• Tidak ada hasil yang ditemukan

ROTARY CALCINER-METALLIC MELTER DAN SLURRY-FED CERAMIC MELTER UNTUK PENGOLAHAN LIMBAH CAIR AKTIVITAS TINGGI

N/A
N/A
Protected

Academic year: 2021

Membagikan "ROTARY CALCINER-METALLIC MELTER DAN SLURRY-FED CERAMIC MELTER UNTUK PENGOLAHAN LIMBAH CAIR AKTIVITAS TINGGI"

Copied!
6
0
0

Teks penuh

(1)

56

-

ISSN 0216 - 3128 Her/an Martono, Aisyah

ROTARY CALCINER-METALLIC

MELTER

DAN

SLURRY-FED

CERAMIC MELTER UNTUK PENGOLAHAN LIMBAH CAIR

AKTIVITAS TINGGI

Herlan Martono, Aisyah

Pusat Teknologi Limbah Radioaktif - BA TAN

ABSTRAK

ROTARY CALCINER - ~ETALLIC MELTER DAN fLURRY FED CERAMIC MELTER UNTUK PENGOLAHAN LIMBAH C~IJLAKTIVITAS._TINGGI. Rotary calciner-metallic melter dan slurry-fed ceramic melter adalah jenis melter untuk mengolah limbah cair aktivitas tinggi skala industri. Rotary calciner-metallic melter dioperasikan dengan pemanas induksi dan slurry-fed ceramic melter dengan pemanas Joule. Kedua melter dibandingkan karakteristik komposisi gelas-limbah untuk proses dan operasi melter, bahan me Iter, umur melter, penanganan gas buang, dan tenaga yang diperlukan melter. Pada melter dengan pemanas Joule, tahanan listrik gelas-limbah adalah 4,8ohm.cm pada suhu 11500c. Logam golongan platina tirink larut dalam limbah, sehingga mempengaruhi arus listrik dalam lelehan gelas-limbah. Pada melter dengan pemanas induksi, logam golongan platina tidak berpengaruh dalam lelehan gelas-limbah. Bahan melter dengan pemanas Joule yang kontak dengan gelas-limbah adalah monofrax K-3. Lapisan melter yang lebih luar adalah MRT-70K, LN-135, AZ-GS, fiberboard, dan baja tahan karat 304. Bahan me Iter dengan pemanas induksi adalah inconel-690. Umur melter dengan pemanas Joule lebih lama daripada melter dengan pemanas induksi. Dari aspek keselamatan, operasi kedua melter tersebut sudah teruji. Biaya operasi slurry-ftd ceramic melter lebih murah, tetapi biaya konstruksi dan dekamisioningnya lebih mahal dibanding rotary calciner-metallic melter. Berdasarkan kondisi di Indonesia, slurry-fed ceramic melter lebih layak digunakan.

ABSTRACT

ROTARY CALCINER - METALLIC MELTER AND SLURRY - FED CERAMIC MELTER FOR TREATMENT OF HIGH LEVEL LIQUID WASTE. Rotary calciner-metallic melter and slurry-fed ceramic melter are used for treatment of high level liquid waste in the industrial scale. Rotary calciner-metallic melter is operated by induction heating and slurry-fed ceramic melter by Joule heating. Both of melter are compared it's characteristics of waste-glass composition for process and melter operation, melter materials, life time of me Iter, treatment of off gas, and power consumption. For melter with Joule heating, electric resistance of waste-glass is 4.8 ohm.cm at temperature 1150 0c. The metal of platina group is not soluble in the molten waste-glass, so that influence the electric current pass by the molten waste-glass. For melter with induction heating there is not influence of platina metal group. For melter with Joule heating, the material which contact with waste-glass is monofrax K-3. The outer materials layer i.e MRT-70K, LN-135, AZ-GS, fiberboard, and stainless steel 304. The material of melter with induction heating is inconel-690. The life time of melter with Joule heating is longer than melter with induction heating. From the safety aspect, operation of the both of melter have already succesful. Operation cost of slurry-ftd ceramic melter is cheaper, but construction and decommissioning cost more expensive than rotary calciner-metallic melter. Based on Indonesia condition, the slurry-fed ceramic melter is more reasonable to be utilized.

