• Tidak ada hasil yang ditemukan

PEMANFAATAN BATU KUNING SEBAGAI BAHAN SUBBASE COURSE JALAN DITINJAU DARI BESARNYA NILAI kv PADA PENGUJIAN STANDARD PROCTOR DAN CBR DALAM KONDISI UNSOAKED

N/A
N/A
Protected

Academic year: 2017

Membagikan "PEMANFAATAN BATU KUNING SEBAGAI BAHAN SUBBASE COURSE JALAN DITINJAU DARI BESARNYA NILAI kv PADA PENGUJIAN STANDARD PROCTOR DAN CBR DALAM KONDISI UNSOAKED"

Copied!
84
0
0

Teks penuh

(1)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

i

PEMANFAATAN BATU KUNING (DOLOMITE LIMESTONE) SEBAGAI BAHAN SUBBASE COURSE JALAN DITINJAU DARI BESARNYA

NILAI kv PADA PENGUJIAN STANDARD PROCTOR DAN CBR DALAM KONDISI UNSOAKED

(Utilization of Dolomite Limestone as Subbase Course Road Materials Based on The Value of kv on Standard Proctor and CBR Testing at Unsoaked Condition)

SKRIPSI

Disusun Sebagai Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik Sipil Fakultas Teknik

Universitas Sebelas Maret Surakarta

Disusun Oleh :

HERI SUDARMADI

I 1106007

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS SEBELAS MARET

SURAKARTA

(2)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

i

PEMANFAATAN BATU KUNING (DOLOMITE LIMESTONE) SEBAGAI BAHAN SUBBASE COURSE JALAN DITINJAU DARI BESARNYA

NILAI kv PADA PENGUJIAN STANDARD PROCTOR DAN CBR DALAM KONDISI UNSOAKED

(Utilization of Dolomite Limestone as Subbase Course Road Materials Based on The Value of kv on Standard Proctor and CBR Testing at Unsoaked Condition)

SKRIPSI

Disusun Sebagai Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik Sipil Fakultas Teknik

Universitas Sebelas Maret Surakarta

Disusun Oleh :

HERI SUDARMADI

I 1106007

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS SEBELAS MARET

SURAKARTA

(3)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

iv

MOTTO DAN PERSEMBAHAN

“ Hari ini harus lebih baik dari hari kemarin dan

hari esok adalah harapan ”

Kupersembahakan untuk :

(4)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

ABSTRAK

HERI SUDARMADI, 2011. Pemanfaatan Batu Kuning (Dolomite Limestone) sebagai Bahan Subbase Course Jalan Ditinjau dari Besarnya Nilai kv pada Pengujian Standard

Proctor dan CBR dalam Kondisi Unsoaked. Skripsi Jurusan Teknik Sipil Fakultas Teknik

Universitas Sebelas Maret Surakarta.

Batu Kuning (Dolomite Limestone) yang diambil di desa Soko kecamatan Miri kabupaten Sragen merupakan langkah awal dari pemanfaatan batu kuning sebagai bahan perkerasan jalan khususnya lapis pondasi bawah (subase course). Penelitian ini bertujuan menganalisis karakteristik material batu kuning, menentukan variasi rancangan material subbase course

berupa batu kuning dengan penambahan agregat pilihan berupa kerikil dan pasir, serta menganalisis besar prosentase nilai CBRunsoaked dan nilai kv dengan menggunakan material batu kuning serta menambahkan agregat pilihan berupa pasir dan kerikil sebagai bahan penelitian.

Penelitian ini menggunakan metode eksperimen dengan total benda uji 96 buah yang terdiri dari batu kuning, batu kuning + pasir, batu kuning + kerikil dan batu kuning + pasir + kerikil. Sampel terdiri dari 4 variasi campuran, 5 variasi penambahan air sebesar 0ml, 50ml, 100ml, 150ml, 200ml pada tiap benda uji untuk pengujian standard Proctor dilakukan sesuai dengan

British standard, kemudian diambil nilai yang maksimum dari tiap sampel variasi

pencampuran untuk dilakukan pengujian CBR unsoaked berdasarkan prosedur-prosedur laboratorium sesuai dengan British standard. Untuk menentukan nilai modulus reaksi tanah dasar (kv) dilakukan pendekatan antara hubungan nilai CBR unsoaked dan nilai modulus reaksi tanah dasar (kv).

Pengujian material batu kuning pada sampel A3, perbandingan variasi campuran = 1(3/4”) : 1(3/8”) : 1(4) dengan berat isi kering 1,506 gr/cm

3

didapatkan nilai CBR unsoaked sebesar 37,76% menghasilkan nilai kv 108031,56 kN/m3. Variasi penambahan pasir pada sampel B3, perbandingan variasi campuran = 1(batu kuning) : 3(pasir) dengan berat isi kering 2,063 gr/cm

3 didapatkan nilai CBR unsoaked sebesar 98,99 % menghasilkan nilai kv 230155,12 kN/m3. Variasi penambahan kerikil pada sampel C4, perbandingan variasi campuran = 3(batu kuning) : 1(kerikil) dengan berat isi kering 1,621 gr/cm3 didapatkan nilai CBR unsoaked sebesar 41,06% menghasilkan nilai kv 116389,24 kN/m3. Variasi penambahan kerikil dan pasir pada sampel D1, perbandingan variasi campuran = 1(batu kuning) : 1(kerikil ½’) : 1(pasir) dengan berat isi kering 1,937 gr/cm3 didapatkan nilai CBR unsoaked sebesar 60,86 % menghasilkan nilai kv 157298,35 kN/m3.

(5)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

ABSTRACT

HERI SUDARMADI, 2011. Utilization of Dolomite Limestone as Subbase Course Road Materials Based on The Value of kv on Standard Proctor and CBR Testing at Unsoaked

Condition. Script of Civil Engineering Department of Engineering Faculty of Surakarta Sebelas Maret University.

Dolomite limestoneare taken in the village of Soko Miri district of Sragen regency is the first step of of utilization of dolomite limestone as subbase course road materials. This research

aims to analyze the material characteristics of dolomite limestone, determining the variations of design subbase course material in the form of dolomite limestone with addition sand and gravel, and analyzing large percentage of CBR unsoaked and the value kv by using dolomite limestone materials as well as the option of adding aggregate sand and gravel as research material.

This research uses an experimental method with a total of 96 test specimens consisting of

dolomite limestone, dolomite limestone + sand, dolomite limestone + gravel , dolomite limestone gravel + sand. The sample consisted of four variations of the mixture, 5 variations of 0ml addition of water, 50ml, 100ml, 150ml, 200ml in each test specimen for the standard Proctor test conducted in accordance with British standards, then taken the maximum value of each sample to be tested the variation of mixing CBR unsoaked based on laboratory procedures in accordance with British standards. To determine the value of modulus of subgrade reaction (kv) do approach between relationship unsoaked CBR value and the value modulus of subgrade reaction (kv).

Dolomite limestone material testing on the sample A3, the mixture ratio variation = 1(3/4”) : 1(3/8”) : 1(4) with a dry density of 1,506 gr/cm

3

values obtained of CBR unsoaked 37,76% resulted the value of kv 108031,56 kN/m3. Variations in the addition of sand on the sample B3, the mixture ratio variation = 1(dolomite limestone) : 3(sand) with a dry density 2,063 gr/cm

3

values obtained of CBR unsoaked 98,99 % resulted the value of kv 230155,12 kN/m3. Variation addtioned of gravel at sample C4, the mixture ratio variation = 3(dolomite limestone) : 1(gravel) with a dry density 1,621 gr/cm3 values obtained of CBR unsoaked 41,06% resulted the value of kv

116389,24 kN/m3. Variation addtioned of gravel and sand at sample D1, the mixture ratio variation = 1(dolomite limestone) : 1(gravel ½’) : 1(sand) with a dry density 1,937 gr/cm

3

values obtained

of CBR unsoaked 60,86 % resulted the value of kv 157298,35 kN/m3.

(6)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

vii

KATA PENGANTAR

Puji Syukur penulis panjatkan kehadirat Allah SWT atas segala limpahan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi dengan judul

“Pemanfaatan Batu kuning (Dolomite Limestone) sebagai Bahan Subbase Course Jalan Ditinjau dari Besarnya Nilai kv pada Pengujian Standard Proctor dan CBRUnsoaked. Skripsi ini disusun sebagai salah satu syarat untuk memperoleh gelar sarjana pada Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta.

Penulis telah banyak mendapatkan bantuan baik bimbingan maupun kerjasama dari berbagai pihak. Oleh karena itu, penulis mengucapkan terimakasih kepada : 1. Pimpinan Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret

Surakarta.

2. Pimpinan Pogram S1 Non Reguler Jurusan Teknik Sipil Fakultas Teknik

Universitas Sebelas Maret Surakarta.

