Makalah Gerak Melingkar

18  80  Download (0)

Teks penuh

(1)

Makalah

Fisika

Gerak Melingkar

(2)

KATA PENGANTAR

Yang pertama tama yang kita panjatkan

sebaiknya adalah puji syukur kepada Tuhan Yang

Maha Kuasa karena atas rahmat, berkah dam

ijin-Nya makalah fisika ini selesai dibuat.

Makalah Fisika ini membahas tentang gerak

melingkar. Dilengkapi dengan gambar dan table

untuk kemudahan proses pemahaman. Di sertai

dengan contoh soal dan pemaparan yang jelas

agar mempermudah siswa belajar.

Akhirnya penulis makalah ini mengucapkan

terimakasih sebesar besarnya kepada semua yang

membaca makalah ini sehingga makalah ini

selesai . semoga dengan makalah ini di harapkan

dapat membantu siswa belajar fisika bab gerak

melingkar dengan mudah.

(3)

Daftar Isi

Kata Pengantar ………

Daftar Isi………..

Pengertian ………

Rumusan gerak melingkar beraturan dan berubah…

Aplikasi dan penerapan dalam kehidupan…………..

Contoh Soal ……….

(4)

PENGERTIAN

Gerak Melingkar

. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran

Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah , dan atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan , dan .

Besaran gerak lurus dan melingkar

Gerak lurus Gerak melingkar

Besaran Satuan (SI) Besaran Satuan (SI) poisisi m sudut rad

kecepatan m/s kecepatan sudut rad/s

percepatan m/s2 percepatan sudut rad/s2

- - perioda s

- - radius m

Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

(5)

Hubungan antar besaran sudut dan tangensial

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui khusus untuk komponen tangensial, yaitu

Perhatikan bahwa di sini digunakan yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu

untuk suatu selang waktu kecil atau sudut yang sempit.

 Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya , yaitu:

gerak melingkar beraturan, dan gerak melingkar berubah beraturan.

Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial dengan jari-jari lintasan

Arah kecepatan linier dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial . Tetapnya nilai kecepatan

akibat konsekuensi dar tetapnya nilai . Selain itu terdapat pula percepatan radial yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.

(6)

Bila adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran , maka dapat pula dituliskan

Kinematika gerak melingkar beraturan adalah

dengan adalah sudut yang dilalui pada suatu saat , adalah sudut mula-mula dan adalah kecepatan sudut (yang tetap nilainya).

Gerak melingkar berubah beraturan

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut tetap. Dalam gerak ini terdapat percepatan tangensial

(yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).

Kinematika GMBB adalah

dengan adalah percepatan sudut yang bernilai tetap dan adalah kecepatan sudut mula-mula.

Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:

titik awal gerakan dilakukan

kecepatan sudut putaran (yang berarti suatu GMB) pusat lingkaran

(7)

Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan yang diperoleh melalui:

Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu

dengan dua konstanta dan yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai , maka dapat

ditentukan nilai dan :

Perlu diketahui bahwa sebenarnya

karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

[sunting] Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

(8)

dengan

diperoleh

sehingga

Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

dengan

(9)

sehingga

Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar

merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa

dengan percepatan sudut dan kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.

Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:

di mana adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara , dan melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB

hubungan-hubungan tersebut mutlak diperlukan.

[sunting] Kecepatan sudut

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh

(10)

dengan

Dapat dibuktikan bahwa

sama dengan kasus pada GMB.

[sunting] Percepatan total

Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikan

yang dapat disederhanakan menjadi

Selanjutnya

yang umumnya dituliskan [3]

dengan

(11)

yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.

Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.

Gerak berubah beraturan Kecepatan GLBB GMB

Besar berubah tetap

Arah tetap berubah

Contoh Soal dan Pembahasan

Soal No. 1

Nyatakan dalam satuan radian : a) 90o b) 270o Pembahasan 360o = 2π radian a) 90o b) 270o

(12)

Soal No. 2

Konversikan ke dalam satuan rad/s : a) 120 rpm

b) 60 rpm

Pembahasan

1 rpm = 1 putaran per menit 1 putaran adalah 2π radian atau 1 putaran adalah 360o

1 menit adalah 60 sekon a) 120 rpm

b) 60 rpm

Soal No. 3

Sebuah benda bergeak melingkar dengan kecepatan sudut 50π rad/s. Tentukan frekuensi putaran gerak benda!

Pembahasan

Soal No. 4

Kecepatan sudut sebuah benda yang bergerak melingkar adalah 12 rad/s. Jika jari-jari putarannya adalah 2 meter, tentukan besar kecepatan benda tersebut!

