... 47

III.3.1. Diagram Alir Proses Pengolahan Data pada Receiver ... 47

III.3.2. Perancangan Program Interface Komputer ... 50

III.3.2.1. Diagram Alir Pengaktifan Komunikasi Serial ... 53

III.3.2.2. Diagram Alir Penerimaan dan Pengecekan Data ... 54

III.3.2.3. Diagram Alir Pengiriman Data Interrupt ke Mikrokontroler ... 55

III.3.2.4. Diagram Alir Penghentian Sistem ... 57

(5)

vii

IV.2. Pengamatan Sinyal pada Pin Output Monostable dan

Pin Output Inverter ... 60

IV.3. Pengamatan Sinyal pada Pin Output dari ClockAstable ... 61

IV.4. Pengamatan Sinyal pada Pin Output dari Encoder ... 63

IV.5. Pengamatan Sinyal Masukan Decoder pada Perangkat Receiver ... 64

IV.6. Pengamatan Sinyal pada Pin VT dan Pin Data dari IC Decoder ... 66

IV.7. Pengamatan Sinyal pada Pin Data dan Pin Output Inverter ... 67

IV.8. Output dari Sistem Wireless Service Bell ... 68

IV.8.1. Tampilan Output dari Address 1 dan Data 8 ... 69

IV.8.2. Tampilan Output dari Address 1 dan Data 9 ... 70

IV.8.3. Tampilan Output dari Address 2 dan Data 8 ... 71

IV.8.4. Tampilan Output dari Address 2 dan Data 9 ... 72

IV.8.5. Tampilan Output dari Address 3 dan Data 8 ... 73

IV.8.6. Tampilan Output dari Address 3 dan Data 9 ... 74

IV.9. Pengujian Jarak Maksimum Antara Transmitter dan Receiver di Ruang Terbuka (Outdoor) ... 76

IV.10. Pengujian Jarak Maksimum Antara Transmitter dan Receiver di Ruang Tertutup (Indoor) ... 78

IV.11. Analisis ... 80

BAB V KESIMPULAN DAN SARAN V.1. Kesimpulan ... 81

V.2. Saran ... 81

DAFTAR PUSTAKA

LAMPIRAN A FOTO WIRELESS SERVICE BELL

LAMPIRAN B SKEMATIK WIRELESS SERVICE BELL

LAMPIRAN C PROGRAM PADA PENGONTROL MIKRO ATMEGA16

LAMPIRAN D PROGRAM INTERFACING VB6

(6)

viii

DAFTAR TABEL

Halaman

Tabel 2.1 Pembagian Spektrum Gelombang Radio ... 5

Tabel 2.2 Tabel Kebenaran NOT ... 11

Tabel 2.3 Electrical characteristics IC HT12E ... 13

Tabel 2.4 Urutan pengiriman data IC HT12E ... 16

Tabel 2.5 Electrical characteristics IC HT12D ... 17

Tabel 2.6 Urutan penerimaan data IC HT12D ... ... 18

Tabel 2.7 Fungsi Khusus Port B ... 23

Tabel 2.8 Fungsi Khusus Port C ... 23

Tabel 2.9 Fungsi Khusus Port D ... 23

Tabel 2.10 Konfigurasi DB9 ... 26

Tabel 3.1 Pengaturan alamat dengan menggunakan DIP-SWITCH ... 40

Tabel 3.2 Pemberian input alamat oleh mikrokontroler ATmega16 ... 46

Tabel 3.3 Komponen dan properti ... 51

Tabel 4.1 Hasil pengujian jarak dan ketepatan data di ruang terbuka (outdoor) ... 76

(7)

ix

DAFTAR GAMBAR

Halaman

Gambar 2.1 Amplitude Shift Keying ... 7

Gambar 2.2 Susunan kaki IC timer NE555 ... 7

Gambar 2.3 Rangkaian Monostable IC NE555 ... 8

Gambar 2.4 Grafik hubungan antara R1 (RA), C ( ), dan nilai yang dihasilkan ... 9

Gambar 2.5 Rangkaian Astable IC NE555 ... 9

Gambar 2.6 Grafik hubungan antara R1 ( ), R2 ( ), C ( ), dan nilai yang dihasilkan ... 11

Gambar 2.7 Simbol gerbang logika NOT ... 11

Gambar 2.8 Konfigurasi kaki IC inverter 74LS04 ... 12

Gambar 2.9 Konfigurasi kaki IC HT12E ... 13

Gambar 2.10Grafik frekuensi osilasi vs tegangan power supply ... 15

Gambar 2.11Transmission timing IC HT12E ... 15

Gambar 2.12 Konfigurasi kaki IC HT12D ... 17

Gambar 2.13Grafik frekuensi osilasi vs tegangan power supply ... 19

Gambar 2.14 Konfigurasi modul RF TLP315 ... 19

Gambar 2.15 Konfigurasi modul RF RLP315 ... 20

Gambar 2.16 Konfigurasi Pin ATmega16 ... 22

Gambar 2.17 Contoh komunikasi asinkron ... 24

Gambar 2.18 Contoh sinyal di saluran ... 25

Gambar 2.19 Ilustrasi DCE dan DTE ... 26

Gambar 2.20 Konfigurasi kaki IC MAX-232 ... 28

Gambar 2.21 Blok Diagram ATmega16 ... 29

Gambar 3.1 Perancangan sistem perangkat transmitter ... 30

Gambar 3.2 Perancangan sistem perangkat receiver ... 30

Gambar 3.3 Output clock monostable ... 32

(8)

x

Gambar 3.5 Output inverter ... 32

Gambar 3.6 Perancagan hardware untuk transmitter ... 34

Gambar 3.7 Perancangan clock monostable ... 34

Gambar 3.8 Perancangan clock astable ... 36

Gambar 3.9 Perancangan encoder dengan IC HT12E ... 39

Gambar 3.10 Perancangan transmitter dengan modul RFTLP-315 ... 41

Gambar 3.11 Perancangan hardware untuk receiver ... 42

Gambar 3.12 Perancangan receiver dengan modul RFRLP-315 ... 43

Gambar 3.13 Perancangan decoder dengan IC HT12D ... 44

Gambar 3.14 Rangkaian pengolahan data dengan mikrokontroler ATmega16 ... 45

Gambar 3.15 Diagram alir proses pengolahan data pada receiver ... 48

Gambar 3.16 Perancangan interface komputer ... 51

Gambar 3.17 Diagram alir pengaktifan komunikasi serial ... 53

Gambar 3.18 Diagram alir penerimaan dan pengecekan data ... 54

Gambar 3.19 Diagram alir pengiriman data interrupt ke mikrokontroler .. 56

Gambar 3.20 Diagram alir penghentian sistem ... 57

Gambar 4.1 Bagian-bagian yang akan diamati pada sisi transmitter ... 58

Gambar 4.2 Bagian-bagian yang akan diamati pada sisi receiver ... 58

Gambar 4.3 Sinyal yang dihasilkan rangkaian clock monostable ... 59

Gambar 4.4 Sinyal output monostable (atas) dan sinyal output inverter (bawah) ... 60

Gambar 4.5 Sinyal keluaran yang dihasilkan rangkaian clock astable .... 62

Gambar 4.6 Hubungan antara clock monostable dan clock astable ... 62

Gambar 4.7 Sinyal keluaran dari pin output encoder ... 64

Gambar 4.8 Bentuk sinyal sesungguhnya dari pin output encoder ... 64

Gambar 4.9 Bentuk sinyal dari pin input decoder ketika belum ada data yang diterima ... 65

(9)

xi

Gambar 4.11 Bentuk sinyal data sesungguhnya yang masuk ke perangkat

Receiver ... 66 Gambar 4.12 Sinyal pada pin VT (atas) dan pin data (bawah) ... 67