3. Bambang Setiawan, ST, MT selaku Dosen Pembimbing I.

4. Ir. Ary Setyawan, M.Sc, Ph.D selaku Dosen Pembimbing II.

5. Setiono ST, M.Sc selaku Dosen Pembimbing Akademik.

6. Staf pengelola/laboran Laboratorium Mekanika Tanah Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta.

7. Saudara Fahri, Ristanto, Taru yang telah membantu selama penelitian.

8. Teman-teman Mahasiswa Teknik Sipil 2006.

9. Semua pihak yang telah membantu penulis dalam menyelesaikan skripsi ini.

Penulis menyadari skripsi ini masih banyak kekurangan, oleh karena itu saran dan kritik akan sangat membantu demi kesempurnaan penelitian selanjutnya. Akhir kata semoga skripsi ini dapat memberikan manfaat bagi semua pihak.

Surakarta, Juni 2011

(7)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user 1

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Jalan merupakan prasarana transportasi yang paling banyak digunakan oleh

masyarakat Indonesia untuk melakukan mobilitas keseharian sehingga volume

kendaraan yang melewati suatu ruas jalan mempengaruhi kapasitas dan kemampuan

dukungnya. Sering kita dijumpai kondisi jala-jalan dalam keadaan rusak. Kerusakan

struktur lapisan perkerasan jalan dapat disebabkan oleh berbagai faktor. salah satu

contoh yaitu lapis pondasi bawah (subbase course), penyebab dari kerusakan pada

lapisan ini yaitu kondisi tanah dasar yang kurang stabil, material konstruksi

perkerasan yang tidak baik dan proses pemadatan lapisan perkerasan yang kurang

baik.

Kondisi jalan di daerah Miri kabupaten Sragen merupakan daerah yang sering terjadi

kerusakan pada struktur lapis perkerasan jalan. Dengan demikian demi penghematan

biaya yang dikeluarkan dan efiesiensi waktu terhadap pelaksanaan perbaikan jalan,

penggunaan material lokal akan memberikan alternatif yang baik untuk bahan

perkerasan jalan. Di daerah kecamatan Miri terdapat hamparan luas batu kuning

(dolomite limestone) yang terdapat di perbukitan desa Soko.

Perubahan cuaca atau iklim menyebabkan terjadinya fluktuasi kadar air pada tanah

dasar. Pada musim hujan kadar air menjadi lebih besar dibanding musim kemarau.

Kekuatan atau kekakuan tanah dasar dipengaruhi oleh perubahan kadar air dan

diperhitungkan dengan mengevaluasi parameter kekuatan tanah dasar, misalnya

(8)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

2

Ada beberapa metode untuk menentukan daya dukung tanah seperti CBR (California

Bearing Ratio), k (modulus of subgrade reaction), Mr (resilient modulus), DCP

(Dynamic Penetrometer) dan HCP (Hand Cone Penetrometer). Di Indonesia daya

dukung tanah dasar untuk kebutuhan perencanaan tebal perkerasan jalan ditentukan

dengan mempergunakan pemeriksaan CBR (Sukirman, 1999). Vertical Modulus of

subgrade reaction (kv), didefinisikan sebagai nilai banding antara unit tegangan reaksi

tanah terhadap penurunan yang terjadi.

k

v digunakan dalam perhitungan pondasi

elastik, yaitu pondasi yang dianggap berperilaku elastik pada saat menerima

pembebanan

Latar belakang masalah di atas menjadi dasar dalam penelitian ini dengan

memanfaatkan material lokal berupa batu kuning, sebagai bahan pembuatan struktur

lapisan perkerasan jalan yang ditinjau dari lapisan subbase course. Kondisi tidak

terendam (unsoaked) adalah pemodelan dari musim kering. Penelitian ini merupakan

langkah awal dalam mengatasi kerusakan jalan dan diharapkan dalam penelitian ini

dapat memprediksi nilai CBR unsoaked dan nilai kv di daerah lain yang ditinjau pada

lapisan subbase course.

1.2. Rumusan Masalah

Rumusan masalah yang dapat diambil dari uraian latar belakang di atas, adalah :

1. Bagaimana karakteristik material batu kuning?

2. Bagaimana komposisi variasi material yang digunakan (batu kuning, pasir dan

kerikil) untuk memenuhi standar sebagai bahan lapisan subbase course?

3. Berapakah besar nilai CBR unsoaked yang dihasilkan dari variasi komposisi

material diatas?

4. Berapakah besar nilai kv yang didapat dari hasil nilai CBR unsoaked yang

(9)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

3

1.3. Batasan Masalah

1. Penelitian dilakukan dengan uji laboratorium sesuai Brithish standard

2. Material batu kuning merupakan material lokal dari daerah desa Soko kecamatan

Miri kabupaten Sragen.

3. Jenis material adalah material batu kuning untuk lapisan subbase course.

4. Variasi pencampuran yang dilakukan pada penelitian ini meliputi : material batu

kuning saja (kelompok A), batu kuning + pasir (kelompok B), batu kuning +

kerikil (kelompok C), batu kuning + kerikil dan pasir (kelompok D).

1.4. Tujuan Penelitian

1. Menganalisis karakteristik material batu kuning, pasir dan kerikil.

2. Menentukan variasi rancangan material subbase course berupa batu kuning

dengan penambahan pasir dan kerikil.

3. Menganalisis seberapa besar prosentase CBRunsoaked dan nilai kv pada variasi

rancangan di atas.

1.5. Manfaat

1.5.1. Manfaat Teoritis

Dengan adanya penelitian ini, maka dapat diketahui hubungan antara pengujian

pemadatan standard Proctor test, dengan CBR unsoaked dan nilai kv pada struktur

(10)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

4

1.5.2. Manfaat Praktis

Hasil penelitian ini diharapkan memberi petunjuk di lapangan untuk :

1. Mengetahui karakteristik material batu kuning.

2. Dengan penelitian ini, diharapkan dapat dijadikan salah satu acuan untuk

mengetahui variasi campuran material.

3. Sebagai salah satu alternatif penggunaan batu kuning sebagai bahan yang

digunakan untuk lapisan perkerasan jalan khususnya untuk lapisan subbase

(11)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user 5

BAB 2

LANDASAN TEORI

2.1 Tinjauan Pustaka

Perencanaan perkerasan adalah memilih kombinasi material dan tebal lapisan yang

memenuhi syarat pelayanan dengan biaya termurah dan dalam jangka panjang, yang

umumnya memperhitungkan biaya konstruksi pemeliharaan dan pelapisan ulang,

perencanaan perkerasan meliputi kegiatan pengukuran kekuatan dan sifat penting

lainnya dari lapisan permukaan perkerasan dan masing-masing lapisan di bawahnya

serta menetapkan ketebalan permukaan perkerasan, lapis pondasi, dan lapis pondasi

bawah, (Oglesby dan Hicks, 1982 dalam Basuki dan Aprianto (2001)).

Material struktur lapis perkerasan, seperti lapis pondasi (base course), lapis

pondasi-bawah (subbase course), dan lapis permukaan harus terdiri dari campuran material

granuler. Struktur pembentuk perkerasan yang stabil secara mekanis, umumnya

terdiri dari campuran agregat kasar (kerikil, batu pecah, slag dan sebagainya), agregat

halus (abu batu, pasir dan sebagainya), lanau, lempung, yang dicampur dengan

proporsi tertentu dan dipadatkan dengan baik,(Hardiyatmo, 2010).

Potensi batu kapur (Limestone) yang diambil dari Bukit Sebun Ipil desa Kutampi

Kaler kecamatan Nusa Penida kabupaten Klungkung sebagai agregat perkerasan

jalan. dengan hasil penelitian agregat batu kapur Nusa Penida cukup baik untuk bahan

campuran perkerasan jalan, baik untuk lapisan pondasi bawah, pondasi atas dan lapis

campuran perkerasan jalan. Dilihat dari sifat fisik agregat yaitu berat jenis 2,6 gr/cm,

abrasi 27,3 %, soundness 5,9%, dan kelekatan terhadap aspal > 90% masih dalam

(12)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

6

Vertikal Modulus of subgrade reaction (kv), didefinisikan sebagai nilai banding antara

unit tegangan reaksi tanah terhadap penurunan yang terjadi. Vertikal Modulus of

subgrade reaction (kv), digunakan dalam perhitungan pondasi elastik, yaitu pondasi

yang dianggap berperilaku elastik pada saat menerima pembebanan (Daud,

dkk.,2009).

2.2 Dasar Teori

2.2.1 Struktur Lapis Perkerasan

Struktur perkerasan lentur, umumnya terdiri atas: lapis pondasi bawah (subbase

course), lapis pondasi (base course), dan lapis permukaan (surface course).

Sedangkan susunan lapis perkerasan adalah seperti diperlihatkan pada gambar 2.1.