Pembahasan

Soal No. 5

Sebuah benda bermassa 1 kg berputar dengan kecepatan sudut 120 rpm. Jika jari-jari putaran benda adalah 2 meter tentukan percepatan sentripetal gerak benda tersebut !

(13)

Pembahasan Data : ω = 120 rpm = 4π rad/s r = 2 meter m = 1 kg asp = ...? asp = V2 /r = ω 2 r asp = (4π) 2 (2) = 32π2 m/s2 Soal No. 6

Gaya sentripetal yang bekerja pada sebuah benda bermassa 1 kg yang sedang bergerak melingkar beraturan dengan jari-jari lintasan sebesar 2 m dan

kecepatan 3 m/s adalah....? Pembahasan Data : m = 1 kg r = 2 meter V = 3 m/s Fsp = ....? Fsp = m ( V2 /r ) Fsp = (1)( 32 /2 ) = 4,5 N Soal No. 7

Dua buah roda berputar dihubungkan seperti gambar berikut!

Jika jari jari roda pertama adalah 20 cm, jari-jari roda kedua adalah 10 cm dan kecepatan sudut roda pertama adalah 50 rad/s, tentukan kecepatan sudut roda kedua! Pembahasan Data : r1 = 20 cm r2 = 10 cm ω1 = 50 rad/s ω2 = ...?

(14)

Dua roda dengan hubungan seperti soal diatas akan memiliki kecepatan (v) yang sama :

Soal No. 8

Dua buah roda berputar dihubungkan seperti gambar berikut!

Jika kecepatan roda pertama adalah 20 m/s jari-jari roda pertama dan kedua masing-masing 20 cm dan 10 cm, tentukan kecepatan roda kedua!

Pembahasan

Kecepatan sudut untuk hubungan dua roda seperti soal adalah sama:

Soal No. 9

Tiga buah roda berputar dihubungkan seperti gambar berikut!

Data ketiga roda : r1 = 20 cm

r2 = 10 cm

(15)

Jika kecepatan sudut roda pertama adalah 100 rad/s, tentukan kecepatan sudut roda ketiga!

Pembahasan

Soal No. 10

Sebuah partikel bergerak melingkar dengan kecepatan sudut sebesar 4 rad/s selama 5 sekon. Tentukan besar sudut yang ditempuh partikel!

Pembahasan

Soal di atas tentang Gerak Melingkar Beraturan. Untuk mencari sudut tempuh gunakan rumus :

θ = ωt

θ = (4)(5) = 20 radian.

Soal No. 11

Sebuah benda bergerak melingkar dengan percepatan sudut 2 rad/s2. Jika mula-mula benda diam, tentukan :

a) Kecepatan sudut benda setelah 5 sekon b) Sudut tempuh setelah 5 sekon

Pembahasan

Data : α = 2 rad/s2

ωo = 0

t = 5 sekon

Soal tentang Gerak Melingkar Berubah Beraturan a) ωt = ωo + αt ωt = (0) + (2)(5) = 10 rad/s b) θ = ωot + 1 /2 αt 2 θ = (0)(5) + 1 /2 (2)(5)2 Soal No. 12

Sebuah mobil dengan massa 2 ton bergerak dengan kecepatan 20 m/s menempuh lintasan dengan jari-jari 100 m.

(16)

Jika kecepatan gerak mobil 20 m/s tentukan gaya Normal yang dialami badan mobil saat berada di puncak lintasan!

Pembahasan

Gaya-gaya saat mobil di puncak lintasan :

Hukum Newton Gerak Melingkar :

Soal No. 13

Sebuah benda bergerak melingkar dengan jari-jari lintasan 50 cm seperti gambar berikut.

Jika massa benda 200 gram dan percepatan gravitasi 10 m/s2, tentukan besar tegangan tali ketika benda berada di titik titik tertinggi!

(17)

Pembahasan

Untuk benda yang bergerak melingkar berlaku

Uraikan gaya-gaya yang bekerja pada benda saat berada di titik tertinggi (aturan : gaya yang ke arah pusat adalah positif, gaya yang berarah menjauhi pusat adalah negatif)

Sehingga didapat persamaan :

Soal No. 14

Dari soal no. 13 tentukan tegangan tali saat benda berada pada titik terendah!

Pembahasan

Saat benda berada pada titik terendah, tegangan Tali berarah menuju pusat(+) sedang berat benda menjauhi pusat(−) sehingga persamaan menjadi:

Soal No. 15

(18)

Figur

Memperbarui...

Related subjects :