• Tidak ada hasil yang ditemukan

STUDI DESAIN REAKTOR CEPAT BERPENDINGIN TIMBAL-BISMUTH DENGAN DAUR ULANG AKTINOIDA. Mohammad Taufik *

N/A
N/A
Protected

Academic year: 2021

Membagikan "STUDI DESAIN REAKTOR CEPAT BERPENDINGIN TIMBAL-BISMUTH DENGAN DAUR ULANG AKTINOIDA. Mohammad Taufik *"

Copied!
16
0
0

Teks penuh

(1)

STUDI DESAIN REAKTOR CEPAT BERPENDINGIN TIMBAL-BISMUTH DENGAN DAUR ULANG AKTINOIDA

Mohammad Taufik*

ABSTRAK

STUDI DESAIN REAKTOR CEPAT BERPENDINGIN TIMBAL-BISMUTH DENGAN DAUR ULANG AKTINOIDA. Telah dilakukan Studi Desain Reaktor Cepat berpendingin

Timbal-Bismuth dengan Daur Ulang Aktinoida. Reaktor terdiri atas 5 region. Region pertama berupa blanket, region kedua berupa teras utama, region ketiga berupa teras, region keempat berupa reflektor, dan region kelima berupa perisai. Dalam region pertama berisi uranium alam, sedangkan dalam region kedua dan ketiga berisi plutonium yang diperkaya. Pendingin reaktor berupa timbal-bismuth (Pb-Bi) cair. Unsur aktinoida yang dihasilkan didaur ulang kembali sebagai sumber bahan bakar di dalam teras utama. Unsur-unsur aktinoida seperti Neptunium (Np), Plutonium (Pu), Americium (Am), dan Curium (Cu). Selama proses burn-up daur ulang dilakukan analisa terhadap perubahan faktor multiplikasi (keff),

perubahan breeding ratio, perubahan peak power density, dan komposisi fraksi massa tiap-tiap unsur aktinoida. Dari hasil perhitungan program simulasi yang dibuat dengan bahasa Fortran 77, dapat disimpulkan bahwa desain reaktor cepat yang dikembangkan memiliki performance yang baik dari segi daur ulang unsur aktinoida.

ABSTRACT

DESIGN STUDY OF FAST REACTOR WITH PB-BI COOLING SYSTEM AND ACTINIDE RECYCLE. A design study of fast reactor with Pb-Bi cooling system and actinide recycle

has been done. The reactor consists of five regions. The first, the second, the third, the fourth and the fifth regions are respectively the blanket, the main core, the core, the reflector and the shielding. The fisrt region consists of natural uranium, where as the second and the third regions consists of enriched plutonium. The reactor cooling system is of Pb-Bi liquid. Actinide elements obtained are recycled as fuel source in the main core. The actinide elements are Neptunium (Np), Plutonium (Pu), Americium (Am) and Curium (Cu). During recycle burn up process, analysis of multiplication factor change (keff), breeding

ration change, peak power density change and mass fraction composition of each actinide element have been carried out. From the result of simulation program calculation written with fortran 77, it is concluded that the fast reactor design developed has a good performance with respect to actinide element recycle.

(2)

PENDAHULUAN

Untuk memaksimalkan segala manfaat dan meminimalkan segala resiko yang dapat terjadi, maka desain reaktor daya nuklir yang ideal untuk generasi yang akan datang harus memenuhi beberapa kriteria, yaitu :

a. Kemampuan menghasilkan energi secara efisien.

b. Kemampuan memanfaatkan cadangan 238U (atau 232Th) di alam serta unsur aktinoida sebagai bahan bakar nuklir.

c. Kemampuan memiliki Inherent/Passive Safety.

d. Kemampuan menghancurkan dan memproses limbah nuklir (limbah radioaktif) yang dihasilkan.

Kemampuan menghasilkan energi secara efisien dapat dicapai dengan kriteria sebagai berikut : memiliki load factor setinggi mungkin yaitu 80 % - 90 % (saat ini 70 % - 75 %), melakukan optimasi ukuran reaktor, memiliki efisiensi konversi energi setinggi mungkin yaitu > 40 % (saat ini LWR memiliki 33 %), dan pemanfaatan energi termal dari bahan pendingin untuk desalinasi (cogeneration).