Gambar 2.1 Susunan lapis perkerasan jalan (Departemen Pemukiman dan Prasarana Wilayah, 2002)

2.2.2 Lapis Pondasi Bawah ( Subbase Course )

Lapis pondasi bawah adalah bagian dari struktur perkerasan lentur yang terletak

antara tanah dasar dan lapis pondasi. Biasanya terdiri atas lapisan dari material

berbutir (granular material) yang dipadatkan, distabilisasi ataupun tidak, atau lapisan

(13)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

7

Fungsi lapis pondasi bawah antara lain :

a. Sebagai bagian dari konstruksi perkerasan untuk mendukung dan menyebar beban

roda.

b. Mencapai efisiensi penggunaan material yang relatif murah agar lapisan-lapisan

diatasnya dapat dikurangi ketebalannya (penghematan biaya konstruksi).

c. Mencegah tanah dasar masuk ke dalam lapis pondasi.

d. Sebagai lapis pertama agar pelaksanaan konstruksi berjalan lancar.

Lapis pondasi bawah diperlukan sehubungan dengan terlalu lemahnya daya dukung

tanah dasar terhadap roda-roda alat berat (terutama pada saat pelaksanaan konstruksi)

atau karena kondisi lapangan yang memaksa harus segera menutup tanah dasar dari

pengaruh cuaca.

Bermacam-macam jenis tanah setempat (CBR > 20%, PI < 6%) yang relatif lebih

baik dari tanah dasar dapat digunakan sebagai bahan pondasi bawah.

Campuran-campuran tanah setempat dengan kapur atau semen portland, dalam beberapa hal

sangat dianjurkan agar diperoleh bantuan yang efektif terhadap kestabilan konstruksi

perkerasan.

2.2.3 Material Struktur Lapis Perkerasan

Dolomite adalah carbonate mineral yang terdiri dari calcium magnesium carbonate

CaMg(CO3)2. Pada umumnya terdapat pada batuan sedimen yang disebut dolostone.

Dolomite mempunyai karakteristik fisik, yaitu berwarna kuning, merah muda, putih,

coklat, merah dan berkristal. Dolomite lebih keras dan padat bila disbandingkan batu

(14)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

8

(a) (b)

Gambar 2.2 Dolomite

Material struktur lapis perkerasan, seperti lapis pondasi (base course), lapis

pondasi-bawah (subbase course), dan lapis permukaan harus terdiri dari campuran material

granuler. Struktur pembentuk perkerasan yang stabil secara mekanis, umumnya

terdiri dari campuran agregat kasar (kerikil, batu pecah, slag dan sebagainya), agregat

halus (abu batu, pasir dan sebagainya), lanau, lempung, yang dicampur dengan

proporsi tertentu dan dipadatkan dengan baik,(Hardiyatmo, 2010).

Distribusi ukuran butiran untuk perkerasan jalan yang paling banyak dipakai (secara

umum) untuk pekerjaan perkerasan jalan adalah Department of the Army and The Air

Force, 1994. Berikut ini adalah distribiusi ukuran butiran untuk perkerasan jalan yang

disajikan pada Tabel 2.1 :

Tabel 2.1 Distribiusi ukuran butiran untuk perkerasan jalan (Department of the Army

and The Air Force, 1994)

Persen lolos saringan (%)

Ukuran saringan Lapis pemukaan Lapis pondasi - bawah

(Lapis pondasi)

26,5 mm 100 100

19,0 mm 85 - 100 70 - 100

9,5 mm 65 - 100 50 - 80

4,75 mm (no.4) 55 - 85 32 - 65

2,36 mm (no.8) 1) 20 - 60 25 - 50

0,425 mm (no.40) 25 - 45 15 - 30

(15)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

9

2.2.4 Pengujian Pemadatan Standar (Standard Proctor Test)

Pemadatan tanah merupakan suatu proses mekanis dimana udara dalam pori tanah

dikeluarkan. Adapun proses tersebut dilakukan pada tanah yang digunakan sebagai bahan

timbunan. Dengan maksud :

a) Mempertinggi kekuatan tanah.

b) Memperkecil pengaruh air pada tanah.

c) Memperkecil compressibility dan daya rembes airnya.

d) Kepadatan tanah itu mulai dari berat isi kering tanah ( dry density ) dan tergantung

pada kadar air tanahnya ( water content ). Pada derajat kepadatan tinggi berarti :

§ Berat isi maksimum.

§ Kadar air tanahnya (w) optimum.

§ Angka porinya ( e ) minimum.

Standart Proctor ini adalah suatu percobaan tanah disamping percobaan yang lain yaitu

modified compaction test untuk memeriksa kadar air tanah dan sifat yang lain.

(16)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

10

Pada tanah pasir gd cenderung berkurang saat kadar air (w) bertambah. Pengurangan

gd ini adalah akibat dari pengaruh hilangnya tekanan kapiler saat kadar air bertambah.

Pada kadar air rendah, tekanan kapiler dalam tanah yang berada di dalam rongga pori

menghalangi kecenderungan partikel untuk bergerak, sehingga butiran cenderung

merapat (padat), (Hardiyatmo, 2006).

Proses pemadatan material batuan dapat digunakan prosedur dalam tabel 2.2 diambil

dari buku manual of soil laboratory testing, Head (1980).

Tabel 2.2 Prosedur pemadatan ( Head, 1980 )

Type of test (and BS 1377 :

1975 Test No.) Container

Rammer No. Blows

mass drop of per

(kg) (mm) layers layer

"Ordinary" Compaction

Old

"Proctor" 2.5 305 3 25 BS mould 2.5 300 3 27

CBR mould 2.5 300 3 62

"Heavy" Compaction

Old

"Proctor" 4.5 457 5 25

BS mould 4.5 450 5 27

CBR mould 4.5 450 5 62

Vibrating hammer CBR mould 32 to

41 (vibration) 3 (1 min)

Dietert 2 inch

diameter 8.14 50.8

2 ends

10 each end

2.2.5 California Bearing Ratio (CBR)

CBR didefinisikan sebagai perbandingan dari gaya yang dibutuhkan untuk penetrasi

sebuah piston dengan luas permukaan 1935 mm2 ( 3 in2 ) ke dalam tanah yang

ditempatkan di sebuah tempat khusus dengan kelajuan rata – rata 1 mm/ mnt ( 0.05

in/ mnt ), dari kebutuhan yang sama untuk penetrasi contoh standar batu pecah yang

dipadatkan. Perbandingan yang digunakan adalah penetrasi ke – 2.5 dan 5.0 mm ( 0.1

(17)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

11

%

100

´

=

Gaya

ndar

Sta

Terukur

Gaya

CBR

...(2.1)

Beban permukaan piston berbentuk semi-lingkaran terbuat dari logam, biasanya

diletakkan di atas permukaan contoh tanah sebelum diuji. Piston memiliki berat 2 kg

setara dengan ketebalan konstruksi beban luar setebal 70 mm, dalam satuan Inggris

memiliki berat 5 lb setara dengan ketebalan 3 in.

Pengujian CBR menggunakan prinsip penetrasi geser dengan kelajuan tetap dimana

standar plunger didorong masuk ke dalam tanah dengan kelajuan tetap dan gaya yang

dibutuhkan untuk mempertahankan kelajuan diukur tiap interval tertentu. Hubungan

beban – penetrasi digambarkan sebagai grafik, mulai dari beban diterapkan menjadi

penetrasi standar beban tidak dibaca dan ditunjukkan sebagai perbandingan dari

beban standar.

Standar gaya dihasilkan dari kisaran penetrasi mulai dari 2 hingga 12 mm. Gaya yang

ditunjukkan adalah tipe berat, berdasarkan penetrasi 2.5 dan 5 mm, digunakan dalam

perhitungan standar nilai CBR. Pernyataan ini sama dengan kriteria asli untuk tekanan

kontak di bawah plunger dengan luas permukaan 3 in2, adalah 1000 lb/in2 di penetrasi

0.1 dan 1500 lb/in2 di penetrasi 0.2, dapat ditunjukkan pada Tabel 2.1 Hubungan

standar gaya – penetrasi untuk uji CBR (Head, 1980).

Tabel 2.3 Hubungan standar gaya – penetrasi untuk uji CBR (Head, 1980)

Tekanan ( in ) ( mm ) ( kN ) ( lbf ) ( lb/in2 )

2 11.5

0.1 2.5 13.24 3000 1000

4 17.6

0.2 5 19.96 4500 1500

(18)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

12

Gaya standar ini didasarkan pada uji contoh pemadatan batu pecah, yang

didefinisikan sebagai nilai CBR 100%. Berdasarkan beberapa grafik pengujian CBR,

dari 20 hingga 200% nilai CBR, dapat diperlihatkan pada Gambar 2.2 grafik beberapa

nilai CBR.

Gambar 2.4 Grafik beberapa nilai CBR ( Head, 1980 )

Nilai CBR mungkin terjadi melebihi 100%, hal ini terjadi pada pemadatan slag

(limbah peleburan logam) pecah dan tanah yang telah distabilkan. Pada intinya nilai

CBR adalah rata – rata dari pengumpulan data grafik beban – penetrasi sebagai

kuantitas numerik tunggal (harga tunggal).

Nilai CBR yang diberikan oleh tanah tergantung dari kepadatan kering dan kadar

airnya. Sesuai dengan derajat kepadatan, nilai CBR akan turun dengan bertambahnya

kadar air dan penurunan ini bisa lebih cepat jika berada di atas kadar air optimum.