Gambar 4.13 Bentuk sinyal pada pin data (atas) dan pin output inverter

(bawah) ... 68 Gambar 4.14 Tampilan awal pada media output komputer ... 69

Gambar 4.15 Tampilan awal pada media output LCD ... 69

Gambar 4.16 Tampilan permintaan bill oleh meja 1 pada media

komputer ... 70

Gambar 4.17 Tampilan permintaan bill oleh meja 1 pada media LCD ... 70

Gambar 4.18 Tampilan permintaan menu oleh meja 1 pada media

komputer ... 71

Gambar 4.19 Tampilan permintaan menu oleh meja 1 pada media LCD ... 71

Gambar 4.20 Tampilan permintaan bill oleh meja 2 pada media

komputer ... 72

Gambar 4.21 Tampilan permintaan bill oleh meja 2 pada media LCD ... 72

Gambar 4.22 Tampilan permintaan menu oleh meja 2 pada media

komputer ... 73

Gambar 4.23 Tampilan permintaan menu oleh meja 2 pada media LCD ... 73

Gambar 4.24 Tampilan permintaan bill oleh meja 3 pada media

komputer ... 74

Gambar 4.25 Tampilan permintaan bill oleh meja 3 pada media LCD ... 74

Gambar 4.26 Tampilan permintaan menu oleh meja 3 pada media

komputer ... 75

(10)

xii

DAFTAR RUMUS

Halaman

Rumus 2.1 ... 4

Rumus 2.2 ... 8

Rumus 2.3 ... 10

Rumus 2.4 ... 10

Rumus 2.5 ... 10

Rumus 2.6 ... 10

(11)

LAMPIRAN A

(12)
(13)

LAMPIRAN B

SKEMATIK WIRELESS SERVICE BELL

---

(14)
(15)
(16)

LAMPIRAN C

(17)

/***************************************************** This program was produced by the

CodeWizardAVR V1.25.3 Professional Automatic Program Generator

© Copyright 1998-2007 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

Project : Version : Date : 8/3/2010

Author : F4CG Company : F4CG Comments:

Chip type : ATmega16 Program type : Application Clock frequency : 11.059200 MHz Memory model : Small

External SRAM size : 0 Data Stack size : 256

*****************************************************/

#include <mega16.h> #include <delay.h>

// Alphanumeric LCD Module functions #asm

.equ __lcd_port=0x15 ;PORTC #endasm

#include <lcd.h>

#define RXB8 1 #define TXB8 0 #define UPE 2 #define OVR 3 #define FE 4 #define UDRE 5 #define RXC 7

#define FRAMING_ERROR (1<<FE) #define PARITY_ERROR (1<<UPE) #define DATA_OVERRUN (1<<OVR)

#define DATA_REGISTER_EMPTY (1<<UDRE) #define RX_COMPLETE (1<<RXC)

(18)

#if RX_BUFFER_SIZE<256

unsigned char rx_wr_index,rx_rd_index,rx_counter; #else

unsigned int rx_wr_index,rx_rd_index,rx_counter; #endif

// This flag is set on USART Receiver buffer overflow bit rx_buffer_overflow;

// USART Receiver interrupt service routine interrupt [USART_RXC] void usart_rx_isr(void) {

char status,data; status=UCSRA; data=UDR;

if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0) {

rx_buffer[rx_wr_index]=data;

if (++rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0; if (++rx_counter == RX_BUFFER_SIZE)

{

rx_counter=0;

rx_buffer_overflow=1; };

};

if(data=='R') /*program penanganan data interrupt yang diperoleh untuk mereset LCD*/ {

lcd_clear(); }

}

#ifndef _DEBUG_TERMINAL_IO_

// Get a character from the USART Receiver buffer #define _ALTERNATE_GETCHAR_

#pragma used+ char getchar(void) {

char data;

while (rx_counter==0); data=rx_buffer[rx_rd_index];

if (++rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0; #asm("cli")

--rx_counter; #asm("sei") return data; }

#pragma used- #endif

(19)

#include <stdio.h>

// Declare your global variables here

void main(void) {

// Declare your local variables here

// Input/Output Ports initialization // Port A initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T PORTA=0x00;

DDRA=0x00;

// Port B initialization

// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out

// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0 PORTB=0x00;

DDRB=0xFF;

// Port C initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T PORTC=0x00;

DDRC=0x00;

// Port D initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T PORTD=0x00;

DDRD=0x00;

// Timer/Counter 0 initialization // Clock source: System Clock // Clock value: Timer 0 Stopped // Mode: Normal top=FFh // OC0 output: Disconnected TCCR0=0x00;

TCNT0=0x00; OCR0=0x00;

(20)

// Input Capture on Falling Edge // Timer 1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off TCCR1A=0x00;

TCCR1B=0x00; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00;

// Timer/Counter 2 initialization // Clock source: System Clock // Clock value: Timer 2 Stopped // Mode: Normal top=FFh // OC2 output: Disconnected ASSR=0x00;

TCCR2=0x00; TCNT2=0x00; OCR2=0x00;

// External Interrupt(s) initialization // INT0: Off

// INT1: Off // INT2: Off MCUCR=0x00; MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00;

// USART initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity // USART Receiver: On

// USART Transmitter: On // USART Mode: Asynchronous // USART Baud rate: 9600 UCSRA=0x00;

UCSRB=0x98; UCSRC=0x86; UBRRH=0x00; UBRRL=0x47;

(21)

// Analog Comparator Input Capture by Timer/Counter 1: Off ACSR=0x80;

SFIOR=0x00;

// LCD module initialization lcd_init(16);

// Global enable interrupts #asm("sei")

while (1) {

PORTB=0B11111110; /*program pengolah data pada receiver*/ if(PINA.4==1)

if(PINA.7==1) {

lcd_clear(); lcd_gotoxy(0,0);

lcd_putsf("MEJA 1 BILL"); printf("MEJA 1 BILL "); }

if(PINA.4==1) if(PINA.6==1) {

lcd_clear(); lcd_gotoxy(0,0);

lcd_putsf("MEJA 1 MENU"); printf("MEJA 1 MENU "); }

delay_ms(100); PORTB=0B11111101; if(PINA.4==1) if(PINA.7==1) {

lcd_clear(); lcd_gotoxy(0,0);

lcd_putsf("MEJA 2 BILL"); printf("MEJA 2 BILL "); }

if(PINA.4==1) if(PINA.6==1) {

lcd_clear(); lcd_gotoxy(0,0);

lcd_putsf("MEJA 2 MENU"); printf("MEJA 2 MENU "); }

(22)

PORTB=0B11111011; if(PINA.4==1) if(PINA.7==1) {

lcd_clear(); lcd_gotoxy(0,0);

lcd_putsf("MEJA 3 BILL"); printf("MEJA 3 BILL "); }

if(PINA.4==1) if(PINA.6==1) {

lcd_clear(); lcd_gotoxy(0,0);

lcd_putsf("MEJA 3 MENU"); printf("MEJA 3 MENU "); }

delay_ms(100);

if (PINA.5==0) {

lcd_clear(); }

(23)

LAMPIRAN D

(24)

Dim x As String /*menetukan tipe data dari variabel x sebagai string*/

Private Sub Command1_Click() /*program penghentian sistem bila button exit di klik*/ MSComm1.PortOpen = False

Unload Me End Sub

Private Sub Form_Load() /*program pengaktifan komunikasi serial*/ MSComm1.CommPort = 1

MSComm1.Settings = "9600,n,8,1" MSComm1.PortOpen = True List1.Clear

End Sub

Private Sub Image10_Click() /*program peresetan dan pengiriman interrupt ketika image10 diklik*/ Image3.Visible = False

Image2.Visible = False Image1.Visible = True Image10.Visible = False Text4.Visible = False Text5.Visible = False Timer2.Enabled = False Timer3.Enabled = False MSComm1.Output = "R" End Sub