Kemampuan memanfaatkan cadangan 238U (atau 232Th) di alam dapat dicapai dengan kriteria sebagai berikut : memiliki siklus tertutup dengan daur ulang aktinoida, dan memiliki spektrum neutron keras agar efisien memanfaatkan aktinoida sebagai sumber energi (reaksi fisi lebih dominan dari reaksi penangkapan neutron).

Kemampuan inherent / passive safety dapat dicapai dengan kriteria sebagai berikut : memiliki kemampuan untuk mengubah kondisinya sendiri ke kondisi setimbang baru yang aman tanpa bantuan operator dan peralatan aktif tertentu ketika terjadi kondisi kecelakaan / abnormal, dan memiliki mekanisme feedback (umpan balik) yang memadai.

Kemampuan menghancurkan dan memproses limbah nuklir (limbah radioaktif) yang dihasilkan dapat dilakukan dengan cara sebagai berikut : memproses ulang (reprocesing) limbah radioaktif berumur sangat pendek, membakar kembali (transmutation) limbah fission product (FP) yang berumur sangat panjang dan memiliki penampang lintang reaksi yang cukup besar, dan menghancurkan limbah radioaktif yang berumur sangat panjang dan sulit bereaksi dengan neutron dengan menggunakan partikel bermuatan berenergi tinggi dari akselerator.

Dalam penelitian ini dikembangkan sebuah program simulasi untuk mendesain reaktor cepat yang memiliki kemampuan untuk mendaur ulang unsur-unsur aktinoida yang dihasilkan. Hal ini didasarkan pada upaya untuk memenuhi kriteria kemampuan memanfaatkan cadangan 238U (atau 232Th) di alam. Program simulasi dibuat dalam bahasa Fortran 77.

(3)

TEORI DASAR Persamaan Difusi

Persamaan difusi yang digunakan adalah persamaan difusi multigroup, yaitu persamaan difusi dengan neutron yang memiliki beberapa group energi (dalam penelitian ini diambil 8 group). Solusi persamaan difusi ini memberikan bentuk distribusi fluks neutron terhadap ruang dan bentuk distribusi daya yang bergantung terhadap ruang.

Persamaan Difusi Multigroup :

dengan : g

D

: koefisien difusi untuk group g g

φ

: fluks neutron untuk group g g

r ,

: penampang lintang removal untuk group g i

f ,

: penampang lintang fisi dari group i ke group g g

i s

, : penampang lintang hamburan dari group i ke group g

eff

k

: faktor multiplikasi efektif g

λ

: spektrum fisi untuk group g

υ

: jumlah rata-rata neutron yang dihasilkan dalam proses reaksi fisi Distribusi fluks untuk silinder dua dimensi (R-Z):

( )

=

r

R

J

H

z

z

r

'

405

,

2

cos

,

10 0 1

π

φ

φ

( )

=

r

R

J

H

z

z

r

'

405

,

2

cos

,

20 0 2

π

φ

φ

tr

R

R

'

=

+

0

,

7

λ

(2) i g i g i s i i f G i eff g g g r g g

k

D

φ

φ

λ

υ

φ

φ

− = → =

+

=

+

1 1 , , 1 ,

.

r

r

(1)

(4)

Faktor multiplikasi :

(

)

(

)(

2

)

2 2 1 2 1 2 1 2 2 2 2 2 1 1 R R s f R f eff

B

D

B

D

B

D

k

+

+

+

+

=

υ

υ

→ (3) atau :

(

) (

)(

2

)

2 2 2 2 1 2 1 2 1 1 2 1 1 1 R f R s R f eff

B

D

B

D

B

D

k

+

+

+

+

=

υ

υ

(4)

Persamaan difusi multigroup dituliskan dalam bentuk metoda numerik finite

difference (beda hingga) adalah :

Secara lengkap solusi numerik persamaan difusi multigroup :

A B C D E E j i j i g g g sg j i j i g fg g g eff g j i j i g rg g j i g

V

V

k

V

da

D

,' , ' ' , , ' ' ' ' , , ,

.