PENDAHULUAN

Proses

nuklir olah ulang bahan bakar bekas reaktordilakukan untuk mengambil uranium yang tidak terbakar dan plutonium yang terjadi. Uranium dan plutonium diproses kembali menjadi bahan bakar campuran untuk bahan bakar reaktor pembiak cepat(fast breeder reactor).

Hasil samping ekstraksi siklus I proses olah ulang adalah limbah cair aktivitas tinggi (LCA T), yang sebagian besar kandungannya adalah radionuklida hasil belah dan sedikit aktinida. Karakteristik LCAT adalah keasamannya tinggi (6 - 8 M HN03), aktivitas gammanya tinggi

sehingga panas yang dihasilkan tinggi, dan juga adanya aktinida yang walaupun sedikit tetapi masih memberikan dampak radiologis. Oleh karena itu pengelolaan LCAT diperlukan waktu jutaan tahun [1]. Sebagai contoh di Jepang satu kali proses

vitrifikasi, konsentrat LCAT hasil evaporasi volumenya 0,5m3 dengan aktivitas 4. 105Ci yang menghasilkan panas radiasi sebesar 1,4 kW/jam.

Walaupun keselamatan merupakan pertim-bangan utama dalam pemilihan bahan matriks untuk imobilisasi atau solidifikasi LCAT, ada beberapa aspek penting yang perlu dipertimbangkan, yaitu[2]:

(2)

Herlan Martono, Aisyah ISSN 0216 - 3128 57

Proses pembuatan yang mudah dan praktis. Kandungan Iimbah (waste loading) yang tinggi.

Ketahanan kimia, yaitu korosi dan laju pelindihannya.

Kestabilan terhadap radiasi.

Kestabilan terhadap panas, dalam hal gelas yaitu terjadinya devitrifikasi.

Beberapa jenis bahan telah dipelajari oleh negara-negara maju di bidang industri nuklir untuk solidifikasi LCAT, yaitu gelas aluminosilikat, gelas fosfat, gelas borosilikat, synroc, dan vitromet. Berdasarkan pertimbangan aspek tersebut di atas, maka gelas borosilikat telah digunakan dalam skala industri untuk pengolahan LCAT[3.1]. Ada 2 maeam

metter (alat untuk peleburan/ pelelehan

gelas-limbah) yang digunakan untuk proses pengolahan LCAT dalam skala industri, yaitu :

Rotary Calciner-Meta/lic Melter (RCMM),

yaitu melter yang dibuat dari logam dan

dilengkapi dengan alat kalsinasi (calciner yang berputar). Melter jenis ini dengan pemanas

induksi menggunakan koil Iistrik dalam dinding melter dan panas ditransfer seeara induksi dari dinding melter ke gelas-limbah. Teknologi RCMM dioperasikan di Mareoule

Peraneis. Proses ini digunakan juga di Inggris, dan India.

Slurry - Fed Ceramic Melter (SFCM), yaitu

me Iter yang terbuat dari keramik dengan

umpan limbah eair yang dimasukkan dalam

glass frit berbentuk peluru. Melter jenis ini

menggunakan pemanas Joule, dengan memanfaatkan lelehan gelas - limbah pada suhu di atas 600°C sebagai penghantar listrik yang menimbulkan panas. Proses ini dioperasikan di Jepang, Amerika, dan Jerman.

Dalam makalah ini akan diuraikan per-bandingan RCMM dan SFCM untuk vitrifikasi

LCAT dalam skala industri.

PERBEDAAN

KARAKTERISTIK

KOMPOSISI

GELAS-LIMBAH.

Vitrifikasi LCAT dalam RCMM dan SFCM dilakukan pada 1150 °C, karena' pertimbangan korosi melter. Pada pembuatan gelas-limbah skala laboratorium, komposisi gelas-Iimbah dibuat yang mempunyai titik lebur pada suhu 1150 0c. Gelas-limbah merupakan bahan amorf, jadi titik lebur limbah adalah suhu dimana viskositas gelas-limbah adalah 100 poise. Jadi gelas-Iimbah yang dibuat bukanlah gelas-limbah yang paling baik dengan laju pelindihan sekeeil mungkin.

Gelas-limbah semaeam ini akan mempunyai titik lebur yang sangat tinggi, karena kadar silikanya tinggi [4].