Private Sub Image11_Click() /*program peresetan dan pengiriman interrupt ketika image11 diklik*/ Image5.Visible = False

(25)

MSComm1.Output = "R" End Sub

Private Sub Image12_Click() /*program peresetan dan pengiriman interrupt ketika image12 diklik*/ Image8.Visible = False

Image9.Visible = False Image7.Visible = True Image12.Visible = False Text8.Visible = False Text9.Visible = False Timer6.Enabled = False Timer7.Enabled = False MSComm1.Output = "R" End Sub

Private Sub Timer1_Timer() /*program penerimaan, pengecekan data, & pengaturan tampilannya*/ x = MSComm1.Input

If Len(x) > 0 Then

If Left(x, 11) = "MEJA 1 BILL" Then Image2.Visible = True

Image1.Visible = False Timer2.Enabled = True Image10.Visible = True Text4.Visible = True Text5.Visible = False End If

If Left(x, 11) = "MEJA 1 MENU" Then Image2.Visible = True

(26)

If Left(x, 11) = "MEJA 2 BILL" Then Image5.Visible = True

Image4.Visible = False Timer4.Enabled = True Image11.Visible = True Text6.Visible = True Text7.Visible = False End If

If Left(x, 11) = "MEJA 2 MENU" Then Image5.Visible = True

Image4.Visible = False Timer4.Enabled = True Image11.Visible = True Text7.Visible = True Text6.Visible = False End If

If Left(x, 11) = "MEJA 3 BILL" Then Image8.Visible = True

Image7.Visible = False Timer6.Enabled = True Image12.Visible = True Text8.Visible = True Text9.Visible = False End If

If Left(x, 11) = "MEJA 3 MENU" Then Image8.Visible = True

Image7.Visible = False Timer6.Enabled = True Image12.Visible = True Text9.Visible = True Text8.Visible = False End If

(27)

End Sub

Private Sub Timer2_Timer() /*program membuat image3 berkedip dengan selang waktu tertentu*/ Image3.Visible = True

Timer2.Enabled = False Timer3.Enabled = True End Sub

Private Sub Timer3_Timer() Image3.Visible = False Timer2.Enabled = True Timer3.Enabled = False End Sub

Private Sub Timer4_Timer() /*program membuat image6 berkedip dengan selang waktu tertentu*/ Image6.Visible = True

Timer4.Enabled = False Timer5.Enabled = True End Sub

Private Sub Timer5_Timer() Image6.Visible = False Timer5.Enabled = False Timer4.Enabled = True End Sub

Private Sub Timer6_Timer() /*program membuat image9 berkedip dengan selang waktu tertentu*/ Image9.Visible = True

Timer6.Enabled = False Timer7.Enabled = True End Sub

(28)

LAMPIRAN E

DATASHEET

---

(29)

2

12

Series of Decoders

Selection Table

Function Address No.

Data

VT Oscillator Trigger Package Part No. No. Type

HT12D 8 4 L Ö RC oscillator DIN active²Hi² 18 DIP/20 SOP

HT12F 12 0 ¾ Ö RC oscillator DIN active²Hi² 18 DIP/20 SOP

Notes: Data type: L stands for latch type data output. VT can be used as a momentary data output.

1 July 12, 1999

General Description

The 212decoders are a series of CMOS LSIs for remote control system applications. They are paired with Holtek¢s 212series of encoders (re-fer to the encoder/decoder cross re(re-ference ta-b l e ) . F o r p r o p e r o p e r a t i o n , a p a i r o f encoder/decoder with the same number of ad-dresses and data format should be chosen.

The decoders receive serial addresses and data from a programmed 212series of encoders that are transmitted by a carrier using an RF or an IR transmission medium. They compare the se-rial input data three times continuously with

their local addresses. If no error or unmatched codes are found, the input data codes are de-coded and then transferred to the output pins. The VT pin also goes high to indicate a valid transmission.

The 212series of decoders are capable of decod-ing informations that consist of N bits of ad-dress and 12-N bits of data. Of this series, the HT12D is arranged to provide 8 address bits and 4 data bits, and HT12F is used to decode 12 bits of address information.

Features

· Operating voltage: 2.4V~12V

· Low power and high noise immunity CMOS technology

· Low standby current

· Capable of decoding 12 bits of information · Pair with Holtek¢s 212series of encoders · Binary address setting

· Received codes are checked 3 times

· Address/Data number combination - HT12D: 8 address bits and 4 data bits - HT12F: 12 address bits only

· Built-in oscillator needs only 5% resistor · Valid transmission indicator

· Easy interface with an RF or an infrared transmission medium

· Minimal external components

Applications

· Burglar alarm system · Smoke and fire alarm system · Garage door controllers · Car door controllers

· Car alarm system

· Security system · Cordless telephones

(30)

Block Diagram

Note: The address/data pins are available in various combinations (see the address/data table).

Pin Assignment

212Series of Decoders

2 July 12, 1999

D a t a S h i f t R e g i s t e r O s c i l l a t o r

B u f f e r

S y n c . D e t e c t o r

D i v i d e r

C o m p a r a t o r C o m p a r a t o r

B u f f e r T r a n s m i s s i o n G a t e C i r c u i t

D a t a D e t e c t o r

C o n t r o l L o g i c O S C 1

O S C 2

D I N

V D D V S S

V T D a t a L a t c h C i r c u i t

A d d r e s s

8 - A d d r e s s 4 - D a t a

1 2 - A d d r e s s 0 - D a t a

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

V D D V T O S C 1 O S C 2 D I N D 1 1 D 1 0 D 9 D 8 1 2 3 4 5 6 7 8 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0

1 2 - A d d r e s s 0 - D a t a

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

V D D V T O S C 1 O S C 2 D I N A 1 1 A 1 0 A 9 A 8 1 2 3 4 5 6 7 8 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 1 2 3 4 5 6 7 8 9 1 0 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 N C V D D V T O S C 1 O S C 2 D I N A 1 1 A 1 0 A 9 A 8 N C A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

8 - A d d r e s s 4 - D a t a

1 2 3 4 5 6 7 8 9 1 0 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 N C V D D V T O S C 1 O S C 2 D I N D 1 1 D 1 0 D 9 D 8 N C A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

H T 1 2 F 2 0 S O P H T 1 2 F

1 8 D I P H T 1 2 D

1 8 D I P

(31)

Pin Description

Pin Name I/O Internal

Connection Description

A0~A11 I

NMOS TRANSMISSION

GATE

Input pins for address A0~A11 setting They can be externally set to VDD or VSS.

D8~D11 O CMOS OUT Output data pins

DIN I CMOS IN Serial data input pin

VT O CMOS OUT Valid transmission, active high

OSC1 I OSCILLATOR Oscillator input pin

OSC2 O OSCILLATOR Oscillator output pin

VSS I ¾ Negative power supply (GND)

VDD I ¾ Positive power supply

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage ...-0.3V to 13V Storage Temperature...-50°C to 125°C Input Voltage...VSS-0.3 to VDD+0.3V Operating Temperature ...-20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under²Absolute Maxi-mum Ratings² may cause substantial damage to the device. Functional operation of this de-vice at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

212Series of Decoders

3 July 12, 1999

N M O S T R A N S M I S S I O N

G A T E

C M O S I N O S C I L L A T O R

O S C 1 O S C 2

C M O S O U T

(32)

Electrical Characteristics Ta=25°C

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VDD Conditions

VDD Operating Voltage ¾ ¾ 2.4 5 12 V

ISTB Standby Current

5V

Oscillator stops ¾ 0.1 1 mA

12V ¾ 2 4 mA

IDD Operating Current 5V No loadf

OSC=150kHz ¾ 200 400 mA

IO

Data Output Source

Current (D8~D11) 5V VOH=4.5V -1 -1.6 ¾ mA

Data Output Sink

Current (D8~D11) 5V VOL=0.5V 1 1.6 ¾ mA

IVT

VT Output Source Current

5V VOH=4.5V -1 -1.6 ¾ mA

VT Output Sink Current VOL=0.5V 1 1.6 ¾ mA

VIH ²H²Input Voltage 5V ¾ 3.5 ¾ 5 V

VIL ²L²Input Voltage 5V ¾ 0 ¾ 1 V

fOSC Oscillator Frequency 5V ROSC=51kW ¾ 150 ¾ kHz

212Series of Decoders

(33)

212Series of Decoders

5 July 12, 1999

Functional Description

Operation

The 212series of decoders provides various com-binations of addresses and data pins in differ-ent packages so as to pair with the 212series of encoders.