Davis (1949) dalam Head (1980) menyebutkan rata – rata penurunan semakin tajam

untuk tanah berbutir kasar. Pada Gambar 2.12 hubungan nilai CBR dengan kadar air

(19)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

13

Gambar 2.5 Hubungan nilai CBR dengan kadar air dan grafik pemadatan (Head, 1980)

Terdapat dua puncak pada kurva C terjadi pada kepadatan kering optimum tanah

lempung, terutama untuk usaha pemadatan tingkat rendah. Hubungan yang sama

dapat dibuat untuk derajat pemadatan yang lain.

Nilai CBR umumnya diaplikasikan pada desain runway atau taxiway lapangan

terbang dan jalan raya. Grafik desain standar digunakan para insinyur untuk

menentukan ketebalan konstruksi berdasarkan nilai CBR tergantung dari antisipasi

kondisi lalu-lintas kendaraan atau pesawat terbang sesuai dengan beban sumbu dan

frekuensi lalu-lintas.

Praktisi Amerika memperkenalkan benda uji CBR dengan cara perendaman. Upaya

ini sebagai tindakan pencegahan untuk mengijinkan penambahan kadar air ke dalam

tanah selama terjadi banjir atau kenaikan muka air tanah. Perendaman cenderung

menghasilkan distribusi kadar air yang tidak rata pada contoh tanah. Geser pada sisi

dalam mould menghasilkan pengembangan yang tidak seragam dan 10 mm bagian

(20)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

14

Tabel 2.4 Tebal Sub-base course berdasarkan mutu tanah dasar (Departemen Pekerjaan Umum, 2002)

Jenis sub grade Definisi Tebal sub base minimum

Lemah Sub grade dengan CBR ≤ 2 % 150 mm

Normal Sub grade dengan 2 % ≤ CBR ≤ 15 % 80 mm

Stabil CBR≥ 15 % 0 mm

Tabel 2.5 Prosedur standar untuk pemadatan material (Kutzner, 1997)

Material Simbol

kelompok

Tebal lapisan sebelum dipadatkan

(cm)

Lempung plastisitas tinggi CH 15 – 20

Lanau plastis MH 20 – 25

Lempung plastisitas rendah CL 20 - 30

Lanau plastisitas rendah ML 20 - 30

Pasir berlempung SC 20 - 30

Pasir berlanau SM 20 - 30

Pasir dan Sirtu, Gradasi buruk SP 30 – 50

Pasir dan Sirtu, Gradasi baik SW 40 – 60

Kerikil berlempung GC 20 – 30

Kerikil berlanau GM 30 – 40

Kerikil, gradasi buruk GP 40 – 50

Kerikil, gradasi baik GW 50 – 60

Urugan batu - 60 - 150

Catatan :

*Berat rata-rata pemadat 100 – 150 kN. Pemadat terberat yang tersedia sebaiknya

(21)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

15

2.2.6 Koefisien Reaksi Subgrade Arah Vertikal (kv)

Modulus of subgrade reaction (kv), didefinisikan sebagai nilai banding antara unit

tegangan reaksi tanah terhadap penurunan yang terjadi. Modulus of subgrade reaction

(kv), digunakan dalam perhitungan pondasi elastik, yaitu pondasi yang dianggap

berperilaku elastik pada saat menerima pembebanan (Daud, dkk.,2009).

Rumus dasar perhitungan nilai koefisien tanah subgrade (kv) untuk pelat kaku

(Hardiyatmo dkk., 2000) adalah :

d p

kv = ……….………..(2.2)

dengan,

kv = nilai modulus reaksi subgrade tanah (kN/m2.m-1)

p = tekanan (kN/m2)

δ = lendutan pelat (m)

Untuk pelat yang fleksibel diusulkan dengan menggunakan persamaan (Hardiyatmo

dkk., 2000) adalah:

a C v

A Q

k d

= ... (2.3)

dengan,

Q = beban titik (kN) Ac = luas bidang tekan (m2)

δa = nilai defleksi rerata pelat (m)

Pendekatan nilai modulus reaksi tanah dasar (k) dapat menggunakan hubungan nilai

CBR dengan k seperti yang ditunjukkan pada grafik nomogram yang diambil dari

literatur Highway Engineering (Teknik Jalan Raya), Oglesby dan Hicks, Stanford

(22)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

16

(23)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

17

BAB 3

METODE PENELITIAN

3.1. Pengambilan Sampel Material

3.1.1. Pengambilan Material Batu Kuning

Material Batu kuning yang digunakan dalam pengujian diambil dari desa Soko kecamatan Miri kabupaten Sragen Jawa Tengah.

Gambar 3.1 Wilayah Desa Soko Kecamatan Miri Kabupaten Sragen

3.1.2. Pengambilan Material Pasir

Material pasir yang digunakan dalam pengujian merupakan pasir dari kecamatan Muntilan kabupaten Magelang Jawa Tengah.

(24)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

18

3.1.3. Pengambilan Material Kerikil

Material kerikil yang digunakan dalam pengujian merupakan kerikil dari kecamatan Mojogedang kabupaten Karanganyar Jawa Tengah.

3.2.

Pengujian Laboratorium

3.2.1. Bahan dan Alat Penelitian

Bahan dan alat yang digunakan dalam pengujian contoh material penelitian ini adalah sebagai berikut :

1. Bahan yang digunakan antara lain :

· Material batu kuning

· Kerikil

· Pasir

2. Alat yang digunakan antara lain :

· Mesin Los Angeles

· Sieve Analysis Apparatus

· Casagrande Test Apparatus

· Standard Proctor Test

· CBR Apparatus

· Dongkrak

· Jangka sorong

· Cangkul dan karung

3.2.2. Pengujian Klasifikasi

Pengujian ini bertujuan untuk mengetahui jenis material dan sifat – sifat fisiknya. Pengujian yang dilakukan meliputi :

(25)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

19

2. Gradasi agregat (ASTM C-33), untuk mengetahui distribusi ukuran butiran tanah.

3. Pengujian abrasi dengan mesin Los Angeles (ASTM C-131) untuk

mengetahui nilai keausan dari agregat kasar.

4. Atterberg limit (ASTM D 4318–95a), untuk mengetahui batas-batas konsistensi tanah (batas cair,batas plastis dan indeks plastisitas).

3.2.3. Pengujian Pemadatan

Pengujian pemadatan yang dilakukan menggunakan standard Proctor (ASTM D

698-91). Pemadatan adalah proses merapatkan antar partikel tanah satu sama lain oleh usaha mekanik. Pemadatan diharapkan dapat mengurangi seluruh rongga udara pada tanah.

3.2.3.1. Persiapan Benda Uji

Mengambil material kemudian dimasukkan ke dalam oven dengan temperatur ± 110° C selama 24 jam. Material yang terdiri dari bongkahan besar dihancurkan secara manual yaitu menumbuk dengan palu, sedangkan tanah yang berukuran kecil langsung diayak dengan ayakan No. 4 (4.75 mm). Setiap mould uji membutuhkan sekitar 2500 gr material, dalam satu variasi membutuhkan 12.500 gr untuk empat mould uji seluruhnya membutuhkan 50.000 gr dari keempat variasi. Sehingga didapatkan grafik hubungan kadar air dengan kepadatan kering maksimum dari tiap-tiap variasi.

(26)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

20

3.2.3.2. Alat dan Bahan

1. Mould logam berbentuk silinder, dengan dimensi 101.5 mm diameter dan

115.5 mm tinggi. Volume sillinder adalah 1000 cm3.

2. Alat penumbuk manual. Diameter penumbuk 50 mm dan berat penumbuk

2.5 kg dan tinggi jatuh 300 mm.

3. Silinder ukur 1000 ml.

4. Plastik tipis.

5. Dongkrak, untuk mengeluarkan material padat dari mould.

6. Alat – alat kecil: pisau tipis, besi perata tipis 300 mm panjang, sekop.

7. Oven pengering, 105 – 110° C, dan alat – alat lain untuk menentukan kadar air ( cawan ).

3.2.3.3. Cara Kerja

1. Menyiapkan alat – alat. Mould, tutup mould dan plat dasar harus dalam keadaan kering dan bersih. Diameter mould adalah 4 in, berat penumbuk dan tinggi jatuh diperiksa agar sesuai dengan standar yaitu 2.5 kg dan 300 mm dengan diameter 50 mm. Bagian dalam mould perlu diberi pelumas untuk membantu mengeluarkan tanah dari dalam.

2. Memadatkan material. Contoh material yang telah melalui proses

(27)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

21

( a )

( b )

Gambar 3.2 Pengujian kepadatan: ( a ) Mould 4 in, ( b ) Alat penumbuk

(28)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

22

ditumbuk 25 kali. Mengulangi untuk lapis ketiga hingga permukaan material setelah ditumbuk sekitar 6 mm diatas mould, seperti terlihat pada Gambar 3.3 contoh material dalam mould setelah dipadatkan.