Titik lebur yang tinggi akan menaikkan laju korosi

melter, sehingga umur melter lebih pendek dan

akibatnya akan menimbulkan Iimbah padat radioaktif sekender yang lebih banyak. Gelas-limbah yang dibuat di laboratorium, komposisinya akan menghasilkan karakteristik gelas-limbah yang memenuhi standar untuk disain melter, proses,

operasi, pengeluaran lelehan gelas-Iimbah dari

melter ke canister, transportasi, penyimpanan

sementara, dan penyimpanan lestari. Karakteristik gelas-limbah tersebut meliputi densitas, muai panjang, titik transformasi gelas-limbah, titik pelunakan, hantaran panas, panas jenis, viskositas, tahanan Iistrik, kekuatan mekanik, dan laju pelindihannya.

Pada melter dengan pemanas induksi

(RCMM), tahanan listrik gelas-limbah tidak perlu

ditentukan. Demikian pula adanya logam golongan platina (Ru, Rh, Pd) yang tidak larut dalam gelas-limbah tidak mengganggu proses. Pada melter dengan pemanas Joule (SFCM), tahanan listrik gelas-limbah harus ditentukan. Tahanan Iistrik gelas-limbah untuk proses dengan pemanas Joule adalah 4,8 ohm.em pada suhu 1150 °C. Unsur yang berperan untuk penghantar Iistrik dalam limbah adalah ion Na[5]. Adanya Na20 dalam gelas-Iimbah dibatasi maksimum 10% berat. Jika Na20 dalam gelas-limbah melebihi 10% berat, maka akan terjadi pemisahan fase yang berwarna kuning dari natrium molibdat[I,6]. Adanya pemisahan fase harus dihindarkan karena menurunkan kualitas gelas-limbah. Jika kadar Na20 kecil, maka hantaran Iistriknya kecil pula. Adanya logam golongan platina dalam gelas-limbah akan mengganggu aliran listrik. Oleh karena itu pada meIter dengan pemanas

Joule, dasar melter dibuat kerueut dengan sudut

45°C [3]. Logam golongan platina yang tidak larut,

tidak berpengaruh terhadap viskositas gelas-limbah.

"-Berbagai oksida yang mempengaruhi kualitas gelas-limbah, yaitu[I.6,7]:

Oksida Mo, Zr, dan Cr (MoO), Zr02, dan Cr20) dapat membentuk pemisahan fase dan mempengaruhi viskositas gelas-limbah. Oksida Fe, AI, dan Si (Fe20), AhO), Si02), dapat disatukan dengan gelas, dan menaikkan suhu pembentukan gelas-limbah. Umumnya gelas borosilikat dengan kandungan Si02 di atas 40 % mempunyai karakteristik yang baik.

Oksida B (B20) menurunkan suhu pembentukan gelas-limbah dan viskositas gelas- limbah. Kandungan B20) sekitar 15 % berat akan menstabilkan gelas-limbah.

(3)

58

-

ISSN 0216 - 3128 Herlan Marlono, Aisyah

Oksida Mg (MgO) dari bahan bakar Magnox dapat menaikkan suhu pembentukan gelas-Iimbah.

Oksida Na (NazO) menurunkan pembentukan dan viskositas, menaikkan laju pelindihan.

Oksida Pu (PuOz) lebih sukar disatukan dengan gelas daripada uranium.

Pemisahan fase terjadi jika kadar PuOz dalam gelas-limbah melebihi 4 % berat di dalam gelas- Iimbah.

Rotary Calciner-Metallic Melter (RCMM)

untuk vitrifikasi LCAT ditunjukkan pada Gambar 1[8,9]. Proses yang terjadi di dalam RCMM

ini melalui 2 tahap, yaitu kalsinasi dan vitrifikasi. Limbah cair aktivitas tinggi diumpankan secara konstan ke confluent pot. Aditif larutan gula,

azodicar berramide, dan air dimasukkan ke

confluent pot. Selanjutnya LCAT dan aditif masuk

ke calciner. Kalsinasi dilakukan pada 700 - 750 DC dengan pemanas induksi, menghasilkan kalsin yang berupa oksida berbentuk serbuk. Penambahan aditif gula untuk menekan penguapan Ru, sedangkan penarnbahan aditif azodicar berramide untuk

menguranfti ukuran partikel kalsin yang terbentuk 8,IOJ. Pengurangan ukuran partikel kalsin ini untuk memudahkan penyatuan atau pengga-bungan kalsin dalam matriks gelas. Aditif air digunakan untuk menghindari terbentuknya cake pada dinding calciner. Operasi kimia yang terjadi dalarn calciner tube adalah :

Pemekatan dengan evaporasi.