The decoders receive data that are transmitted by an encoder and interpret the first N bits of code period as addresses and the last 12-N bits as data, where N is the address code number. A signal on the DIN pin activates the oscillator which in turn decodes the incoming address and data. The decoders will then check the re-ceived address three times continuously. If the received address codes all match the contents of the decoder¢s local address, the 12-N bits of data are decoded to activate the output pins and the VT pin is set high to indicate a valid transmission. This will last unless the address code is incorrect or no signal is received. The output of the VT pin is high only when the transmission is valid. Otherwise it is always low.

Output type

Of the 212series of decoders, the HT12F has no data output pin but its VT pin can be used as a momentary data output. The HT12D, on the other hand, provides 4 latch type data pins whose data remain unchanged until new data are received.

Part No.

Data Pins

Address Pins

Output Type

Operating Voltage

HT12D 4 8 Latch 2.4V~12V HT12F 0 12 ¾ 2.4V~12V

Flowchart

The oscillator is disabled in the standby state and activated when a logic²high²signal applies to the DIN pin. That is to say, the DIN should be kept low if there is no signal input.

Y e s C o d e i n ?

S t o r e d a t a N o

Y e s

N o

N o

N o

Y e s S t a n d b y m o d e

D i s a b l e V T & i g n o r e t h e r e s t o f

t h i s w o r d

Y e s

N o

Y e s A d d r e s s o r d a t a e r r o r ? L a t c h d a t a t o o u t p u t & a c t i v a t e V T A d d r e s s b i t s

m a t c h e d ?

M a t c h p r e v i o u s s t o r e d

d a t a ? P o w e r o n

(34)

Decoder timing

Encoder/Decoder cross reference table

Decoders

Part No. Data Pins Address Pins VT Pair Encoder

Package

Encoder Decoder

DIP SOP DIP SOP

HT12D 4 8 Ö HT12A 18 20 18 20

HT12E 18 20

HT12F 0 12 Ö HT12A 18 20 18 20

HT12E 18 20

Address/Data sequence

The following table provides address/data sequence for various models of the 212series of decoders. A correct device should be chosen according to the requirements of the individual addresses and data.

Part No. Address/Data Bits

0 1 2 3 4 5 6 7 8 9 10 11

HT12D A0 A1 A2 A3 A4 A5 A6 A7 D8 D9 D10 D11

HT12F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

212Series of Decoders

6 July 12, 1999

2 c l o c k s1 4

c h e c k

4 w o r d s 4 w o r d s

E n c o d e r D O U T

T r a n s m i t t e d C o n t i n u o u s l y < 1 w o r d

E n c o d e r T r a n s m i s s i o n E n a b l e

c h e c k D e c o d e r V T

L a t c h e d D a t a O u t

(35)

Oscillator frequency vs supply voltage

The recommended oscillator frequency is fOSCD(decoder)@50 fOSCE(HT12E encoder) @1

3fOSCE(HT12A encoder).

212Series of Decoders

7 July 12, 1999

f o s c ( S c a l e )

R o s c (W )

0 . 5 0 ( 1 0 0 k H z ) 1 . 0 0 1 . 5 0 2 . 0 0 2 . 5 0 3 . 5 0 4 . 0 0

3 . 0 0

0 . 2 5

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 V D D ( V D C )

6 8 k 6 2 k 5 6 k 5 1 k 4 7 k 4 3 k 3 9 k 3 6 k 3 3 k 3 0 k 2 7 k

7 5 k 8 2 k

1 0 0 k

1 2 0 k

(36)

Application Circuits

Notes: Typical infrared receiver: PIC-12043T/PIC-12043S (KODESHI CORP.) or LTM9052 (LITEON CORP.)

Typical RF receiver: JR-200 (JUWA CORP.)

RE-99 (MING MICROSYSTEM, U.S.A.)

212Series of Decoders

8 July 12, 1999

R e c e i v e r C i r c u i t

H T 1 2 D

A 0

A 1 A 2

A 3

A 4

A 5

A 6

A 7 V S S

V D D V T

O S C 1

O S C 2

D I N

D 1 1

D 1 0 D 9

D 8

1

2

3

4

5

6

7

8

9

1 8

1 7 1 6

1 5

1 4

1 3

1 2

1 1 1 0

R O S C

V D D

R e c e i v e r C i r c u i t

H T 1 2 F

A 0 A 1

A 2

A 3 A 4

A 5

A 6 A 7

V S S V D D

V T

O S C 1

O S C 2 D I N

A 1 1

A 1 0 A 9

A 8

1

2

3

4

5

6

7

8

9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0

R O S C

(37)

212Series of Decoders

9 July 12, 1999

Copyrightã1999 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may pres-ent a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)

No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C. Tel: 886-3-563-1999

Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C. Tel: 886-2-2782-9635

Fax: 886-2-2782-9636

Fax: 886-2-2782-7128 (International sales hotline)

Holtek Microelectronics Enterprises Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong Tel: 852-2-745-8288

(38)

This datasheet has been downloaded from:

www.DatasheetCatalog.com

(39)

HT12A/HT12E

2

12

Series of Encoders

Selection Table

Function Address No.

Address/ Data No.

Data

No. Oscillator Trigger Package

Carrier Output

Negative Polarity Part No.

HT12A 8 0 4 455kHz

resonator D8~D11

18 DIP

20 SOP 38kHz No

HT12E 8 4 0 RC

oscillator TE

18 DIP

20 SOP No No

Note: Address/Data represents pins that can be address or data according to the decoder require-ment.

1 April 11, 2000

General Description

The 212encoders are a series of CMOS LSIs for remote control system applications. They are capable of encoding information which consists of N address bits and 12-N data bits. Each ad-dress/data input can be set to one of the two logic states. The programmed addresses/data are transmitted together with the header bits

via an RF or an infrared transmission medium upon receipt of a trigger signal. The capability to select a TE trigger on the HT12E or a DATA trigger on the HT12A further enhances the ap-plication flexibility of the 212series of encoders. The HT12A additionally provides a 38kHz car-rier for infrared systems.

