• Tidak ada hasil yang ditemukan

LEMBAR KERJA SISWA. Pengurangan matriks A dengan B, dilakukan dengan menjumlahkan matriks A dengan matriks negatif (lawan) B.

N/A
N/A
Protected

Academic year: 2021

Membagikan "LEMBAR KERJA SISWA. Pengurangan matriks A dengan B, dilakukan dengan menjumlahkan matriks A dengan matriks negatif (lawan) B."

Copied!
7
0
0

Teks penuh

(1)

LEMBAR KERJA SISWA

1. Judul (Materi Pokok) : Pengertian, Kesamaan, Transpos, Operasi dan Sifat Matriks 2. Mata Pelajaran : Matematika

3. Kelas / Semester : XII / 1

4. Waktu : 4 x 45 menit

5. Standar Kompetensi : 3. Menggunakan konsep matriks , vektor dan transformasi dalam pemecahan masalah.

6. Kompetensi Dasar : 3.1. Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi mempunyai invers

7. Indikator : 3.1.1. Mengenal ordo dan letak setiap elemen matirks 3.1.2. Melakukan operasi aljabar atas dua matriks

3.1.3. Menurunkan sifat-sifat operasi matriks melalui contoh 3.1.4. Mengenal invers matriks persegi.

8. Petunjuk Belajar (bagi peserta didik)

a. Baca buku paket Matematika yang berkaitan dengan pengertian, kesamaan, transpose, operasi dan sifat matriks.

b. Baca seksama LKS sebelum anda melakukan interaksi dengan program c. Lakukan menurut langkah-langkah yang telah disajikan.

9. Informasi :

• Matriks adalah susunan sekelompok bilangan dalam bentuk persegipanjang yang diatur menurut baris dan kolom.

• Dua buah matriks A dan B disebut sama jika : 1). Ordonya sama dan,

2). Elemen-elemen yang bersesuaian (seletak) sama

• Transpos dari matriks A adalah matriks baru yang disusun dengan cara menuliskan baris pertama matriks A menjadi kolom pertama matriks baru, baris kedua matriks A menjadi kolom kedua matriks yang baru, baris ketiga matriks A menjadi kolom ketiga matriks yang baru,… dan seterusnya.

Transpos dari matriks A ditulis A’ atau At ( dibaca “A transpos”)

• Matriks A + B mempunyai ordo yang sama dengan ordo matriks A dan ordo matriks B. Apabila ordo matriks A dan ordo matriks B berlainan, maka penjumlahan matriks tidak didefinisikan.

• Pengurangan matriks A dengan B, dilakukan dengan menjumlahkan matriks A dengan matriks negatif (lawan) B.

Jika A adalah sebuah matriks dan k adalah bilangan real maka kA adalah matriks yang diperoleh dari A dengan mengalikan setiap elemen A dengan k.

• Jika A dan B matriks berordo m x n serta p dan q anggota R, maka (i) pA + q A = (p + q)A

(ii) (ii) p(A + B) = pA + pB (iii) (iii) p(qA) = (pq)A

• Aturan melakukan perkalian matriks adalah mengalikan baris – baris dengan kolom-kolom dan kemudian menjumlahkan hasil perkalian itu

Jika A =





d

b

c

a

dan B =





y

x

maka hasil perkalian A.B didefinisikan dengan persamaan

A . B =





d

b

c

a

.





y

x

=





+

+

y

d

x

c

y

b

x

a

(2)

• Jika A =





d

b

c

a

dan B =





s

q

r

p

maka hasil perkalian A.B didefinisikan dengan persamaan

A . B =





+

+

+

+

=









ds

cq

bs

aq

dr

cp

br

ap

s

q

r

p

d

b

c

a

.

• Perkalian matriks mempunyai sifat : 1. Tidak komutatif , AB ≠ BA 2. Asosiatif, A(BC) = (AB)C

3. Terdapat matriks identitas I =





1

0

0

1

4. Distributif terhadap penjumlahan, A( B + C) = AB + AC dan (B + C)A = BA + CA

• Jika matriks A =





d

c

b

a

maka determinan matriks A ditentukan oleh

det A =

d

c

b

a

= ad – bc

• Jika ad – bc ≠ 0 maka matriks A =





d

c

b

a

mempunyai invers A–1 =





c

a

b

d

bc

ad

1

Jika det A = 0 atau ad – bc = 0 maka matriks A tidak mempunyai invers, dan matriks semacam ini disebut matriks singular.