Destruksi sebagian Iimbah nitrat dan pembentukan oksida.

Pengeringan kalsin dan sisa nitrat

Kalsin dan glass frit (bahan pembentuk gelas) diumpankan ke dalam metallic induction heated melting pot (tempat peleburan dengan panas

induksi yang terbuat dari logam). Campuran

padatan tersebut dipanaskan pada 1150 DC, sehingga menjadi gelas-limbah. Dinding melter metalik dipanaskan dengan induksi, dan panas dipindahkan dari din ding melter ke gelas-limbah secara konduksi. Oleh karena itu suhu pada dinding melter harus lebih tinggi di atas suhu pelelehan gelas-limbah supaya terjadi perpindahan panas. Jika volume maksimum gelas-limbah dalam

me Iter dicapai, lelehan gelas-Iimbah dituang

melalui dasar meIter ke canister yang dibuat dari baja tahan karat 304 L. Pada penuangan gelas-limbah dari melter ke canister diawali dengan

ROTARY

CALCINER

MELTER

suhu tetapi

METALLIC

pemanasan drain nozzle. Penuangan akan berhenti dengan sendirinya, jika pemanasan drain nozzle dihentikan. Pengumpanan kalsin dan glass frit tetap kontinu selama penuangan lelehan gelas-limbah.

Canister ditutup, kemudian dilas dan selanjutnya

permukaan canister didekontaminasi dengan air. Pemantauan adanya kontaminan dilakukan dengan udara· tekan dan pengukuran adanya kontarninasi udara. Selanjutnya penyimpanan sementara canister yang berisi gelas-limbah dilakukan dengan pendingin udara selama 30 - 50 tahun.

SLURRY - FED CERAMIC MELTER

Komponen utama proses slurry-fed ceramic

melter (SFCM) adalah Joule heated glass melter (JHGM), yaitu melter keramik pada suhu tinggi

dengan pemanasan menggunakan arus Iistrik yang melewati lelehan gelas-Iimbah. Melter dengan pemanas seperti ini dikenal sebagai melter dengan pemanas Joule. Lelehan gelas pada suhu tinggi di atas 600 DC dapat menjadi penghantar Iistrik yang menimbulkan panas. Elektrode yang digunakan adalah baja dari campuran nikel dan krom yang dikenal dengan inconel-690. Melter dengan pemanas Joule mengharuskan adanya gelas-limbah dalam metter, walaupun melter tidak dalam keadaan operasi. Adanya gelas-limbah ini digunakan untuk operasi berikutnya. Pada industri gelas selarna periode tidak beroperasi, tenaga diberikan ke melter untuk mencegah pendinginan di bawah suhu dimana pemanas Joule tidak berfungsi. Peri ode tidak operasi dengan memberikan tenaga ke elektrode dikenal dengan idlini8]. Pada SFCM untuk vitrifikasi LCAT, peri ode tersebut tidak ada karena adanya panas yang ditimbulkan dari radiasi radionuklida dalam gelas-limbah. Slurry-fed ceramic melter untuk vitrifikasi LCA T ditunjukkan

pada Gambar 2[3,8,9]. Glass frit berbentuk silinder

yang mengandung LCAT diumpankan secara langsung ke dalam ruang pelelehan yang mengandung lelehan gelas-limbah. Bagian permukaan dingin (cold top), menutup permukaan lelehan gelas-limbah dan akan menekan penguapan gas-gas dari lelehan gelas-Iimbah dalam melter. Bagian cold top yang baik antara 80 - 90 % luas permukaan melter. Jika cold top lebih kecil 80 %,

maka laju pengumpanan LCA T dan glass frit lambat Jika cold top mendekati 100 % luas permukaan melter, maka akan terjadi peledakan gas

(gas explosion). Pencampuran secara konveksi

alami dalam lelehan gelas-limbah karena perbedaan suhu dan berat jenis akan menghasilkan prod uk yang lebih homogen.