Features

· Operating voltage

- 2.4V~5V for the HT12A - 2.4V~12V for the HT12E

· Low power and high noise immunity CMOS technology

· Low standby current: 0.1mA (typ.) at VDD=5V

· HT12A with a 38kHz carrier for infrared transmission medium

· Minimum transmission word

- Four words for the HT12E - One word for the HT12A

· Built-in oscillator needs only 5% resistor

· Data code has positive polarity

· Minimal external components

· HT12A/E: 18-pin DIP/20-pin SOP package

Applications

· Burglar alarm system

· Smoke and fire alarm system

· Garage door controllers

· Car door controllers

· Car alarm system

· Security system

· Cordless telephones

(40)

Block Diagram

TE trigger

HT12E

DATA trigger

HT12A

Note: The address data pins are available in various combinations (refer to the address/data table). HT12A/HT12E

2 April 11, 2000

O s c i l l a t o r ¸3 D i v i d e r O S C 1

O S C 2

V D D V S S 1 2 T r a n s m i s s i o n

G a t e C i r c u i t

¸1 2 C o u n t e r & 1 o f 1 2 D e c o d e r

B i n a r y D e t e c t o r T E

A 0

A 7

D O U T D a t a S e l e c t

& B u f f e r

S y n c . C i r c u i t

A D 8 A D 1 1

O s c i l l a t o r ¸ 5 7 6 D i v i d e r

V D D V S S 1 2 T r a n s m i s s i o n

G a t e C i r c u i t

¸1 2 C o u n t e r & 1 o f 1 2 D e c o d e r

B i n a r y D e t e c t o r

D O U T D a t a S e l e c t

& B u f f e r

S y n c . C i r c u i t L / M B

X 2 X 1

A 0

A 7

(41)

Pin Assignment

Pin Description

Pin Name I/O Internal

Connection Description

A0~A7 I

CMOS IN Pull-high (HT12A)

Input pins for address A0~A7 setting

These pins can be externally set to VSS or left open NMOS TRANSMISSION GATE PROTECTION DIODE (HT12E) AD8~AD11 I NMOS TRANSMISSION GATE PROTECTION DIODE (HT12E)

Input pins for address/data AD8~AD11 setting These pins can be externally set to VSS or left open

D8~D11 I CMOS IN

Pull-high

Input pins for data D8~D11 setting and transmission en-able, active low

These pins should be externally set to VSS or left open (see Note)

DOUT O CMOS OUT Encoder data serial transmission output

L/MB I CMOS IN

Pull-high

Latch/Momentary transmission format selection pin: Latch: Floating or VDD

Momentary: VSS

HT12A/HT12E

3 April 11, 2000

8 - A d d r e s s 4 - D a t a

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

V D D D O U T X 1 X 2 L / M B D 1 1 D 1 0 D 9 D 8 1 2 3 4 5 6 7 8 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0

8 - A d d r e s s 4 - D a t a

1 2 3 4 5 6 7 8 9 1 0 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 N C V D D D O U T X 1 X 2 L / M B D 1 1 D 1 0 D 9 D 8 N C A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

H T 1 2 A 1 8 D I P

H T 1 2 A 2 0 S O P

8 - A d d r e s s 4 - A d d r e s s / D a t a

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

V D D D O U T O S C 1 O S C 2 T E A D 1 1 A D 1 0 A D 9 A D 8

1 2 3 4 5 6 7 8 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0

H T 1 2 E 1 8 D I P

8 - A d d r e s s 4 - A d d r e s s / D a t a

1 2 3 4 5 6 7 8 9 1 0 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 N C V D D D O U T O S C 1 O S C 2 T E A D 1 1 A D 1 0 A D 9 A D 8 N C A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S

(42)

Pin Name I/O Internal

Connection Description

TE I CMOS IN

Pull-high Transmission enable, active low (see Note) OSC1 I OSCILLATOR 1 Oscillator input pin

OSC2 O OSCILLATOR 1 Oscillator output pin

X1 I OSCILLATOR 2 455kHz resonator oscillator input X2 O OSCILLATOR 2 455kHz resonator oscillator output VSS I ¾ Negative power supply, grounds

VDD I ¾ Positive power supply

Note: D8~D11 are all data input and transmission enable pins of the HT12A. TE is a transmission enable pin of the HT12E.

Approximate internal connections

Absolute Maximum Ratings

Supply Voltage (HT12A) ...-0.3V to 5.5V Supply Voltage (HT12E) ...-0.3V to 13V Input Voltage...VSS-0.3 to VDD+0.3V Storage Temperature...-50°C to 125°C Operating Temperature...-20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under²Absolute Maxi-mum Ratings²may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged expo-sure to extreme conditions may affect device reliability.

HT12A/HT12E

4 April 11, 2000

N M O S T R A N S M I S S I O N

G A T E

C M O S I N

P u l l - h i g h C M O S O U T O S C I L L A T O R 1

O S C 2 O S C 1

O S C I L L A T O R 2

X 1 X 2

E N

N M O S T R A N S M I S S I O N G A T E P R O T E C T I O N D I O D E

(43)

Electrical Characteristics

HT12A Ta=25°C

Symbol Parameter Test Conditions Min. Typ. Max. Unit VDD Conditions

VDD Operating Voltage ¾ ¾ 2.4 3 5 V

ISTB Standby Current

3V

Oscillator stops ¾ 0.1 1 mA

5V ¾ 0.1 1 mA

IDD Operating Current

3V No load fOSC=455kHz

¾ 200 400 mA

5V ¾ 400 800 mA

IDOUT Output Drive Current 5V

VOH=0.9VDD(Source) -1 -1.6 ¾ mA VOL=0.1VDD(Sink) 2 3.2 ¾ mA

VIH ²H²Input Voltage ¾ ¾ 0.8VDD ¾ VDD V

VIL ²L²Input Voltage ¾ ¾ 0 ¾ 0.2VDD V

RDATA D8~D11 Pull-highResistance 5V VDATA=0V ¾ 150 300 kW

HT12E Ta=25°C

Symbol Parameter Test Conditions Min. Typ. Max. Unit VDD Conditions

VDD Operating Voltage ¾ ¾ 2.4 5 12 V

ISTB Standby Current

3V

Oscillator stops ¾ 0.1 1 mA

12V ¾ 2 4 mA

IDD Operating Current

3V No load fOSC=3kHz

¾ 40 80 mA

12V ¾ 150 300 mA

IDOUT Output Drive Current 5V

VOH=0.9VDD(Source) -1 -1.6 ¾ mA VOL=0.1VDD(Sink) 1 1.6 ¾ mA

VIH ²H²Input Voltage ¾ ¾ 0.8VDD ¾ VDD V

VIL ²L²Input Voltage ¾ ¾ 0 ¾ 0.2VDD V

fOSC Oscillator Frequency 5V ROSC=1.1MW ¾ 3 ¾ kHz RTE TE Pull-high Resistance 5V VTE=0V ¾ 1.5 3 MW

HT12A/HT12E

(44)

Functional Description

Operation

The 212series of encoders begin a 4-word transmission cycle upon receipt of a transmission enable (TE for the HT12E or D8~D11 for the HT12A, active low). This cycle will repeat itself as long as the transmission enable (TE or D8~D11) is held low. Once the transmission enable returns high the en-coder output completes its final cycle and then stops as shown below.

HT12A/HT12E

6 April 11, 2000

4 w o r d s 4 w o r d s

E n c o d e r D O U T

T r a n s m i t t e d C o n t i n u o u s l y < 1 w o r d

T E

Transmission timing for the HT12E

E n c o d e r D O U T

T r a n s m i t t e d C o n t i n u o u s l y < 1 w o r d

D 8 ~ D 1 1 K e y - i n

1 w o r d

w i t h 3 8 k H z c a r r i e r

1 w o r d

Transmission timing for the HT12A (L/MB=Floating or VDD)

E n c o d e r D O U T

T r a n s m i t t e d C o n t i n u o u s l y D 8 ~ D 1 1

K e y - i n

1 w o r d < 1 w o r d

7 w o r d s 1 w o r d

7 w o r d s ( a l l d a t a = 1 )

( a l l d a t a = 1 )

(45)

Information word

If L/MB=1 the device is in the latch mode (for use with the latch type of data decoders). When the trans-mission enable is removed during a transtrans-mission, the DOUT pin outputs a complete word and then stops. On the other hand, if L/MB=0 the device is in the momentary mode (for use with the momentary type of data decoders). When the transmission enable is removed during a transmission, the DOUT outputs a complete word and then adds 7 words all with the²1²data code.

An information word consists of 4 periods as illustrated below.

Address/data waveform

Each programmable address/data pin can be externally set to one of the following two logic states as shown below.