φ

λ

υ

φ

φ

φ

+

=

+

r

+

+

+ + + − − +

r

A

D

r

A

D

z

A

D

i j g i i j g j i i g j i g j j i g j i g ; , 1 , 1 ; 1 , , 1 1 , ; 1 ,

φ

φ

φ

r

A

D

z

A

D

z

A

D

z

A

D

ii j g j j i g j j i g j i g j j i g j i g

+

+

+

+

− − + − + ; 1 , , 1 ; 1 , ; , , 1 ; 1 ,

φ

φ

j i j i g g g sg j i j i g fg g g eff g j i Rg j i i g

V

V

k

V

r

A

D

, , ' ' ' , , ' ' ' ' , ; , 1

φ

φ

υ

λ

+

=

+

+

− (5) (6)

(5)

Persamaan (6) dinyatakan dalam bentuk matriks : Syarat Batas :

,

0

0

=

= r

r

φ

,

0

0

=

= z

z

φ

(

R

+

0

,

7

λ

tr

)

=

0

,

φ

(7) Bentuk Matriks :

S

k

M

φ

=

1

(8) Matriks Pentadiagonal

M

φ

n = 3 , m = 3 :









9 8 7 6 5 4 3 2 1 E9 C8 0 D6 0 0 0 0 0 B8 E8 C7 0 D5 0 0 0 0 0 B7 E7 0 0 D4 0 0 0 A6 0 0 E6 C5 0 D3 0 0 0 A5 0 B5 E5 C4 0 D2 0 0 0 A4 0 B4 E4 0 0 D1 0 0 0 A3 0 0 E3 C2 0 0 0 0 0 A2 0 B2 E2 C1 0 0 0 0 0 A1 0 B1 E1 φ φ φ φ φ φ φ φ φ (9) Persamaan Burn-up

Perhitungan standar dalam analisa reaktor nuklir untuk mengetahui performansi sistem dari segi fuel cycle dan keselamatan (safety) adalah Perhitungan Burn-up.

Persamaan Burn-up untuk tiap siklus dapat dituliskan sebagai berikut :

(

)

m m i m i i a i i

N

S

N

dt

dN

+

+

=

λ

σ

,

φ

, (10)

(6)

dengan : i

N

: kerapatan atom jenis ke i untuk masing-masing mesh spasial i

λ

: konstanta desintegrasi untuk atom ke i i

a,

σ

: penampang lintang absorbsi mikroskopik untuk atom ke i pada masing-masing mesh spasial

φ

: fluks neutron di masing-masing mesh spasial i

m

S

, : laju produksi inti ke i dari inti ke m

Breeding Ratio

Breeding Ratio didefinisikan sebagai :

FD

FP

BR

=

(11)

dengan :

FP : material fissile yang dihasilkan per cycle FD : material fissile yang hilang per cycle

Dalam satu cycle, material fissile yang dihasilkan dan yang hilang adalah :

FBOC

FEOC

FD

FP

=

+

(12)

dengan :

FBOC : material fissile di dalam teras dan blanket saat keadaan awal dari fuel cycle FEOC : material fissile di dalam teras dan blanket saat keadaan akhir dari fuel cycle

Sehingga persamaan (11) menjadi :

FD

FBOC

FEOC

BR

=

1

+

(13)

METODE PERHITUNGAN

Spesifikasi reaktor yang digunakan untuk sampel perhitungan diperlihatkan dalam tabel 1 dan struktur group energi dalam tabel 2.

(7)

Tabel 1. Spesifikasi Reaktor

Parameter Spesifikasi

Daya Reaktor 3000 MWt

Tipe Fuel UN-PuN

Pendingin Pb-Bi

Waktu Operasi tanpa Refueling 40 Tahun

Kerapatan Daya Rata-rata 300 W/cc

Kerapatan Daya Maksimum 550 W/cc

Burn-up Rata-rata 9%HM

Burn-up Maksimum 18%HM

Fraksi Volume Bahan Pendingin 45 %

Fraksi Volume Bahan Bakar 35 %

Pengayaan PuN dalam Fuel Rata-rata 13 %

Diameter Teras 250 cm

Tinggi Teras 100 cm

Tebal Reflektor 20 cm

Tebal Perisai 30 cm

Tabel 2. Struktur Group Energi Energy boundary Group Lower Upper 1 2,2313 MeV 10,0 MeV 2 820,85 keV 2,2313 MeV 3 301,97 keV 820,85 keV 4 111,09 keV 301,97 keV 5 40,868 keV 111,09 keV 6 15,034 keV 40,868 keV 7 748,52 eV 15,034 keV 8 10-5 eV 748,52 eV

(8)

Blok diagram perhitungan keseluruhan diberikan dalam gambar 1.