Untuk mengoperasikan me/ter ada beberapa tahap, yaitu :

(4)

Her/an Martano, Aisyah ISSN 0216 - 3128

-

59

Pemanasan awal, yang dilakukan dengan

heater (pemanas) dan microwave yang

frekuensinya 915 MHz dan kapasitas maksimumnya 50 kW. Pemanasan awal ini dilakukan sampai pada suhu 600°C. Pemanasan dengan elektrode yang menimbulkan aliran listrik. Pada suhu 600°C atau lebih, lelehan gelas-Iimbah dapat menghantarkan arus Iistrik. Aliran listrik melalui lelehan gelas-Iimbah antara 2 elektrode yang tercel up dapat menimbulkan panas sampai suhu 1150 0C. Pembentukan gelas-limbah, dilakukan pada suhu 1150 °C. Setelah pengumpanan selesai dan permukaan lelehan gelas limbah dalam keadaan puncak panas, maka lelehan gelas-limbah siap untuk dikeluarkan dari me/ter ke canister dari baja tahan karat 304.

Selanjutnya canister yang berisi gelas-Iimbah ditutup, kemudian tutup dilas, permukaan canister didekontaminasi, dan selanjutnya disimpan di tempat penyimpanan sementara dengan pendingin udara selama 30 - 50 tahun.

BAHAN MELTER

Pada rotary calciner-metallic melter dengan pemanas induksi, melter dibuat dari inconel-690

[8,9]. Bahan tersebut mempunyai ketahanan yang tinggi terhadap lelehan gelas-limbah. Laju korosi

inconel-690 dalam lelehan gelas-Iimbah adalah

0,024 mmlhari pada suhu 1150 °C[3]. Pada melter dengan pemanas induksi, maka inconel-690 sebagai dinding melter akan mengalami suhu yang lebih tinggi daripada 1150 °C, sehingga laju korosinya akan lebih tinggi daripada data tersebut di atas.

Pada slurry-fed ceramic melter dengan

pemanas Joule, bahan melter ada beberapa lapis. Bata tahan api yang kontak dengan gelas-Iimbah adalah monofrax-K3 yang tahan terhadap korosi. Laju korosi monofrax-K3 dalam lelehan gelas-limbah pada suhu 1150 °C adalah 0,022 mmlhari. Lapisan meIter di bagian yang lebih luar adalah bata tahan api MRT-70K, LN-135, AZ-GS, fiberboard, dan baja tahan karat 304. Susunan lapisan bata tahan api pada melter dengan pemanas Joule ini sesuai

melter JNC-Jepang[3J.

SISTEM PENANGANAN GAS BUANG

Pada rotary calciner-metallic melter, gas

buang ditimbulkan dalam calciner dan melter

mengandung air, nitrogen oksida, beberapa unsur volatil yaitu boron, cesium, dan mtenium, serta debu kalsin. Gas buang didekontaminasi dengan sistem

penanganan gas yang terdiri dari penyerap debu dan

recycling pot, kondenser dan tower absorpsi untuk

menyerap NO•.

Pada slurry-fed ceramic melter, gas buang dari melter mengandung uap air, udara, dekomposisi gas, aerosol, dan unsur volatil. Suhu uap di atas permukaan lelehan dari 200 - 800°C selama operasi tergantung pada laju umpan. Entrainment aerosol

sekitar 0,2 % berat umpan LCAT ke melter. Gas buang dikumpulkan di atas permukaan lelehan gelas-Iimbah pada tekanan sedikit negatif (- 2,50 kPa). Gas buang tersebut diambil dengan sistem penanganan gas buang melalui air film cooler, scrubber, dan filter yang dihubungkan langsung ke

iiiefiei::' sfsi'em penanganan gas buang dapat mengambil hampir 90 % partikel dan hampir semua uap[8J. Pendingin, scrubber, dan filter didisain cukup dan mampu untuk menangani aliran gas buang secara periodik.

TENAGA.

YANG

DIPERLUKAN

MELTER

Pada melter dengan pemanas induksi, panas yang diberikan melter untuk 300 kg gelas-limbah meliputi[IO]:

- Panas untuk kalsinasi 25 kW. - Panas untuk pelelehan 60 kW. - Panas total yang diperlukan 85 kW.