HT12A/HT12E

7 April 11, 2000

1 / 3 b i t s y n c . p e r i o d

p i l o t p e r i o d ( 1 2 b i t s ) a d d r e s s c o d e p e r i o d

p e r i o d d a t a c o d e

Composition of information

" O n e "

" Z e r o " fO S C

A d d r e s s / D a t a B i t

Address/Data bit waveform for the HT12E

" O n e "

" Z e r o " fO S C

D a t a B i t D a t a B i t

" O n e "

" Z e r o "

A d d r e s s B i t A d d r e s s B i t

3 8 k H z c a r r i e r

(46)

The address/data bits of the HT12A are transmitted with a 38kHz carrier for infrared remote con-troller flexibility.

Address/data programming (preset)

The status of each address/data pin can be individually pre-set to logic²high²or²low². If a transmis-sion-enable signal is applied, the encoder scans and transmits the status of the 12 bits of ad-dress/data serially in the order A0 to AD11 for the HT12E encoder and A0 to D11 for the HT12A encoder.

During information transmission these bits are transmitted with a preceding synchronization bit. If the trigger signal is not applied, the chip enters the standby mode and consumes a reduced current of less than 1mA for a supply voltage of 5V.

Usual applications preset the address pins with individual security codes using DIP switches or PCB wiring, while the data is selected by push buttons or electronic switches.

The following figure shows an application using the HT12E:

The transmitted information is as shown:

Pilot & Sync.

A0

1

A1

0 A2

1

A3

0 A4

0

A5

0 A6

1

A7

1

AD8

1

AD9

1

AD10

1

AD11

0 HT12A/HT12E

8 April 11, 2000

T E

V D D A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 V S S A D 8 A D 9 A D 1 0 A D 1 1 O S C 1 O S C 2

D O U T T r a n s m i s s i o nm e d i u m

V D D

(47)

Address/Data sequence

The following provides the address/data sequence table for various models of the 212 series of encoders. The correct device should be selected according to the individual address and data require-ments.

Part No. Address/Data Bits

0 1 2 3 4 5 6 7 8 9 10 11

HT12A A0 A1 A2 A3 A4 A5 A6 A7 D8 D9 D10 D11

HT12E A0 A1 A2 A3 A4 A5 A6 A7 AD8 AD9 AD10 AD11

Transmission enable

For the HT12E encoders, transmission is enabled by applying a low signal to the TE pin. For the HT12A encoders, transmission is enabled by applying a low signal to one of the data pins D8~D11.

Two erroneous HT12E application circuits

The HT12E must follow closely the application circuits provided by Holtek (see the²Application cir-cuits²).

·Error: AD8~AD11 pins input voltage > VDD+0.3V

HT12A/HT12E

9 April 11, 2000

H T 1 2 E O S C 2

O S C 1

T E

V S S

V D D

A D 1 1

A D 1 0

A D 9

A D 8

(48)

·Error: The IC¢s power source is activated by pins AD8~AD11

Flowchart

·HT12A ·HT12E

Note: D8~D11 are transmission enables of the HT12A. TE is the transmission enable of the HT12E.

HT12A/HT12E

10 April 11, 2000

H T 1 2 E O S C 2

O S C 1

V S S T E

V D D

1 2 V

A D 1 1

A D 1 0

A D 9

A D 8

S t a n d b y m o d e

D a t a e n a b l e ? N o

N o D a t a w i t h c a r r i e r

s e r i a l o u t p u t

D a t a s t i l l e n a b l e d ?

L / M B = G N D ?

S e n d t h e l a s t c o d e N o Y e s

Y e s

Y e s

S e n d ²1² 7 t i m e s f o r a l l o f t h e d a t a c o d e s P o w e r o n

S t a n d b y m o d e

T r a n s m i s s i o n e n a b l e d ? N o

N o

Y e s

Y e s 4 d a t a w o r d s

t r a n s m i t t e d

T r a n s m i s s i o n s t i l l e n a b l e d

4 d a t a w o r d s t r a n s m i t t e d c o n t i n u o u s l y

(49)

Oscillator frequency vs supply voltage

The recommended oscillator frequency is fOSCD(decoder)@50 fOSCE(HT12E encoder)

@1

3fOSCE(HT12A encoder)

HT12A/HT12E

11 April 11, 2000

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 . 0 0 2 . 0 0 ( 3 k H z ) 3 . 0 0 4 . 0 0 5 . 0 0 6 . 0 0 7 . 0 0

V D D ( V D C )

fO S C

( S c a l e )

2 . 0 M 1 . 5 M 1 . 2 M 1 . 0 M 9 1 0 k 8 2 0 k 7 5 0 k 6 8 0 k 6 2 0 k 5 6 0 k 5 1 0 k 4 7 0 k

(50)

Application Circuits

Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.) Typical RF transmitter: JR-220 (JUWA CORP.)

HT12A/HT12E

12 April 11, 2000

4 5 5 kW

H T 1 2 A

1 0 M W

1 0 0 p F

1 0 0 p F 8 0 5 0 1 0 0 W

1

2

3

4

5

6

7

8

9

A 0

A 4

A 5

A 6

A 7

V S S A 1

A 2

A 3

V D D

D O U T

X 1

X 2

L / M B

D 1 1

D 1 0

D 9

D 8 1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0 1 0 kW

V D D

T r a n s m i t t e r C i r c u i t

H T 1 2 E A 0

A 1

A 2

A 3

A 4

A 5

A 6

A 7

V S S V D D

D O U T

O S C 1

O S C 2

T E

A D 1 1

A D 1 0

A D 9

A D 8

1

2

3

4

5

6

7

8

9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0 R O S C

(51)

HT12A/HT12E

13 April 11, 2000

CopyrightÓ2000 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may pres-ent a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)

No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C. Tel: 886-3-563-1999

Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C. Tel: 886-2-2782-9635

Fax: 886-2-2782-9636

Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong Tel: 852-2-745-8288

(52)

TLP434A & RLP434A

RF

ASK Hybrid Modules for Radio Control ( New Version )

Laipac Technology, Inc.

105 West Beaver Creek Rd. Unit 207 Richmond Hill Ontario L4B 1C6 Canada

Tel: (905)762-1228 Fax: (905)763-1737 e-mail: info@laipac.com

Symbol Parameter Conditions Min Typ Max Unit

Vcc Operating supply voltage 2.0 - 12.0 V

Icc 1 Peak Current (2V) - - 1.64 mA

Icc 2 Peak Current (12V) - - 19.4 mA

Vh Input High Voltage Idata= 100uA (High) Vcc-0.5 Vcc Vcc+0.5 V Vl Input Low Voltage Idata= 0 uA (Low) - - 0.3 V FO Absolute Frequency 315Mhz module 314.8 315 315.2 MHz PO RF Output Power- 50ohm Vcc = 9V-12V - 16 - dBm

Vcc = 5V-6V - 14 - dBm

DR Data Rate External Encoding 512 4.8K 200K bps Notes : ( Case Temperature = 25°C +- 2°C , Test Load Impedance = 50 ohm )

Application Circuit :

Typical Key-chain Transmitter using HT12E-18DIP, a Binary 12 bit Encoder from Holtek Semiconductor Inc.

Application Circuit :

Typical RF Receiver using HT12D-18DIP, a Binary 12 bit Decoder with 8 bit uC HT48RXX from Holtek Semiconductor Inc.