Gambar 3.3 Contoh material dalam mould setelah dipadatkan

(dalam Pratama, 2009)

3. Memotong material. Memindahkan tutup mould secara perlahan – lahan. Memotong kelebihan material dan menyamakan tinggi material dengan tinggi mould, mengecek dengan besi perata.

4. Menimbang material. Memindahkan plat dasar secara perlahan – lahan dan

memotong material pada bagian bawah mould untuk meratakan permukaannya jika perlu. Kemudian menimbang material dan mould.

5. Mengeluarkan material. Memasang mould pada extruder dan

mendongkrak keluar material dalam mould.

6. Mengukur kadar air. Mengambil tiga material yang dianggap mewakili dari tiap lapisan ke dalam cawan, kemudian menimbang berat material dan

cawan. Memasukkan tiga cawan berisi material ke dalam oven dengan temperatur ± 110°C selama ± 24 jam, rata – rata dari tiga pengukuran disebut kadar air.

7. Mengulang langkah 1 – 6 untuk 2500 gr material dengan penambahan air

(29)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

23

3.2.4. Pengujian Pemadatan CBR ( California Bearing Ratio )

3.2.4.1. Persiapan Benda Uji

Dari pengujian pemadatan standar tadi diambil gdmax dan (w)opt yang paling baik

kemudian digunakan pengujian pemadatan CBR. Mencari penambahan air dari

grafik kepadatan kering dan kadar air sesuai dengan interval yang diambil tiap 0 ml, 50 ml, 150 ml atau 200 ml .Kemudian sampel material tiap 5000 gr. Penambahan air didapat dari uji pemadatan yang menyatakan kepadatan kering maksimum pada kadar air optimumnya.. Kemudian contoh tanah dimasukkan ke dalam plastik, diikat dan disimpan dalam ruangan sejuk, terhindar dari sinar matahari langsung selama ± 24 jam, proses ini disebut proses pemeraman.

3.2.4.2. Alat dan Bahan

1. Mould logam silinder, dengan dimensi 152 mm diameter dan 127 mm

tinggi. Mould ini dipasangkan dengan pegangan plat dasar dan tutup yang bisa dilepas.

2. Piringan pembentuk, dengan dimensi 150.8 mm diameter dan 61.4 mm

tebal. Sebelum melakukan pemadatan, memasukkan piringan pembentuk kedalam mould, sehingga tinggi mould menjadi 116.4 mm sama seperti mould Proctor.

3. Alat penumbuk manual. Diameter penumbuk 50 mm dan berat penumbuk

2.5 kg dan tinggi jatuh 300 mm.

4. Silinder ukur 1000 ml.

5. Plastik tipis.

6. Dongkrak, untuk mengeluarkan material padat dari mould.

(30)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

24

8. Oven pengering, 105 – 110° C, dan alat – alat lain untuk menentukan kadar air ( cawan ).

3.2.4.3. Cara Kerja

1. Menyiapkan alat –alat. Mould CBR yang digunakan berdiameter 152 mm

dan tinggi 127 mm. Mengecek berat penumbuk 2.5 kg dan tinggi jatuh 300 mm.

2. Memadatkan material. Contoh material yang telah melalui proses

pemeraman selama ± 24 jam kemudian dipadatkan. Memasukkan contoh

material 5000 gr ke dalam mould dibagi dalam 3 lapis dan setiap lapisnya dipadatkan dengan penumbuk sebanyak 62 kali pukulan.

[image:30.595.129.514.213.636.2]

( a ) ( b )

Gambar 3.4 Proses pemadatan: ( a ) Mould 152 mm, ( b ) Alat penumbuk

3. Memotong sampel material. Memotong kelebihan material dan

(31)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

25

4. Menimbang sampel material. Memindahkan plat dasar secara perlahan – lahan dan memotong material pada bagian bawah mould untuk meratakan permukaannya jika perlu. Kemudian menimbang sampel material dan mould.

3.2.5. Pengujian Penetrasi CBR ( California Bearing Ratio )

Pengujian CBR yang dilakukan yaitu CBR Unsoaked (tidak terendam)

menggunakan ASTM D – 1883. Uji CBR melakukan dorongan plunger ke dalam

tanah pada kondisi penetrasi tetap dan mengukur gaya yang dibutuhkan untuk

mempertahankan laju penetrasi. Pengujian CBR dilakukan dengan membuat

contoh material yang mendekati kondisi di lapangan. Jika kepadatan dan kadar air di lapangan diketahui, contoh tanah dapat dipersiapkan untuk memenuhi kondisi tersebut.

3.2.5.1. Alat dan Bahan

1. Portal beban ( mesin uji tekan ), memberikan gaya tekan yang dapat

dikendalikan sesuai standar penetrasi dilakukan menggunakan tangan.

2. Proving ring ( lingkaran kalibrasi beban ). Proving ring digunakan untuk mengukur beban. Terdiri dari lingkaran elastik yang diketahui diameternya dengan alat pengukur yang diletakkan di tengah lingkaran.

3. Plunger logam silinder. Dengan panjang 250 mm, luas penampang 1935 mm2 ( 3 in2 ) dan diameter 49.64 mm.

4. Dial gauge. Dengan kisaran 25 mm, pembacaan tiap 0.01 mm, untuk mengukur penetrasi plunger ke dalam contoh tanah.

5. Beban permukaan semi-lingkaran 2 buah. Diameter luar 145 – 150 mm, diameter dalam 52 – 54 mm dan berat 2 kg.

(32)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

26

3.2.5.1. Cara Kerja

1. Mendudukkan mould, plat dasar dan sampel material pada tengah dudukan

plat mesin uji, dengan dudukan plat berada di paling bawah. Memasang beban permukaan. Memastikan proving ring terpasang baik pada portal beban dan plunger terpasang pada baik pada proving ring.

Menggerakkan tuas mesin uji sehingga dudukan plat bergerak ke atas,

sampai ujung plunger hampir menyentuh bagian atas contoh tanah.

Memasang penetration dial gauge pada plunger dan menghubungkannya

dengan tutup mould. Memastikan penetration dial gauge sudah terpasang

dengan baik dan memiliki gerak bebas sekitar 10 mm.

2. Memasang plunger. Plunger harus diletakkan diatas sampel material dibawah dudukan beban. Menggerakkan tuas mesin uji sehingga dudukan plat bergerak ke atas perlahan – lahan hingga proving ring menunjukkan pembacaan. Mengatur dial gauge pada posisi nol. Mengatur penetration dial gauge pada posisi nol, seperti terlihat pada Gambar 3.5

3. Menjalankan uji. Menggerakkan tuas mesin uji secara perlahan – lahan dengan kecepatan penetrasi tetap, catat bacaan dial gauge pada proving ring setiap interval penetrasi 50 x 0.01 mm dalam interval waktu 30 detik, hingga bacaan penetrasi 500 x 0.01 mm dan waktu 5 menit. Selanjutnya catat bacaan dial gauge pada proving ring setiap interval penetrasi 100 x 0.01 mm dalam interval waktu 60 detik, hingga bacaan penetrasi 700 x

0.01 mm dan waktu 7 menit. Kemudian catat bacaan dial gauge pada

proving ring penetrasi 900 x 0.01 mm tepat 9 menit. Mencatat bacaan terakhir saat bacaan dial gauge pada proving ring penetrasi 1000 x 0.01 mm tepat 10 menit.

(33)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

27

5. Mengeluarkan sampel material dari mould. Menggunakan dongkrak dan

[image:33.595.119.434.135.484.2]

extruder contoh material dikeluarkan dari mouldnya.

Gambar 3.5 Proses penetrasi CBR

3.2.6. Perhitungan Nilai kv

Hasil uji CBR juga dapat digunakan untuk mengestimasi nilai kv. Berikut ini akan dipelajari prosedur penentuan modulus reaksi tanah dasar yang dilakukan dengan cara melakukan pendekatan nilai modulus reaksi tanah dasar (kv) dengan menggunakan hubungan nilai CBR dengan kv, yang diambil dari literatur Highway Engineering (Teknik Jalan Raya), Oglesby dan Hicks, Stanford University & Oregon State University, 1996. Berikut merupakan cara perhitungan menentukan nilai kv yang dilakukan dengan cara pendekatan, yaitu dari nilai CBR yang telah

dihasilkan, dapat dipergunakan untuk menentukan nilai CBR sesuai dengan jarak

(34)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

28

3.3. Output/ Keluaran Penelitian

Data – data yang telah didapatkan dari pengujian kemudian akan dianalisis untuk

mendapatkan nilai keausan, indeks plastisitas, gradasi agregat,( gdmaks dan wopt ),

CBR (California Bearing Ratio) unsoaked dan Modulus of subgrade reaction (kv). Penentuan nilai CBR dan kv diambil dari hasil variasi campuran material yang diuji. Selanjutnya dibuat korelasi (hubungan) antara variasi campuran dengan nilai