Pada melter dengan pemanas Joule, panas yang diberikan melter untuk menghasilkan 300 kg gelas-Iimbah meliputi [3] :

Panas untuk elektrode utama 40 kW. Panas microwave 23 kW

Panas untuk elektrode pembantu 2,51 kW Panas untuk antara elektrode utama dan drain

nozzle 0,60 kW

Panas total yang diperiukan 66,11 kW.

PEMBAHASAN

Untuk menghasilkan karakteristik gelas-limbah yang memenuhi standar proses dan operasi

melter, maka pengaruh oksida-oksida harus

diperhatikan. Pada slurry-fed ceramic melter

dengan pemanas Joule, maka ion Na+ berperan sebagai penghantar listrik. Makin tinggi kadar NazO meningkatkan hantaran listrik gelas-limbah. Kadar NazO dalam gelas-limbah dibatasi maksimum 10 % berat, karena di atas kadar tersebut akan terjadi pemisahan fase. Terjadinya pemisahan fase akan mengurangi kualitas gelas-limbah. Logam golongan platina (RuOz, RhZ03, Pd~) tidak lamt dalam lelehlln-gelas.limbah. Adanya endapan logam golongan platina tidak berpengaruh untuk rotary

(5)

60 ISSN 0216 - 3128 Her/an Martono, Aisyah

aliran Iistrik pada s/urry-fed ceramic melter.

Endapan logam golongan platina terdapat pada dasar melter, sehingga dasar slurry-fed ceramic melter dibuat berbentuk kerucut dengan sudut 45°.

Pada slurry-fed ceramic melter dengan

pemanas Joule, gelas-Iimbah diJelehkan pada suhu 1150

0c.

Kenyataan terjadi distribusi suhu, yaitu suhu yang dekat pemanas lebih tinggi dibanding yang jauh dari pemanas[3]. Adanya distribusi suhu ini mengakibatkan aliran atau konveksi alami yang disebabkan karena perbedaan berat jenis. HasiJ solidifikasi gelas-limbah dengan slurry-fed ceramic

melter lebih homogen dibanding rotary calciner-metallic melter.

Bahan rotary calciner metallic-melter adalah

inconel-690. Pelelehan atau pembentukan

gelas-limbah terjadi pada suhu 1150

0c.

Ini berarti bahwa pemanasan dinding melter inconel-690 jauh lebih tinggi daripada suhu tersebut agar terjadi perpindahan panas dari dinding melter ke gelas-limbah. Laju korosi inconel-690 dalam lelehan gelas-limbah adalah 0,024 mrn/hari pada suhu 1150 °C. Kenyataan pada operasi melter, suhu dinding melter inconel-690 jauh lebih tinggi dari 1150 °C, sehingga laju korosinya lebih cepat daripada data tersebut di atas. Umur rotary

calciner-metallic melter dengan tebal 6 mm adalah

5000 jarn atau sekitar 1 tahun operasi[IO].

Bahan atau bata tahan api untuk slurry-fed

ceramic melter yang kontak dengan gelas- Iimbah

adalah monofrax-K3 yang tahan terhadap korosi. Laju korosi monofrax-K3 dalam lelehan gelas-Iimbah adalah 0,022 mm/hari. Kenyataan gelas-Iimbah diJelehkan pada suhu 1150 °C, tetapi suhu gelas-limbah yang kontak dengan monofrax-K3 lebih rendah dari 1150 °C, sehingga laju korosi

monofrax-K3 lebih rendah dari data tersebut di atas.

Bata tahan api yang lebih luar adalah MRT-70K, LN-135, AZ-GS, fiberboard, baja tahan karat 304. Bata tahan api MRT-70K digunakan untuk mencegah korosi bata tahan api LN-135 yang laju korosinya tinggi. Lapisan fiberboard digunakan untuk menyerap tekanan yang disebabkan oleh ekspansi karena pemuaian. Baja tahan karat 304 yang merupakan lapisan terluar digunakan untuk menahan tekanan, berat melter, dan gelas-limbah. Tebal baja tahan karat yang digunakan 2 em. Tebal

monofrax-K3 pada melter JNC-Jepang adalah 15

em, dan umur melter jenis ini 5 tahun[3]. Untuk memperbaiki melter ini hanya dengan mengganti monofrax-K3 saja.