Easy-Link

Wireless

Symbol Parameter Conditions Min Typ Max

Vcc Operating supply voltage 3.3 5.0V 6.0 V

Itot Operating Current - 4.5 mA

Idata = +200 uA ( High ) Vcc-0.5 - Vcc V Vdata Data Out

Idata = -10 uA ( Low ) - - 0.3 V Electrical Characteristics

Characteristics SYM Min Typ Max Unit

Operation Radio Frequency FC 315, 418 and 433.92 MHz

Sensitivity Pref -110 dBm

Channel Width +-500 Khz

Noise Equivalent BW 4 Khz

Receiver Turn On Time 5 ms

Operation Temperature Top -20 - 80 C

Baseboard Data Rate 4.8 KHz

TLP434A Ultra Small Transmitter

1 2 3 4 13.0mm 13.3mm

2.54mm

pin 1 : GND pin 2 : Data In pin 3 : Vcc

pin 4 : Antenna ( RF output )

Frequency 315, 418 and 433.92 Mhz Frequency 315, 418 and 433.92 Mhz Frequency 315, 418 and 433.92 Mhz Frequency 315, 418 and 433.92 Mhz

Modulation : ASK

Operation Voltage : 2 - 12 VDC

24.72mm 43.42mm

1 2 3 4 3 4

5 6 7 8 7 8 10.5mm

11.5mm

pin 1 : Gnd

pin 2 : Digital Data Output pin 3 : Linear Output /Test pin 4 : Vcc

pin 5 : Vcc pin 6 : Gnd pin 7 : Gnd pin 8 : Antenna

Frequency Frequency Frequency

Frequency 315, 418 and 433.92 Mhz315, 418 and 433.92 Mhz315, 418 and 433.92 Mhz315, 418 and 433.92 Mhz Modulation : ASK Supply Voltage : 3.3 - 6.0 VDC Output : Digital & Linear

(53)

5-1

FAST AND LS TTL DATA

HEX INVERTER

14 13 12 11 10 9

1 2 3 4 5 6

VCC

8

7

GND

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ Max Unit

VCC Supply Voltage 54

74

4.5 4.75

5.0 5.0

5.5 5.25

V

TA Operating Ambient Temperature Range 54

74

– 55 0

25 25

125 70

°C

IOH Output Current — High 54, 74 – 0.4 mA

IOL Output Current — Low 54

74

4.0 8.0

mA

SN54/74LS04

HEX INVERTER

LOW POWER SCHOTTKY

J SUFFIX

CERAMIC CASE 632-08

N SUFFIX

PLASTIC CASE 646-06

14 1

14 1

ORDERING INFORMATION

SN54LSXXJ Ceramic

SN74LSXXN Plastic

SN74LSXXD SOIC

14 1

D SUFFIX

(54)

5-2

FAST AND LS TTL DATA

SN54/74LS04

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input HIGH Voltage 2.0 V Guaranteed Input HIGH Voltage for

All Inputs

VIL Input LOW Voltage

54 0.7

V Guaranteed Input LOW Voltage for

VIL Input LOW Voltage

74 0.8 V

p g

All Inputs

VIK Input Clamp Diode Voltage – 0.65 – 1.5 V VCC = MIN, IIN = – 18 mA

VOH Output HIGH Voltage

54 2.5 3.5 V VCC = MIN, IOH = MAX, VIN = VIH

VOH Output HIGH Voltage

74 2.7 3.5 V

CC , OH , IN IH

or VIL per Truth Table

VOL Output LOW Voltage

54, 74 0.25 0.4 V IOL = 4.0 mA VCC = VCC MIN,

VIN = VIL or VIH

VOL Output LOW Voltage

74 0.35 0.5 V IOL = 8.0 mA

VIN = VIL or VIH per Truth Table

IIH Input HIGH Current

20 µA VCC = MAX, VIN = 2.7 V

IIH Input HIGH Current

0.1 mA VCC = MAX, VIN = 7.0 V

IIL Input LOW Current – 0.4 mA VCC = MAX, VIN = 0.4 V

IOS Short Circuit Current (Note 1) – 20 –100 mA VCC = MAX

ICC

Power Supply Current

Total, Output HIGH 2.4 mA VCC = MAX

ICC

Total, Output LOW 6.6

mA VCC MAX

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 25°C)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

tPLH Turn-Off Delay, Input to Output 9.0 15 ns VCC = 5.0 V

tPHL Turn-On Delay, Input to Output 10 15 ns

(55)

July 1998

N DIP8

(Plastic Package)

D SO8

(Plastic Micropackage)

1

2

3

4 5

6 7

8 1 - GND

2 - Trigger 3 - Output 4 - Reset

5 - Control voltage 6 - Threshold 7 - Discharge 8 - VCC PIN CONNECTIONS(top view)

.

LOW TURN OFF TIME

.

MAXIMUM OPERATING FREQUENCY

GREATER THAN 500kHz

.

TIMING FROM MICROSECONDS TO HOURS

.

OPERATES IN BOTH ASTABLE AND

MONOSTABLE MODES

.

HIGH OUTPUT CURRENT CAN SOURCE OR

SINK 200mA

.

ADJUSTABLE DUTY CYCLE

.

TTL COMPATIBLE

.

TEMPERATURE STABILITY OF 0.005%

PERoC

ORDER CODES

Part Number

Temperature Range

Package

N D

NE555 0oC, 70oC • •

SA555 –40oC, 105oC • • SE555 –55oC, 125oC • •

DESCRIPTION

The NE555 monolithic timing circuit is a highly stable controller capableof producing accuratetime delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external re-sistor and capacitor.For a stableoperation as an os-cillator, the free running frequency and the duty cy-cle are both accurately controlled with two external resistors and one capacitor. The circuit may be trig-gered and reset on falling waveforms, and the out-put structure can source or sink up to 200mA. The NE555 is available in plastic and ceramic minidip package and in a 8-lead micropackage and in metal can package version.

NE555

SA555 - SE555

GENERAL PURPOSE SINGLE BIPOLAR TIMERS

(56)

THRESHOLD

COMP 5kΩ

5kΩ

5kΩ

TRIGGER

R FLIP-FLOP

S Q

DISCHARGE

OUT

INHIBIT/

RESET

RESET COMP

S - 808 6 S +

CONTROL VOLTAGE VCC

BLOCK DIAGRAM

OUTPUT CONTROL

VOLTAGE THRES HOLD

COMPARATOR

VC C

R1

4.7kΩ 830R2Ω

Q5 Q6 Q7 Q8 Q9 R3

4.7kΩ 1kR 4Ω5kR8Ω

Q1

Q2 Q3 Q4

Q10

Q11 Q12

Q13 THRES HOLD

TRIGGER

RES ET DISC HARGE

G N D 2

4 7

1 Q14

Q15

R5

10kΩ 100kR6Ω 100kR7Ω R 105kΩ

Q17

Q16 Q18

R 9 5kΩ D2

R 16 100Ω 4.7kR15Ω

R 14 220Ω

Q24 Q23

R17 4.7kΩ

3 Q22

Ρ13

D1 Q19

Q20 Q21

R1 2 6.8kΩ

5

TRIGGER COMPARATOR F LIP F LOP R11

5kΩ

3.9kΩ

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

Vcc Supply Voltage 18 V

Toper Operating Free Air Temperature Range for NE555 for SA555 for SE555

0 to 70 –40 to 105 –55 to 125

oC

Tj Junction Temperature 150 oC

Tstg Storage Temperature Range –65 to 150 oC

NE555/SA555/SE555

(57)

ELECTRICAL CHARACTERISTICS

Tamb= +25oC, VCC= +5V to +15V (unless otherwise specified)

Symbol Parameter SE555 NE555 - SA555 Unit

Min. Typ. Max. Min. Typ. Max.