• Misalkan A adalah matriks berordo 3 yang dituliskan dalam bentuk :

A =

33 32 31 23 22 21 13 12 11

a

a

a

a

a

a

a

a

a

, maka determinan matriks A itu dituliskan sebagai :

det A = 33 32 31 23 22 21 13 12 11

a

a

a

a

a

a

a

a

a

Nilai determinan matriks A dapat ditentukan dengan cara menjabarkan mengikuti kolom. Misalnya, nilai det A yang dijabarkan mengikuti baris pertama adalah :

det A = a11 33 32 23 22

a

a

a

a

– a12 33 31 23 21

a

a

a

a

+ a13 32 31 22 21

a

a

a

a

Cara lain untuk menghitung determinan matriks berordo 3 diatas adalah dengan menggunakan aturan Sarrus, sebagai berikut :

det A = = a11 a22 a33 + a12 a23 a31 + a13 a21 a32 – a31 a22 a13 – a32 a23 a11 11

+

_

_

_

+

+

21 31

a

12 22 32 13 23 33

a

a

a

a

a

a

a

a

a

a

a

a

a

a

11 12 21 22 31 32

(3)

10. Langkah Kerja

Tugas 1. Salin dan lengkapilah

Data absensi siswa pada kelas 12 selama satu semester disajikan dalam tabel berikut

Sakit Ijin Tanpa Keterangan

Andi Beni Caca Dani 4 2 1 2 1 1 1 3 5 2 0 3

Dari data tersebut di atas, maka dapat ditulis dalam bentuk matriks sebagai berikut:

....

...

....

..

.

.

....

....

....

....

....

....

....

....

Tugas 2. Carilah data yang lain di kelasmu kemudian ditulis dalam bentuk matriks

Tugas 3. Salin dan lengkapilah

Tentukan nilai x dan y dari persamaan





=





+

6

4

y

x

y

x

Jawab: x + y = ... (1) x – y = ... (2) _ ... = ... ... = ...

disubstitusikan pada persamaan (1) diperoleh

... + ...= ... ...= ...

Sehingga x = ... dan y = ... Tugas 4. Salin dan lengkapilah

Diketahui A =





6

1

2

5

4

3

dan B =

+

+

d

c

b

a

3

5

1

2

2

1

Jika A = Bt , tentukan nilai-nilai a, b, c dan d. Jawab : Bt =





+

...

...

...

5

2

...

c

Karena A = Bt maka





6

1

2

5

4

3

=





+

...

...

...

5

2

...

c

Sehingga diperoleh persamaan-persamaan

... = 3 didapat ... = ... ... = 2 didapat ... = ….. c + 2 = … didapat c = … ... = …. didapat .... = …

Jadi A = Bt untuk nilai a = … b = … c = … dan d = … Tugas 5. Salin dan lengkapilah

Tentukan penjumlahan matriks:





=





+

+

+

+

=





+





...

...

...

...

....

....

.

...

...

....

....

2

2

2

4

3

2

a

a

d

c

b

a

d

c

b

a

(4)

Tugas 6. Salin dan lengkapilah Diketahui P =





4

2

1

3

dan Q =





5

0

1

2

Tentukan P – Q Jawab. P – Q =





....

....

...

...





....

....

...

...

=





....

....

...

...

Tugas 7. Salin dan lengkapilah

Diketahui A =





4

3

2

1

berdasar aturan penjumlahan matriks kita peroleh.

A + A + A =





....

....

....

....

+





....

....

....

....

+





....

....

....

....

+





....

....

....

....

=





....

....

....

....

=





...

x

...

...

x

...

...

x

...

...

x

3

= …





....

....

....

....

Tugas 8. Salin dan lengkapilah

Hitunglah jika mungkin hasil perkalian





8

7

6

.

5

3

0

2

4

1

Jawab.

Ordo kedua matriks itu adalah ( 2 X 3 ) dan ( 3 X 1 ) , jadi ordo matriks hasil kalinya adalah ( 2 X 1 )





8

7

6

.