CBR dan kv. Korelasi yang dilakukan merupakan usaha untuk memberikan gambaran kepada penulis dan pembaca agar lebih jelas dalam melihat pemanfatan material batu kuning untuk pembuatan stuktur lapisan perkerasan jalan yang

(35)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

29

3.4. Alur Penelitian

M u la i

P e m ilih a n L o k a s i P e n g a m b ila n S a m p e l

P e n g u jia n A b r a s i, A t e r b e r g L im it, d a n G r a d a s i A g r e g a t

P e n a m b a h a n A g r e g a t P ilih a n B e r u p a P a s ir d a n K e r ik il

P e r s ia p a n C o n t o h S a m p e l U ji C B R U n s o a k e d

T a h a p I

T a h a p I I

T a h a p II I

T a h a p IV S is t e m K la s if ik a s i

B a t u K u n in g

B a t u K u n in g

P e n g u j ia n S ta n d a r d P r o c to r T e s t d i p e ro le hgd m a k s d a n wo p t

P e n g u jia n C B RU n s o a k e d

Y e s

N o P e r c o b a a n H a s il U ji

N ila i C B R U n s o a k e d

N ila i

kv

K e s im p u la n d a n S a r a n

S e le s a i

[image:35.595.144.472.127.652.2]

A n a lis is d a n P e m b a h a s a n

(36)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

30

BAB 4

ANALISIS DAN PEMBAHASAN

4.1. Hasil Pengujian Material

4.1.1. Hasil Pengujian Batu Kuning

Pengujian-pengujian yang dilakukan terhadap batu kuning dalam penelitian ini

[image:36.595.112.511.248.513.2]

meliputi abrasi, berat jenis, gradasi agregat kasar dan nilai batas konsistensi agregat kasar. Setelah dilakukan pengujian didapat hasil pengujian yang disajikan dalam Tabel 4.1. Untuk perhitungan dan data-data pengujian secara lengkap terdapat pada Lampiran A.

Tabel 4.1 Hasil pengujian batu kuning

Jenis Pengujian Hasil Pengujian Standar Kesimpulan

Abrasi 44 % Maks 50 % Memenuhi

Bulk Spesific Gravity 2,521 Min 2,5 Memenuhi

Bulk Spesific Gravity SSD 2,589 2,5 – 2,7 Memenuhi

Absorbtion 2,67 % Maks 3% Memenuhi

Hasil pengujian agregat kasar berdasarkan Department of the Army and The Air Force (1994) dapat dilihat pada Tabel 4.2 dan hasil pengujian dapat dilihat

(37)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

[image:37.595.112.518.92.504.2]

31

Tabel 4.2. Analisis data gradasi batu kuning

No

Diameter Ayakan

(mm)

Berat Tertinggal Berat Lolos Kumulatif

(%)

Department of the Army and The Air Force

(1994) Berat

(gram) %

Kumulatif (%)

1 26,50 0 0 0 100 100

2 19,00 328,5 21,91 21,91 78,09 70-100

3 9,50 361,5 24,11 46,02 53,98 50-80

4 4,75 292,2 19,49 65,51 34,49 32-65

5 2,36 127,7 8,52 74,03 25,97 25-50

6 0,425 150,3 10,02 84,05 15,95 15-30

7 0,075 154,2 10,28 94,33 5,67 5-15

8 Pan 85,1 5,67 100 0 -

Jumlah 1492.7 100 485,85

Modulus Kehalusan (MK) =

100

100

beratkomilatif tertinggal

= 100 100 85 , 485 -= 3,86

Agregat yang hilang =

1500 % 100 ) 7 , 1492 1500

( - x

= 0,486 %

Dari Tabel 4.2 gradasi agregat kasar di atas dapat digambarkan grafik gradasi

beserta batas gradasi yang disyaratkan oleh Department of the Army and The Air

(38)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

32

Gambar 4.1 Grafik daerah susunan butir batu kuning

[image:38.595.117.508.88.658.2]

Dari Gambar 4.1. dapat dilihat batu kuning yang diuji berada pada batas maksimum dan minimum, sehingga agregat yang digunakan memenuhi syarat dan layak digunakan dalam pembuatan benda uji.

(39)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

33

Dari grafik diperoleh harga LL (batas cair) = 21,22 %. Dengan cara menarik garis vertical yang tegak lurus sumbu X pada 25 ketukan, kemudian memotong garis linear, dari titik perpotongan tersebut ditarik garis horizontal yang memotong sumbu Y untuk mendapatkan harga LL (batas cair).

Tabel 4.3 Hasil pengujian batas cair, batas plastis dan indeks plastisitas

Batas Cair = 21,22 %

Batas Plastis = 17,38 %

Indeks Plastisitas = 3,84 %

Dari tabel 4.3 dapat dilihat bahwa batu kuning pada hasil batas cair (LL), batas plastis (PL) dan indeks plastisitas (IP) memenuhi syarat sesuai dengan standar

ASTM D 1241. Pada standar ASTM D 1241 nilai batas cair (LL) tidak lebih dari 25% dan indeks plastisitas (PI) tidak lebih dari 6.

4.1.2. Hasil Pengujian Agregat Halus (Pasir)

Pengujian-pengujian yang dilakukan terhadap agregat halus (pasir) dalam penelitian ini meliputi pengujian gradasi agregat halus. Setelah dilakukan pengujian didapat hasil pengujian yang disajikan dalam Tabel 4.4 Untuk

[image:39.595.111.512.206.494.2]

perhitungan dan data-data pengujian secara lengkap terdapat pada Lampiran A.

Tabel 4.4 Hasil pengujian agregat halus (pasir)

Jenis Pengujian Hasil Pengujian Standar Kesimpulan

Bulk Spesific Gravity 2,425 Min 2,4 Memenuhi

Bulk Spesific Gravity SSD 2,5 2,5 – 2,7 Memenuhi

(40)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

34

[image:40.595.112.511.178.577.2]

Untuk hasil pengujian agregat halus (pasir) serta persyaratan batas dari ASTM C33-97 dapat dilihat pada Tabel 4.5 berikut ini.

Tabel 4.5 Analisis data gradasi agregat halus (pasir)

No Diameter

Ayakan

Berat Tertahan Berat

Lolos Kumulatif

ASTM C 33-84 Berat

(gram) %

Kumulatif (%)

1 9.5 0 0 0 100 100

2 4.75 50 1.807 1.68067 98.319 95-100

3 2.36 350 11.765 13.4454 86.554 85-100

4 2,00 485 16.303 29.7479 70.2521 50-85

5 0.85 320 10.756 40.5042 59.4958 25-60

6 0.3 1105 37.143 77.6471 22.3529 10-30

7 0.15 450 15.126 92.7731 7.22689 2-10

8 0 215 7.2269 100 0 0

Total 2975 100 348.236 - -

Modulus kehalusan ditentukan dengan rumus :

Modulus Kehalusan (MK) =

100

100

beratkomilatif tertinggal

= 100 100 236 , 348 -= 2,48

Agregat yang hilang =

3000 % 100 ) 2975 300

( - x

= 0,833 %

(41)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

35

Gambar 4.3 Grafik daerah susunan butir agregat halus (pasir)

Dari Gambar 4.3 dapat dilihat gradasi agregat halus (pasir) yang diuji berada pada batas maksimum dan minimum, sehingga agregat halus yang digunakan memenuhi syarat dan layak digunakan dalam pembuatan benda uji.

4.1.3. Hasil Pengujian Agregat Kasar (Kerikil)

Pengujian-pengujian yang dilakukan terhadap agregat kasar (kerikil) dalam penelitian ini meliputi pengujian gradasi agregat kasar. Setelah dilakukan pengujian didapat hasil pengujian yang disajikan dalam Tabel 4.6 Untuk

[image:41.595.118.510.88.497.2]

perhitungan dan data-data pengujian secara lengkap terdapat pada Lampiran A.

Tabel 4.6 Hasil pengujian agregat kasar (kerikil)

Jenis Pengujian Hasil Pengujian Standar Kesimpulan

Bulk Spesific Gravity 2,65 Min 2,5 Memenuhi

Bulk Spesific Gravity SSD 2,69 2,5 – 2,7 Memenuhi

(42)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

36

Untuk hasil pengujian agregat kasar (kerikil) serta persyaratan batas dari ASTM C33-97 dapat dilihat pada Tabel 4.7 berikut.