Gambar 1. Blok Diagram Perhitungan Keseluruhan Alur perhitungan yang dilakukan sebagai berikut :

Pertama-tama dilakukan perhitungan homogenisasi sel bahan bakar untuk mendapatkan group konstan mikroskopik multigroup yang efektif. Selanjutnya dilakukan perhitungan konstanta group makroskopik multigroup dengan menggunakan informasi densitas atom di tiap-tiap mesh. Berikutnya dilakukan perhitungan difusi multigroup untuk mendapatkan distribusi ruang dan energi dari fluks neutron di tiap-tiap mesh. Dengan fluks neutron di tiap-tiap mesh maka dilakukan proses perhitungan group konstan untuk perhitungan burn-up. Berikutnya dilakukan perhitungan burn-up. Interval waktu t1, t2, dan t3 dapat diatur. Dalam penelitian ini, t3 diambil sekitar 1 – 2 tahun, t2 diambil antara 1 bulan – 1 tahun, dan t1 diambil 1 hari. Selanjutnya dilakukan renormalisasi fluks neutron untuk daya reaktor.

Mulai

Perhitungan Penampang Lintang Mikroskopik Multigroup

Perhitungan Penampang Lintang Mikroskopik Multigroup

Perhitungan Difusi Multigroup

Perhitungan Burn-up Interval Waktu t1

Renormalisasi Fluks Interval Waktu t2

Interval Waktu t3

(9)

Untuk mengatasi permasalahan limbah radioaktif dilakukan dengan cara membakarnya dalam teras reaktor, dengan demikian terjadi proses daur ulang (recycle) unsur-unsur aktinoida.

Proses pembakaran dilakukan dengan perhitungan burn-up. Perhitungan burn-up merupakan salah satu perhitungan standar dalam analisa reaktor nuklir untuk melihat performansi sistem dari segi fuel cycle maupun keamanannya.

Parameter desain diperlihatkan dalam tabel 3.

Untuk menyelesaikan persamaan burn-up secara numerik maka digunakan metode finite difference (beda hingga) tetapi step waktu yang diambil dibuat berbeda, khususnya untuk inti-inti yang mempunyai konstanta desintegrasi yang pendek.

Tabel 3. Parameter Design

Parameter Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5

Vol. Fraction :

Fuel 35,00% 32,25% 29,25% 0,0% 0,0%

Struktur 27,50% 34,00% 37,00% 55,00% 100,0%

Coolant 37,50% 33,75% 33,75% 45,00% 0,0%

Pu enrichment 0,0% 11,45% 15,45% 0,0% 0,0%

HASIL DAN PEMBAHASAN Perubahan Faktor Multiplikasi

Hasil perhitungan yang diperoleh untuk perubahan faktor multiplikasi ditunjukan dalam gambar 2.

Gambar 2. Perubahan Faktor Multiplikasi selama Burn-up

Perubahan Faktor Multiplikasi

1.00000 1.00050 1.00100 1.00150 1.00200 1.00250 1.00300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (tahun) Keff

(10)

Dari gambar 3 terlihat bahwa faktor multiplikasinya mengalami penurunan selama proses burn-up menuju akhir operasi. Akan tetapi reaktor tetap dalam keadaan kritis.

Perubahan Breeding Ratio

Hasil perhitungan yang diperoleh untuk perubahan breeding ratio ditunjukan dalam gambar 3.

Gambar 3. Perubahan Breeding Ratio selama Burn-up

Telah didefinisikan bahwa Breeding Ratio (BR) merupakan perbandingan antara material fissile yang diproduksi dengan material fissile yang hilang dalam satu

fuel cycle. Dari gambar 3 terlihat bahwa reaktor banyak menghasilkan material fissile

pada siklus-siklus berikutnya.

Selama proses burn-up, material fissile yang dihasilkan dari material fertile akan mengkompensasi burn-up material fissile sehingga reaktor dapat tetap dalam kondisi kritis untuk selang waktu yang lama.

Perubahan Peak Power Density

Hasil perhitungan yang diperoleh untuk perubahan peak power density ditunjukkan dalam gambar 4.

Perubahan Breeding Ratio

1.04 1.06 1.08 1.1 1.12 1.14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (tahun) Breeding Ratio

(11)

Gambar 4. Perubahan Peak Power Density

Dari gambar 4 terlihat bahwa nilai peak power density mulai stabil pada siklus ke 7. Kestabilan peak power density akan mengakibatkan kestabilan sistem reaktor secara keseluruhan.