Dari segi penanganan gas buang, rotary

calciner-metallic melter meliputi 2 tahap yaitu

penanganan gas buang pada kalsinasi dan vitrifikasi. Komposisi gas buang yang ditimbulkan dalam

calciner dan melter meliputi uap air, nitrogen

oksida, beberapa produk volatil (B, Cs, dan Ru), dan debu kalsin. Untuk mengurangi volatilitas Ru digunakan gula. Penanganan gas buang diJakukan dengan sistem penanganan gas buang yang terdiri dari penyerap debu dan recycling pot, kondenser, dan tower absorpsi untuk menyerap uap NO,. Komposisi gas buang dari slurry-fed ceramic melter adalah uap air, produk volatiJ (B, Cs, dan Ru),

aerosol. Banyaknya aerosol adalah 0,2 % berat

limbah yang diumpankan ke melter[IO]. Gas buang terkumpul di ruangan melter di atas permukaan lelehan gelas-limbah, yang diatur pada tekanan sedikit negatif - 2,50 kPa. Dari ruangan tersebut gas ditangani dengan sistem pengolahan gas buang, yang meliputi air film cooler yang dihubungkan langsung dengan melter. Air film cooler ini untuk mengencerkan dan mendinginkan gas buang. Selanjutnya gas tersebut berturut-turut diolah dengan submerged bed scrubber, venturi scrubber,

water scrubber, high efficiency mist eliminator,

penyerap rutenium, dan filter HEPA. Pada saat pengumpanan dengan kondisi yang baik, maka bagian luas cold top pada permukaan meIter 80 - 90 % luas permukaan melter. Jika cold top kurang dari 80 %, maka laju pengumpanan lambat. Jika

cold top mendekati 100 %, maka laju pengumpanan

terlalu cepat dan ledakan (eksplosi) gas akan terjadi. Untuk mencegah eksplosi gas maka heater atau energi panas dinaikkan dan I~u pengumpanan diturunkan. Adanya cold top ini akan mencegah penguapan gas, seperti Ru. Prinsip penangan gas buang rotary calciner-metallic melter dan slurry fed

ceramic melter adalah sarna, yaitu penurunan suhu,

absorpsi dan filtrasi. Dari segi keselamatan kedua macam proses tersebut telah memenuhi aspek keselamatan untuk digunakan dalam skala industri pada pengolahan limbah cair aktivitas tinggi.

Dari segi biaya operasi slurry-fed ceramic

melter dengan pemanas Joule lebih murah, tetapi

dari segi biaya konstruksi dan dekomisioning rotary

calciner-metallic- melter dengan pemanas induksi

lebih murah[3.81O.11J.

Berdasarkan atas pertimbangan konstruksi, operasi, dekomissioning, dan sistem pendanaan di Indonesia, maka slurry-fed ceramic melter lebih layak untuk digunakan.

KESIMPULAN

Unsur-unsur yang mempengaruhi karakteristik gelas-limbah pada saat menentukan komposisi gelas-limbah harus diperhatikan baik untuk proses dan operasi melter. Perbedaan komposisi gelas-Iimbah untuk rotary calciner metallic melter dan slurry-fed ceramic melter adalah

(6)

Her/an Martono, Aisyah ISSN 0216 - 3128 61

golongan platina yang tidak larut dalam gelas-limbah. Pada slurry-fed ceramic melter untuk

mengatasi logam golongan platina yang mempengaruhi arus listrik, maka dasar melter dibuat kerucut dengan sudut 45°. Gelas-limbah yang dihasilkan oleh slurry-fed ceramic melter lebih homogen daripada yang dihasilkan oleh rotary

calciner-metallic melter.

Bahan rotary calciner-metallic melter dari

inconel-690, sedangkan bahan slurry-fed ceramic

melter yang kontak dengan gelas-limbah adalah

monofrax-K3. Lapisan diluarnya adalah MRT-70K,

LN-135, AZ-GS, fiberboard, dan baja tahan 304. Jika monofrax-K3 sudah tipis karenakorosl, miika yang diganti hanya monofrax-K3 nya saja. Laju korosi karena jenis bahan dan penggunaan pada suhu tinggi, inconel-690 lebih cepat korosi. Umur

slurry-fed ceramic melter lebih panjang daripada rotary calciner metallic melter.