Tabel 4.7 Analisis data gradasi agregat kasar (kerikil)

No Diameter Ayakan

Berat tertinggal Berat Lolos Kumulatif (%) ASTM C33-84 Berat

(gram) %

Kumulatif (%)

1 25,00 0 0 0 100 100

2 19,00 145.9 9.79 9.79 90.21 90-100

3 12,50 546 36.64 46.43 53.57 -

4 9,50 255.2 17.12 80.58 36.45 25-55

5 4,75 509 34.15 97.7 2.3 0-10

6 2,36 34.3 2.3 100 0 0-5

7 2,00 0 0 100 0 -

8 0,85 0 0 100 0 -

9 0,3 0 0 100 0 -

10 0,15 0 0 100 0 -

11 Pan 0 0 100 0 -

Jumlah 1490.4 100 834.53

Modulus kehalusan ditentukan dengan rumus :

Modulus Kehalusan (MK) =

100

100

beratkomilatif tertinggal

= 100 100 29 . 784 -= 7.345

Agregat yang hilang =

1500 % 100 ) 4 . 1490 1500

( - x

= 0,64 %

(43)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

37

Gambar 4.4 Grafik daerah susunan butir agregat kasar (kerikil)

(44)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

38

4.2. Variasi Rancangan Penelitian

Berikut variasi rancangan penelitian batu kuning, batu kuning dengan penambahan pasir, batu kuning dengan penambahan kerikil, dan batu kuning dengan penambahan kerikil dan pasir.

Tabel 4.8 Variasi penelitian batu kuning

Keterangan:

Variasi batu kuning merupakan benda uji berupa batu kuning yang digradasi sesuai dengan ukuran saringan pada Tabel 4.8, dari gradasi tersebut dibedakan antara agregat kasar dan agregat halus yang digunakan untuk mix design :

· A1 adalah sampel benda uji mix design antara agregat kasar dan agregat halus dengan perbandingan = 1(kasar) : 1(halus) untuk agregat kasar dan agregat halus yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 50%(3/4”,3/8”,4) : 50%(halus).

· A2 adalah sampel benda uji mix design antara agregat kasar dan agregat halus dengan perbandingan = 1(3/4”) : 1(3/8”) : 1(4) : 1(halus) untuk agregat pada ukuran saringan no. ¾”,3/8”,4 dan agregat halus yang dicampur berdasarkan volume cawan untuk setiap agregat dengan prosentase sebesar 25%(3/4”) : 25%(3/8”) : 25%(4) : 25%(halus).

· A3 adalah sampel benda uji mix design agregat kasar dengan perbandingan

= 1(3/4”) : 1(3/8”) : 1(4) untuk agregat kasar pada ukuran saringan no.

3/4" 3/8" 4 8 40 200

Perbandingan Prosentase

Perbandingan 1 1 1

Prosentase 25 (%) 25 (%) 25 (%)

Perbandingan 1 1 1

Prosentase 33,33 (%) 33,33 (%) 33,33 (%) Perbandingan

Prosentase

1 1

50% 50%

BATU KUNING

25 (%) 75 (%)

A1 Sampel A2 A3 A4 1 1 3

Variasi AGREGAT KASAR AGREGAT HALUS

(45)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

39

¾”,3/8”,4 yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase sebesar 33,33%(3/4”) : 33,33%(3/8”) : 33,33%(4). · A4 adalah sampel benda uji mix design antara agregat kasar dan agregat

halus dengan perbandingan = 1(kasar) : 3(halus) untuk agregat kasar dan agregat halus yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase sebesar 25%(kasar) : 75%(halus).

Tabel 4.9 Variasi penelitian batu kuning + pasir

Keterangan:

Variasi batu kuning + pasir merupakan benda uji berupa batu kuning + pasir yang digradasi sesuai dengan ukuran saringan pada Tabel 4.9, dari gradasi tersebut dibedakan antara agregat kasar dan agregat halus pada batu kuning dan pasir yang digunakan pada ukuran saringan no. 10 (2mm) untuk digunakan sebagai mix design :

· B1 adalah sampel benda uji mix design antara agregat kasar dan agregat halus serta penambahan pasir no.10 (2mm) dengan perbandingan =

1(batu kuning) : 1(pasir) untuk keseluruhan ukuran agregat batu kuning dan pasir yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 50%(batu kuning) : 50%(pasir). · B2 adalah sampel benda uji mix design antara agregat kasar dan agregat

halus serta penambahan pasir no.10 (2mm) dengan perbandingan = 3(batu

kuning) : 1(pasir) untuk keseluruhan ukuran agregat batu kuning dan pasir

3/4" 3/8" 4 8 40 200 10

Perbandingan 1

Prosentase 50 (%)

Perbandingan 1

Prosentase 25 (%)

Perbandingan 3

Prosentase 75 (%)

Perbandingan 1

Prosentase 25 (%)

BATU KUNING

1

3

1

AGREGAT KASAR AGREGAT HALUS PASIR Variasi

Sampel

BATU KUNING + PASIR

(46)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

40

yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 75%(batu kuning) : 25%(pasir).

· B3 adalah sampel benda uji mix design antara agregat kasar dan agregat

halus serta penambahan pasir no.10 (2mm) dengan perbandingan = 1(batu

kuning) : 3(pasir) untuk keseluruhan ukuran agregat batu kuning dan pasir yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 25%(batu kuning) : 75%(pasir).

· B4 adalah sampel benda uji mix design antara agregat kasar dan agregat halus serta penambahan pasir no.10 (2mm) dengan perbandingan = 1(3/4”) : 1(3/8”) : 1(4) : 1(pasir) untuk agregat batu kuning pada ukuran saringan no. ¾”,3/8”,4 dan pasir yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 25%(3/4”) : 25%(3/8”) : 25%1(4) : 25%(pasir).

Tabel 4.10 Variasi penelitian batu kuning + kerikil

Keterangan:

Variasi batu kuning + kerikil merupakan benda uji berupa batu kuning + kerikil yang digradasi sesuai dengan ukuran saringan pada Tabel 4.10, dari gradasi tersebut dibedakan antara agregat kasar dan agregat halus pada batu kuning dan kerikil yang digunakan pada ukuran saringan no.1/2”,3/8”,4 untuk digunakan sebagai campuran mix design :

3/4" 3/8" 4 8 40 200 1/2" 3/8" 4

Perbandingan 1

Prosentase 50 (%)

Perbandingan 1

Prosentase 50 (%)

Perbandingan 1 1 1

Prosentase 25 (%) 25 (%) 25 (%)

Perbandingan Prosentase BATU KUNING 1 1 1 Variasi 3 75 (%) 25 (%) 50 (%) 50 (%)

BATU KUNING + KERIKIL

AGREGAT KASAR AGREGAT HALUS

(47)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

41

· C1 adalah sampel benda uji mix design antara agregat kasar dan agregat halus serta penambahan kerikil no.1/2” dengan perbandingan = 1(batu kuning) : 1(kerikil 1/2”) untuk keseluruhan ukuran agregat batu kuning dan kerikil no.½” yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 50%(batu kuning) : 50%(kerikil

½”).

· C2 adalah sampel benda uji mix design antara agregat kasar dan agregat halus serta penambahan kerikil no. 4 dengan perbandingan = 1(batu kuning) : 1(kerikil 4) untuk keseluruhan ukuran agregat batu kuning dan kerikil no.4 (4,75mm) yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 50%(batu kuning) : 50%(kerikil 4). · C3 adalah sampel benda uji mix design antara agregat kasar dan agregat

halus serta penambahan kerikil no.1/2”,3/8”,4 dengan perbandingan = 1(batu kuning) : 1(kerikil1/2”) : 1(kerikil3/8”) : 1(kerikil 4) untuk keseluruhan ukuran agregat batu kuning dan kerikil no. ½”,3/8”,4 yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 25%(batu kuning) : 25%(kerikil ½”) : 25%(kerikil 3/8”) : 25%(kerikil 4)

· C4 adalah sampel benda uji campuran mix design antara agregat kasar dan

(48)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

42

Tabel 4.11 Variasi penelitian batu kuning + kerikil dan pasir

Keterangan:

Variasi batu kuning + kerikil + pasir merupakan benda uji berupa batu kuning + kerikil + pasir yang digradasi sesuai dengan ukuran saringan pada Tabel 4.11, dari gradasi tersebut dibedakan antara agregat kasar dan agregat halus pada batu kuning serta agregat pilihan berupa pasir dengan ukuran saringan no.10 (2mm) dan kerikil yang digunakan pada ukuran saringan no.1/2”,3/8”,4 untuk digunakan

sebagai campuran mix design

· D1 adalah sampel benda uji mix design antara agregat kasar dan agregat halus pada batu kuning serta penambahan pasir no.10 (2mm) dan kerikil no.1/2” dengan perbandingan = 1(batu kuning) : 1(kerikil 1/2”) : 1(pasir) untuk keseluruhan ukuran agregat batu kuning, pasir no.10 (2mm) dan kerikil no.½” yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 33,33%(batu kuning) : 33,33%(kerikil ½”) : 33,33%(pasir).

· D2 adalah sampel benda uji mix design antara agregat kasar dan agregat halus pada batu kuning serta penambahan pasir no.10 (2mm) dan kerikil no.4 dengan perbandingan = 1(batu kuning) : 1(kerikil 4) : 1(pasir) untuk keseluruhan ukuran agregat batu kuning, pasir no.10 (2mm) dan kerikil

no.4 yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 33,33%(batu kuning) : 33,33%(kerikil 4) : 33,33%(pasir).