ICC Supply Current (RL∞) (- note 1) Low State VCC= +5V

VCC= +15V High State VCC= 5V

3 10 2 5 12 3 10 2 6 15 mA

Timing Error (monostable) (RA =2k to 100kΩ, C = 0.1µF) Initial Accuracy - (note 2) Drift with Temperature Drift with Supply Voltage

0.5 30 0.05 2 100 0.2 1 50 0.1 3 0.5 % ppm/°C

%/V

Timing Error (astable)

(RA, RB= 1kΩto 100kΩ, C = 0.1µF, VCC= +15V)

Initial Accuracy - (note 2) Drift with Temperature Drift with Supply Voltage

1.5 90 0.15 2.25 150 0.3 % ppm/°C

%/V

VCL Control Voltage level VCC= +15V VCC= +5V

9.6 2.9 10 3.33 10.4 3.8 9 2.6 10 3.33 11 4 V

Vth Threshold Voltage VCC= +15V VCC= +5V

9.4 2.7 10 3.33 10.6 4 8.8 2.4 10 3.33 11.2 4.2 V

Ith Threshold Current - (note 3) 0.1 0.25 0.1 0.25 µA

Vtrig Trigger Voltage

VCC= +15V VCC= +5V

4.8 1.45 5 1.67 5.2 1.9 4.5 1.1 5 1.67 5.6 2.2 V

Itrig Trigger Current (Vtrig= 0V) 0.5 0.9 0.5 2.0 µA Vreset Reset Voltage - (note 4) 0.4 0.7 1 0.4 0.7 1 V

Ireset Reset Current

Vreset= +0.4V Vreset= 0V

0.1 0.4 0.4 1 0.1 0.4 0.4 1.5 mA

VOL Low Level Output Voltage VCC= +15V, IO(sink)= 10mA

IO(sink)= 50mA IO(sink)= 100mA IO(sink)= 200mA VCC= +5V, IO(sink)= 8mA

IO(sink)= 5mA

0.1 0.4 2 2.5 0.1 0.05 0.15 0.5 2.2 0.25 0.2 0.1 0.4 2 2.5 0.3 0.25 0.25 0.75 2.5 0.4 0.35 V

VOH High Level Output Voltage VCC= +15V, IO(source)= 200mA

IO(source)= 100mA VCC= +5V, IO(source)= 100mA

13 3 12.5 13.3 3.3 12.75 2.75 12.5 13.3 3.3 V

Notes : 1. Supply current when output is high is typically 1mA less. 2. Tested at VCC= +5V and VCC= +15V.

3. This will determine the maximum value of RA+ RBfor +15V operation the max total is R = 20MΩand for 5V operation the max total R = 3.5MΩ.

OPERATING CONDITIONS

Symbol Parameter SE555 NE555 - SA555 Unit

VCC Supply Voltage 4.5 to 18 4.5 to 18 V

Vth, Vtrig, Vcl, Vreset Maximum Input Voltage VCC VCC V

NE555/SA555/SE555

(58)

ELECTRICAL CHARACTERISTICS (continued)

Symbol Parameter SE555 NE555 - SA555 Unit

Min. Typ. Max. Min. Typ. Max.

Idis (off) Discharge Pin Leakage Current (output high) (Vdis= 10V)

20 100 20 100 nA

Vdis(sat) Discharge pin Saturation Voltage (output low) - (note 5)

VCC= +15V, Idis= 15mA VCC= +5V, Idis= 4.5mA

180 80

480 200

180 80

480 200

mV

tr tf

Output Rise Time Output Fall Time

100 100

200 200

100 100

300 300

ns

toff Turn off Time - (note 6) (Vreset= VCC) 0.5 0.5 µs Notes : 5. No protection against excessive Pin 7 current is necessary, providing the package dissipation rating will not be exceeded. 6. Time mesaured from a positive going input pulse from 0 to 0.8x VCCinto the threshold to the drop from high to low of the

output trigger is tied to treshold.

[image:58.612.82.521.105.737.2]

Figure 1 : Minimum Pulse Width Required for Trigering

Figure 2 : Supply Current versus Supply Voltage

Figure 3 : Delay Time versus Temperature Figure 4 : Low Output Voltage versus Output Sink Current

NE555/SA555/SE555

[image:58.612.346.491.295.442.2]
(59)

Figure 5 : Low Output Voltage versus Output Sink Current

Figure 6 : Low Output Voltage versus Output Sink Current

[image:59.612.96.512.75.728.2]

Figure 7 : High Output Voltage Drop versus Output

Figure 8 : Delay Time versus Supply Voltage

Figure 9 : Propagation Delay versus Voltage Level of Trigger Value

NE555/SA555/SE555

(60)

CAPACITOR VOLTAGE = 2.0V/div t = 0.1 ms / div

INPUT = 2.0V/div

OUTPUT VOLTAGE = 5.0V/div

[image:60.612.323.489.100.300.2]

R1 = 9.1kΩ, C1 = 0.01µF, R = 1kL Ω Figure 11

Reset

Trigger

Output

R1

C1

Control Voltage

0.01µF

NE555

= 5 to 15V VCC

4 2

3 1

5 6 7 8 Figure 10

C (µF)

10

1.0

0.1

0.01

0.001

10µs 100µs 1.0 10 100 10 (t )d

ms ms ms s

10M

1MΩ

100k

10k

R1=

1kΩ

Figure 12 APPLICATION INFORMATION

MONOSTABLE OPERATION

In the monostable mode, the timer functions as a one-shot. Referring to figure 10 the external capaci-tor is initially held discharged by a transiscapaci-tor inside the timer.

The circuit triggers on a negative-going input signal when the level reaches 1/3 Vcc. Once triggered, the circuit remains in this state until the set time has elapsed, even if it is triggered again during this in-terval.The duration of the output HIGH stateis given by t = 1.1 R1C1and is easily determined by figure 12.

Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negativepulse simultaneously to the reset terminal (pin 4) and the trigger terminal (pin 2) during the timing cycle discharges the exter-nal capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. During the time the reset pulse in ap-plied, the output is driven to its LOW state. When a negativetrigger pulse is applied to pin 2, the flip-flop is set, releasing the short circuit across the external capacitor and driving the output HIGH. The voltage across the capacitor increases exponen-tially with the time constantτ= R1C1. When the volt-age across the capacitor equals 2/3 Vcc, the compa-rator resets the flip-flop which then discharge the ca-pacitor rapidly and drivers the output to its LOW state.

Figure 11 shows the actual waveforms generatedin this mode of operation.

When Reset is not used, it should be tied high to avoid any possibly or false triggering.

ASTABLE OPERATION

When the circuit is connected as shown in figure 13 (pin 2 and 6 connected)it triggers itself and free runs as a multivibrator. The external capacitor charges through R1and R2and discharges through R2only. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In the astable mode of operation, C1charges and discharges between 1/3 Vccand 2/3 Vcc. As in the triggeredmode, the charge and discharge times and therefore frequency are independent of the supply voltage.

NE555/SA555/SE555

<

Gambar

Figure 3 :Delay Time versus Temperature
Figure 8 :Delay Time versus Supply Voltage
Figure 11t = 0.1 ms / div
Figure 16 : Pulse Width Modulator.
+7

Referensi

Dokumen terkait

[r]

(3) Mengetahui bagaimanakah ketepatan alat dan bahan yang akan digunakan siswa pada kegiatan yang terdapat dalam LKS mata pelajaran Sains kelas 1 - 6 SD. (4) Mengetahui

[r]

Kerusakan wajah pada pipi kiri yang terjadi akibat noma pada pasien ini belum bisa diperbaiki, Rencana akan dilakukan bedah plastik untuk rekonstruksi wajah

HUBUNGAN ANTARA KUALITAS PELAYANAN DENGAN KEPUASAN KONSUMEN PADA VILLA OASE VAN

mengalami gangguan perkembangan autism. Mereka kebingungan menghadapi anak mereka jika sedang tantrum, karena tidak dapat memahami apa yang diinginkan anak saat itu. Mereka juga

Data set siswa yang digunakan dalam penelitian ini diuji potensial covariate-nya menggunakan Logistic Regression terlebih dahulu untuk mendapatkan variabel independent yang

menggunakan analisis regresi berganda melalui SPSS dapat diketahui bahwa secara simultan dan parsial variabel manfaat kegunaan sistem ( usefulness ) (X1), persepsi