Perubahan Fraksi Massa unsur Aktinoida

Hasil perhitungan diperlihatkan dalam gambar 5 s.d. gambar 8.

Gambar 5. Fraksi Massa Unsur Neptunium

Perubahan Peak Power Density

390 390.05 390.1 390.15 390.2 390.25 390.3 390.35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (Tahun)

Peak Power Density

Fraksi Massa Aktinoida

0 0.001 0.002 0.003 0.004 0.005 0.006 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (Tahun) Fraksi Massa Np237 Np238 Np239

(12)

Gambar 6. Fraksi Massa Unsur Plutonium.

Gambar 7. Fraksi Massa Unsur Americium.

Gambar 8. Fraksi Massa Unsur Curium. Fraksi Massa Aktinoida

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (Tahun) Fraksi Massa

Am241 Am242m Am243

Fraksi Massa Unsur Aktinoida

0 0.0005 0.001 0.0015 0.002 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (Tahun) Fraksi Massa Cm242 Cm243 Cm244 Cm245 Cm246 Cm247 Cm248 Cm249

Fraksi Massa Aktinoida

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Siklus (Tahun) Fraksi Massa

(13)

Secara umum, selama proses burn-up fraksi massa seluruh unsur aktinoida (Neptunium, Plutonium, Americium, dan Curium) meningkat sampai akhir operasi. Dan rata-rata pada siklus ke 9 seluruh unsur aktinoida telah mencapai tingkat kestabilan.

KESIMPULAN

Dari hasil evaluasi terhadap perhitungan desain reaktor cepat yang dikembangkan diperoleh beberapa kesimpulan sebagai berikut :

1. Selama proses burn-up reaktor tetap dalam keadaan kritis.

2. Penggunaan pendingin timbal-bismuth (Pb-Bi) cair dapat memberikan efek yang lebih baik terhadap pengerasan spektrum fluks neutron.

3. Tingkat produksi material fissile lebih baik dengan menggunakan pendingin timbal-bismuth (Pb-Bi) cair.

4. Reaktor mampu melakukan proses daur ulang terhadap aktinoida, sehingga aman dari efek disposal limbah radioaktif berwaktu paruh sangat panjang.

UCAPAN TERIMA KASIH

Makalah ini merupakan sebagian dari tesis S-2 penulis. Penulis mengucapkan terima kasih yang sebesar-besarnya kepada Dr.Eng. Zaki Su’ud (Jurusan Fisika FMIPA ITB) atas segala saran, arahan, dan bimbingannya.

DAFTAR PUSTAKA

1. ASH, MILTON S., Nuclear Reactor Kinetics, Second edition, McGraw-Hill, New York, (1979) 286 – 336

2. DUDERSTADT, JAMES J., HAMILTON, LOUIS J., Nuclear Reactor Analysis, John Wiley & Sons, Inc., New York, (1976) 285 – 311

3. GRAVES, HARVEY W. Jr., Nuclear Fuel Management, John Wiley & Sons, Inc., New York, (1979) 142 – 162

(14)

4. KRANE, KENNETH S., Introductory Nuclear Physics, John Wiley & Sons, Inc., New York, (1988) 478 - 524

5. OTT, KARL O., NEUHOLD, ROBERT J., Introductory Nuclear Reactor

Dynamics, American Nuclear Society, Illinois, (1985) 282 – 321

6. S. ZAKI and H. SEKIMOTO, Conceptual Design Study of Ultra Long Life Fast

Reactor, Proc.Int’l. Conf. On Fast Reactor and Related Fuel Cycle, Japan, (1991)

135 - 144

7. S. ZAKI and H. SEKIMOTO, Preliminary Design Study of The Ultra Long Life

Fast Reactor, Nucl. Eng. Des. 140 (1993), 251 – 260

8. S. ZAKI and H. SEKIMOTO, Design and Safety Aspect of Lead and

Lead-Bismuth Cooled Long Life Small Safe Fast Reactor for Various Core Configuration, Jurnal of Nuclear Science and Technology, 32(9) (1995) 834 - 845

9. WALTAR, ALAN E., REYNOLDS, ALBERT B., Fast Breeder Reactors, Pergamon Press, New York, (1981) 217 – 245

(15)