3/4" 3/8" 4 8 40 200 1/2" 3/8" 4 10

Perbandingan 1 1

Prosentase 33,33 (%) 33,33 (%)

Perbandingan 1 1

Prosentase 33,33 (%) 33,33 (%)

Perbandingan 1 1

Prosentase 33,33 (%) 33,33 (%)

Perbandingan 1 1 1 1

Prosentase 20 (%) 20 (%) 20 (%) 20 (%)

Variasi 1 1 33,33 (%) AGREGAT KASAR 1 1

BATU KUNING + KERIKIL + PASIR

Sampel

D1

(49)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

43

· D3 adalah sampel benda uji mix design antara agregat kasar dan agregat halus pada batu kuning serta penambahan pasir no.10 (2mm) dan kerikil no.3/8” dengan perbandingan = 1(batu kuning) : 1(kerikil 3/8”) : 1(pasir) untuk keseluruhan ukuran agregat batu kuning, pasir no.10 (2mm) dan kerikil no.3/8” yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 33,33%(batu kuning) : 33,33%(kerikil 3/8”) : 33,33%(pasir).

· D4 adalah sampel benda uji mix design antara agregat kasar dan agregat halus pada batu kuning serta penambahan pasir no.10 (2mm) dan kerikil no.1/2”,3/8”,4 dengan perbandingan = 1(batu kuning) : 1(kerikil 1/2”) : 1(kerikil 3/8”) : 1(kerikil 4) : 1(pasir) untuk keseluruhan ukuran agregat batu kuning, pasir no.10 (2mm) dan kerikil no.1/2”,3/8”,4 yang dicampur berdasarkan volume cawan untuk setiap ukuran agregat dengan prosentase keseluruhan sebesar 20%(batu kuning) : 20%(kerikil ½”) : 20%(kerikil 3/8”) : 20%(kerikil 4) : 20%(pasir).

Dari Tabel 4.8 ,Tabel 4.9, Tabel 4.10 dan Tabel 4.11 merupakan suatu rancangan

perbandingan untuk pencampuran (mix design) dalam pembuatan sampel

penelitian ini, dimana dalam penelitian ini menggunakan batu kuning yang digradasi sesuai dengan standar Department of the Army and The Air Force

(1994). Serta menambahkan agregat pilihan seperti pasir yang lolos saringan no. 10 (2 mm) dan kerikil yang tertahan pada saringan no. ½”,3/8” dan 4 mm, pada agregat pilihan tersebut digradasi sesuai standar ASTM C-128.

4.2.1. Pengujian Pemadatan

(50)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

44

Tabel 4.12 Hasil pengujian standard Proctor batu kuning Nomor

sampel

Variasi penelitian

Penambahan Air w gd

(ml) (%) ( gr/cm3 )

(1) (2) (3) (4) (5)

A1 1(kasar) : 1(halus)

0 1,378 1,829

50 2,914 1,820

100 4,809 1,791

150 7,494 1,820

200 11,027 1,712

Nilai maksimum 1,378 1,829

A2 1(3/4”) : 1(3/8”) : 1(4) : 1(halus)

0 1,378 1,753

50 3,495 1,722

100 5,885 1,636

150 7,909 1,746

200 10,565 1,642

Nilai maksimum 1,378 1,753

A3 1(3/4”) : 1(3/8”) : 1(4)

0 0,447 1,497

50 2,366 1,454

100 4,916 1,424

150 5,684 1,506

200 7,339 1,430

Nilai maksimum 5,684 1,506

A4 1(kasar) : 3(halus)

0 1,371 1,869

50 3,539 1,831

100 5,934 1,842

150 8,561 1,871

200 11,139 1,842

(51)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

[image:51.595.108.517.99.700.2]

45

Tabel 4.13 Hasil pengujian standard Proctor batu kuning + pasir Nomor

sampel Variasi penelitian

Penambahan Air w gd

(ml) (%) ( gr/cm3 )

(1) (2) (3) (4) (5)

B1 1(batu kuning) : 1(pasir)

0 0,15 1,970

50 2,010 1,873

100 4,399 1,869

150 5,426 1,830

200 7,760 1,902

Nilai maksimum 0,15 1,970

B2 3(batu kuning) : 1(pasir)

0 0,773 1,937

50 2,389 1,836

100 4,631 1,785

150 7,151 1,869

200 9,526 1,823

Nilai maksimum 0,773 1,937

B3 1(batu kuning) : 3(pasir)

0 0,548 2,063

50 2,313 1,980

100 3,576 1,960

150 5,341 1,885

200 7,821 1,899

Nilai maksimum 0,548 2,063

B4 1(3/4”) : 1(3/8”) : 1(4) : 1(pasir)

0 0,401 1,990

50 2,819 1,909

100 3,556 1,852

150 6,527 1,889

200 7,471 1,844

(52)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

[image:52.595.98.528.100.695.2]

46

Tabel 4.14 Hasil pengujian standard Proctor batu kuning + kerikil Nomor

sampel Variasi penelitian

Penambahan Air w gd

(ml) (%) ( gr/cm3 )

(1) (2) (3) (4) (5)

C1 1(batu kuning) : 1(kerikil ½’)

0 1,170 1,636

50 6,279 1,726

100 6,884 1,809

150 9,121 1,657

200 9,513 1,826

Nilai maksimum 9,513 1,826

C2 1(batu kuning) : 1(kerikil 4)

0 1,280 1,718

50 3,906 1,799

100 5,134 1,706

150 7,987 1,727

200 8,419 1,786

Nilai maksimum 3,906 1,799

C3 1(batu kuning) : 1(kerikil1/2”) : 1(kerikil3/8”) : 1(kerikil 4)

0 1,270 1,625

50 2,445 1,598

100 4,650 1,572

150 6,158 1,586

200 7,342 1,528

Nilai maksimum 1,270 1,625

C4 3(batu kuning) : 1(kerikil)

0 0,979 1,606

50 3,094 1,531

100 4,052 1,613

150 5,164 1,616

200 7,094 1,621

(53)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

[image:53.595.94.531.96.717.2]

47

Tabel 4.15 Hasil pengujian standard Proctor batu kuning + kerikil dan pasir

Nomor

sampel Variasi penelitian

Penambahan

Air w gd

(ml) (%) ( gr/cm3 )

(1) (2) (3) (4) (5)

D1 1(batu kuning) : 1(kerikil ½’) : 1(pasir)

0 0,683 1,892

50 2,182 1,937

100 4,438 1,805

150 5,846 1,771

200 8,705 1,874

Nilai maksimum 2,182 1,937

D2 1(batu kuning) : 1(kerikil 4) : 1(pasir)

0 0,923 1,906

50 2,804 1,959

100 4,129 1,902

150 5,855 1,906

200 8,181 1,937

Nilai maksimum 2,804 1,959

D3 1(batu kuning) : 1(kerikil 3/8’) : 1(pasir)

0 0,723 2,032

50 3,362 1,962

100 4,267 1,936

150 5,843 1,911

200 7,725 2,002

Nilai maksimum 0,723 2,032

D4 1(batu kuning) : 1(kerikil 1/2”) : 1(kerikil 3/8”) : 1(kerikil 4) : 1(pasir)

0 0,806 1,935

50 3,550 1,967

100 3,970

Gambar

Gambar 3.4 Proses pemadatan: ( a ) Mould 152 mm, ( b ) Alat penumbuk
Gambar 3.5  Proses penetrasi CBR
Gambar 3.7  Alur Penelitian
Tabel 4.1 Hasil pengujian batu kuning
+7

Referensi

Dokumen terkait

Berdasarkan latar belakang dan identifikasi masalah yang telah diuraikan di atas, untuk memperjelas penelitian yang dilakukan dan untuk mendapatkan hasil yang

e) Pilih file data Rencana Kebutuhan Impor yang sudah disiapkan sebelumnya.. Pastikan semua data telah sesuai. Baik dari segi Tahun Rencana Kebutuhan, Kode

Dengan lahirnya hak cipta itu maka seorang pencipta diharapkan untuk mendaftarkan hasil ciptaanya, agar dapat mudah untuk mengetahui siapa-siapa saja yang

Ada beberapa hal yang berguna diantaranya: (1) Bagi guru, kajian atau tindakan konseling ini dirasakan sangat bermanfaat dalam melaksanakan layanan konseling melalui metode

Disamping itu pula anda dapat dengan mudah melakukan bisnis secara terbuka yang dikenal dengan E-Commerce, namun jangan dilupakan juga bahwa kemudahan yang ada, akan dibarengi

Bagi PT. Jambi Mandiri Sentosa, HIT Time Attendance System telah diterapkan secara memadai dan perlu adanya peningkatan kedisiplinan karyawan sehingga produktivitas

Untuk melaksanakan tugas pokok sebagaimana dimaksud pada ayat (1), Sekretaris mempunyai fungsi:.. 26 1) Penyusunan program dan kegiatan kesekretariatan. 2)

Hasil penelitian ini menunjukkan bahwa penerapan fungsi actuating Kantor Urusan Agama (KUA) Gunrur Demak dalam pembinaan agama di Desa Tlogoweru (perspektif manajemen