5

3

0

2

4

1

=





+

+

+

+

8

x

5

..

...x...

6

x

4

..

...x...

..

...x...

..

...x...

=





+

+

+

+

40

....

24

....

....

....

=





...

...

Tugas 9. Salin dan lengkapilah

Diketahui P =





1

2

3

1

dan Q =





0

5

2

4

Tentukan P . Q dan Q . P P . Q =





1

2

3

1

.





0

5

2

4

=





+

+

+

+

x....

....

x....

....

x....

....

....

x

....

2

x

...

4

x

...

x...

2

...

x

1

=





+

+

+

+

...

...

...

...

...

....

...

....

=





...

...

...

...

(5)

Q . P =





0

5

2

4

.





1

2

3

1

=





+

+

+

+

x....

....

x....

....

x....

....

....

x

....

....

x

...

x....

....

x....

....

...

x

....

=





+

+

+

+

...

...

...

...

...

....

...

....

=





...

...

...

...

Disimpulkan bahwa perkalian matriks tidak mempunyai sifat komutatif, sehingga PQ ≠ QP Tugas 10. Salin dan lengkapilah

Tentukan determinan matriks A =





4

5

2

3

Jawab : det A =

4

5

2

3

= (... x ...) – (... x ...) = ...

Tugas 11. Salin dan lengkapilah

Jika A =





1

-3

2

-5

dan B =





5

3

-2

1

menunjukan bahwa matriks A dan B saling invers. Jawab :

Untuk menunjukan A dan B saling invers harus ditentukan bahwa A . B = B . A = I A . B =





1

-3

2

-5





5

3

-2

1

=





+

+

+

+

...

...

...

...

...

....

...

....

=





...

...

...

...

= I B . A =





5

3

-2

1

-



1

-3

2

-5

=





+

+

+

+

...

...

...

...

...

....

...

....

=





...

...

...

...

= I Karena A . B = I = B . A, maka A adalah invers B dan B adalah invers A.

Tugas 12. Salin dan lengkapilah Diketahui P =





3

4

4

6

, tentukan P–1 (invers matriks P) Jawab :

det P = ... x ... – ... x ... = ... – ... = ... det P ≠ 0 . Jadi ada P–1

P–1 =





...

...

4

3

P

det

1

=





...

...

4

3

...

1

=





...

...

...

...

Tugas 13. Salin dan lengkapilah

Diketahui matriks A =

3

4

1

4

3

1

3

2

1

. Tentukan determinan matriks A .

Jawab :

Determinan matriks A (dihitung dengan aturan Sarrus) adalah :

det A =

= ....x....x....+ ....x....x....+ ....x....x....– ....x....x....– ....x....x....– ....x....x.... = ... + ... + ... – ... – ... – ...

= ... – ... = ...

Jadi determinan matriks A atau det A = ...

1 2 3 4 1 1 3 3 4 1 1 1 2 3 4 + _ _ _ + +

(6)

Penilaian

Penilaian kognitif : tes tertulis Bentuk instrumen : soal uraian Instrumen :

Kerjakan soal-soal dibawah ini 1. Tentukan x dan y berikut ini

a.





=





8

0

0

6

2

0

0

2

y

x

b. ( 3x -y ) = ( 12 -2 ) c.





=





+

1

5

2

3

y

x

2. Diketahui matriks-matriks P =

+

+

f

e

c

d

b

a

d

e

b

c

a

2

2

2 1 dan Q =





1

0

5

2

1

4

a. Tentukan transpos dari matriks P

b. Jika Pt = Q, carilah nilai nilai a, b, c, d, e dan f

3. Diketahui matriks A =





4

3

2

1

, B =





1

4

3

2

dan C =





4

2

2

3

Tunjukkan bahwa (A + B) + C = A + (B + C) dan sifat apakah yang memenuhi dari hasil ini ?

4. Jika X adalah matriks berordo 2 X 2, tentukanlah matriks X yang memenuhi tiap persamaan berikut ini. a. X +





=





6

5

2

4

3

4

1

2

c.





=





-

8

2

-4

3

X

10

2

1

5

b. X –





=





3

0

2

1

2

4

1

5

5. Carilah nilai nilai p, q, r dan s pada tiap persamaan berikut ini:

a.