DISKUSI

WIRYADI

1. Performance reaktor ditentukan oleh faktor-faktor apa saja?

2. Ukuran apa saja yang digunakan untuk menentukan kebaikan performance?

MOHAMMAD TAUFIK

1. a. - Kemampuan menghasilkan energi secara efisien

b. - Kemampuan memanfaatkan cadangan U-238 atau Th-232 di alam c. -Kemampuan inherent/passive safety

d. -Kemampuan menghancurkan dan memproses limbah radioaktif yang dihasilkan

2. a. - Memiliki load faktor setinggi mungkin yaitu 80% - 90% - Optimasi ukuran reaktor

- Memiliki efisiensi konversi energi setinggi mungkin yaitu > 40% - Pemanfaatan energi termal

b. - Siklus tertutup daur ulang aktinoida - Spektrum neutron keras

c. - Mampu mencapai kondisi setimbang baru jika terjadi kecelakaan - Memiliki mekanisme feedback

d. - Reprocessing limbah radioaktif berumur sangat pendek - Transmutasi limbah radioaktif berumur sangat panjang

(16)

DAFTAR RIWAYAT HIDUP

1. Nama : MOHAMMAD TAUFIK

2. Tempat/Tanggal Lahir : Jakarta, 12 Januari 1970

3. Instansi : Jurusan Fisika FMIPA - UNPAD

4. Pekerjaan / Jabatan : Dosen / Asisten Ahli

5. Riwayat Pendidikan : (setelah SMA sampai sekarang)

• FMIPA-UNPAD,(1993) Jurusan Fisika (Bid. Keahlian Fisika Energi) (S1) • ITB (1999), Jurusan Fisika (Bid. Keahlian Fisika Reaktor Nuklir) (S2)

6. Pengalaman Kerja :

• 1996 – Sekarang : Dosen Jurusan Fisika FMIPA-UNPAD

• 1999 - Sekarang : - Kepala Laboratorium Fisika Energi, Jurusan Fisika FMIPA-UNPAD

- Pembantu Ketua III Bidang Kemahasiswaan Program D-III Fisika Terapan FMIPA-UNPAD

- Sekretaris Tim Pendamping Pembantu Dekan III FMIPA-UNPAD

7. Organisasi Professional : Himpunan Fisika Indonesia Cabang Bandung

Gambar

Tabel 1. Spesifikasi Reaktor
Gambar 1. Blok Diagram Perhitungan Keseluruhan Alur perhitungan yang dilakukan sebagai berikut :
Gambar 2. Perubahan Faktor Multiplikasi selama Burn-up
Gambar 3. Perubahan Breeding Ratio selama Burn-up
+3

Referensi

Dokumen terkait

Beberapa penelitian telah dilakukan terkait dengan toksisitas suatu bahan pencemar terhadap ikan karper, tetapi dari penelitian tersebut belum ada yang meneliti

Dalam perdangan international atau perdagangan bebas dalam kegiatan expor harus mengambil suatu tindakan ataupun suatu kebijakan dalam mengatur laju masuk keluarnya barang barang yang

Dengan demikian, RTH jalur hijau jalan yang ada belum mampu mengendalikan atau menyerap gas cemaran gas buang kendaraan bermotor; dan (3) Arahan pengendalian

Demo sajian bersama Bogasari ini merupakan acara dari ASAK (Ayo Sekolah Ayo Kuliah) yang diselenggarakan pada 11 Desember 2015 dengan peserta sebanyak 39 orang yang merupakan

Faktor 4 P yang terdiri atas product (produk), price (harga), place (tempat) dan promotion (promosi) serta religi masing-masing merupakan alasan yang

Salah satu cara untuk meningkatkan nilai kapasitansi spesifik adalah dengan memanfaatkan efek pseudokapasitansi yang tergantung pada sifat fungsional permukaan karbon

Adapun langkah- langkah tersebut, yaitu (1) guru menyampaikan salam dan mengecek kehadiran siswa, (2) gurumemberikan apersepsi terkait dengan materi pelajaran yang

dalam pasal 19 huruf n Peraturan Komisi Pemilihan Umum Nomor 7 Tahun 2013 tentang Pencalonan Anggota Dewan Perwakilan Rakyat, Dewan Perwakilan Rakyat Daerah Provinsi