Komposisi LCAT dan glass-frit yang sarna, akan menghasilkan komposisi gas buang yang sarna. Prinsip proses penanganan gas buang adalah sarna pada rotary calciner - metallic meIter dan slurry-fed

ceramic melter. Penanganan gas buang tersebut

meliputi penurunan suhu, absorpsi, dan filtrasi. Dari segi keselamatan, kedua macam proses terse but telah memenuhi aspek keselamatan untuk digunakan dalam skala industri pada pengolahan limbah cair aktivitas tinggi.

Tenaga yang diperlukan rotary

calciner-metallic melter lebih besar daripada slurry-fed

ceramic melter.

Biaya operasi rotary calciner-metallic melter lebih tinggi daripada biaya slurry-fed ceramic

me Iter, tetapi biaya konstruksi dan

dekomisioningnya lebih mahal.

Berdasarkan atas konstruksi, operasi, dekomisioning, dan kondisi pendanaan di Indonesia,

maka slurry-fed ceramic melter lebih layak

digunakan.

2. MENDEL J.E, "The Fixation of High Level Waste in Glasses", PNL Richland, Washington, 1985.

3. MARTONO H, "Characterization of Waste-Glass and Treatment of High Level Liquid Waste", Report at Tokai Work, PNC SN8440 88-0 to- Japan, 1988.

4. HLAVAC J, ''The Technology of Glass and Ceramics", Department of Silicates, Institute of Chemical Technology Prague, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1983.

5. STANEK J, "Electric Melting of Glass", Department of Silicate, Institute of Chemical Technology Prague, Elsevier Scientific Publishing Company, New York, 1977. 6. LAUDE F et aI, "Confinement of

Radioactivity in Glasses", International Symposium on Management of Radioactive Waste from The Nuclear Fuel Cycle", Vienna,

1976.

7. AISY AH, MARTONO H, "Pengaruh Kalium Oksida, Litium Oksida, dan Kalsium Oksida Pada Kualitas Limbah Hasil Vitrifikasi", Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir, Yogyakarta, Juli 1999. 8. BROUNS A, "Immobilization of High Level

Defence Waste in a Slurry-Fed Electric Glass MeIter", PNL-3372, 1990.

9. IAEA, ''Techniques for Solidification of High-Level Waste", Technical Report Series No.

176, IAEA, Vienna, 1977.

. to. MARTONO H, "Vitrification Process with Induction Heating", Report of Scientific Visit, Commissariat A L'Energie Atomique, Perancis,

1989.

11. SUNG IL KIM et aI, "Economic Assestment

DAFT AR PUST AKA

I. IAEA, "Characteristics of Solidified High Level Waste Product", Technical Report Series No. 187, IAEA, Vienna, 1979.

on Vitrification Intermediate-level Korea", Waste Tuczon,2003.

Facility of Low and Radioactive Wastes in Management Conference,

Referensi

Dokumen terkait

Pada siklus I skor rata-rata sebesar 3 atau 75%, siklus II sebesar 3,35 atau 83,86%, dan siklus III sebesar 3,68 atau 92,08%, (3) penerapan mind mapping dengan

Perlakuan bakteri pada tanaman yang diinokulasi CMV tidak nyata berpengaruh terhadap tinggi tanaman, lebar daun, waktu berbunga, jumlah bunga dan buah

1) Tingkat pemahaman tujuan kegiatan adalah jumlah anggota simpan pinjam kelompok perempuan yang paham akan tujuan kegiatan seperti yang tercantum dalam petunjuk

Kadar isoflavon diukur menggunakan metode Graham (1999) yang sebelumnya dilakukan optimasi enzim NADH oksidase diperoleh panjang gelombang optimum pada 327 nm pada suhu

Keindahan nyata dari CCTV lewat internet adalah bahwa Anda dapat melihat properti anda dari mana saja di dunia, tetapi seperti berdiri, jika anda key alamat dari kamera ke web

Tingkat konsentrasi belajar subjek sebelum diberi perlakuan pada kelompok eksperimen me- miliki rerata yang termasuk dalam kategori se- dang (ME = 57.00)), sedangkan pada kelompok

• Harga  anak  ayam  atau  day  old  chicken  (DOC)  menurun.  Kondisi  tersebut  telah  terjadi  sejak  November  2014.  Harga  DOC  bahkan  sempat  Rp  500 

carilah pola dibalik susunan angka atau huruf pada soal, caranya, carilah hubungan antara angka pertama dan angka-angka berikutnya. Mungkin antara angka ke-1 dan