=









5

3

1

2

4

1

2

0

s

r

q

p

c.





=









+

4

1

3

3

5

2

3

1

1

1

3

2

s

r

q

p

b.





=









5

1

2

6

2

0

3

5

s

r

q

p

6. Diketahui matriks P =





1

1

3

2

, tentukan 2P + 3P, 5P – 2P dan 2P + P !

7. Tentukan Hasil perkalian berikut ini, dalam bentuk paling sederhana .

a.









4

3

.

1

0

0

1

d.









2

1

.

5

3

4

2

b.









3

2

.

1

0

0

1

e.









-

3

1

.

2

3

1

2

c.









3

1

.

2

1

1

2

(7)

8. Kerjakan Perkalian berikut a.





4

2

3

1

.





1

0

0

1

c.





d

b

c

a

.





1

0

0

1

b.





1

0

0

1

.





4

2

3

1

d.





1

0

0

1

.





d

b

c

a

9. Jika A =





1

3

4

2

, B =





2

3

5

1

dan C =





2

0

1

5

Tentukanlah : a. AB d. A(BC)

b. BC e. Sifat apakah yang terlihat dari hasil ini c. (AB)C

10. Perpangkatan dari matriks bujursangkar A didefinisikan sebagai berikut : A2 = A . A , A3 = A . A2 , A4 = A . A3 dan seterusnya . Diketahui A =





1

2

3

1

Hitunglah a. A2 b. A3 11. Jika X =





2

3

0

1

tentukan matriks X2 + 3X + 4I dengan I sebagai matriks identitas yaitu I =





1

0

0

1

12. Tentukan determinan dari setiap matriks berikut ini : a.





1

2

5

4

b.





1

-2

0

4

c.





+

1

a

a

a

a

13. Carilah nilai x pada tiap persamaan berikut ini : a.

4

-3

2

x

= 10 b.

x

x

x

2

1

3

2

2

3

4

= 0 c.

x

x

x

2

4

1

+

= 4x – 30 14. Diketahui matriks A =





3

4

4

6

dan B =





3

4

4

6

Tentukanlah : a. A B b. B A c. A–1 d. B–1 e. (A B)–1 f. A–1 B–1 g. (B A)–1 h. B–1 A–1 Hasil perkalian manakah yang sama ?.

15. Tentukan determinan dari setiap matriks A berikut ini :

a) A =

6

5

3

5

4

2

3

3

1

c). A =

1

1

2

2

1

1

1

2

1

b) A =

4

2

1

1

3

4

4

3

2

d). A =

2

1

3

3

2

1

1

3

2

Referensi

Dokumen terkait

Jadi, semua elemen pada baris kedua mempunyai 2 sebagai tilkalas pertama dan semua elemen pada kolom kelima mempunyai 5 sebagai tikalas kedua.. MATRIKS

pemrograman yang meminta ukuran matriks pada pendefinisiannya, ada yang meminta penomoran minimum dan maksimum dari baris dan kolom.. Pada notasi algoritmik yang kita pakai, Cara

Transpose matriks A adalah suatu matriks baru yang dapat ditulis dengan A T dengan cara memindahkan elemen pada baris matriks A menjadi elemen kolom pada

Ukuran atau ordo suatu matriks adalah ukuran yang menunjukkan banyak baris dan banyak kolom dari suatu matriks, dinotasikan dengan Ai×j...

Prinsip pemasangan kartu domino ini dapat kita gunakan untuk memahami perkalian dua matriks, yaitu sebuah matriks A dapat dikalikan dengan matriks B jika banyak kolom matriks A

bila b ij ij ij ij = a = a = a = a ji ji ji ji atau matriks baru hasil atau matriks baru hasil atau matriks baru hasil atau matriks baru hasil dari pertukaran baris dg

Minor suatu matriks A dilambangkan dengan M ij adalah matriks bagian dari A yang diperoleh dengan cara menghilangkan elemen-elemennya pada baris ke-i dan elemen- elemen pada

Jika diketahui suatu matriks A=a ij berukuran mxn maka transpose dari A adalah matriks A T berukuran nxm yang didapat dari A dengan menuliskan baris ke-i dari A sebagai kolom ke-i