• Tidak ada hasil yang ditemukan

LAPORAN AKHIR HASIL PENELITIAN HIBAH BERSAING INSTITUSI BATCH I TAHUN ANGGARAN 2012

N/A
N/A
Protected

Academic year: 2021

Membagikan "LAPORAN AKHIR HASIL PENELITIAN HIBAH BERSAING INSTITUSI BATCH I TAHUN ANGGARAN 2012"

Copied!
11
0
0

Teks penuh

(1)

LAPORAN AKHIR HASIL

PENELITIAN HIBAH BERSAING INSTITUSI BATCH I

TAHUN ANGGARAN 2012

Judul : Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas Rakyat untuk Perbaikan Produksi Jagung

Ketua : Prof. Ir. Eko Handayanto, MSc., PhD. Anggota : 1. Dr.Ir. Budi Prasetya, MP.

2. Ir.Nurul Muddarisna, MP

Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan Kebudayaan, Melalui DIPA Universitas Brawijaya nomor :

0636/023-04.2.16/15/2012, tanggal 9 Desember 2011, dan berdasarkan SK Rektor Universitas Brawijaya Nomor : 366/SK/2012 tanggal 13 Agustus 2012

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT

UNIVERSITAS BRAWIJAYA

2012

Bidang Unggulan: Ketahanan Pangan :………

(2)
(3)

ABSTRAK

Upaya konvensional untuk reklamasi (remediasi) tanah pertanian tercemar Hg limbah tambang emas tersebut belum banyak dilakukan karena kendala biaya yang tinggi. Salah satu teknologi mudah dan murah yang belum diterapkan di lahan tercemar Hg adalah fitoremediasi. Tujuan dari penelitian ini adalah untuk mempelajari dan mengetahui potensi fitoekstrasi tanaman Lindernia crustacean,

Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia, Caladium bicolor dalam fitoremediasi tanah yang tercemar oleh limbang tambang

emas mengandung unsur Hg, serta pengaruh ikutannya terhadap pertumbuhan tanaman jagung. Penelitian dilaksanakan dalam dua tahap, yaitu percobaan pot lapangan untuk mengetahui potensi 6 spesies (Lindernia crustacean, Digitaria

radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia, Caladium bicolor) sebagai akumulator Hg. Tahap kedua adalah mempelajari

dampak fitoremediasi Hg terhadap pertumbuhan dan produksi tanaman jagung. Hasil penelitian menunjukkan bahwa tanaman Paspalum conjugatum, Cyperus

kylingia, dan Lindernia crustacean merupakan tiga spesies tanaman liar yang

berpotensi untuk digunakan sebagai fitoremediator Hg pada lahan pertanian yang tercemar Hg. Penambahan bahan ligand mengandung S, yaitu thiosulfat, pada tanah tercemar Hg meningkatkan pelarutan Hg dalam tanah dan peningkatan serapan Hg oleh tanaman fitoremediator. Pertrumbuhan dan produksi biomasa tanaman jagung meningkat 33%. Produksi biomasa kering tertinggi dijumpai pada perlakuan pascafitoremediasi dengan Paspalum conjugatum.

ABSTRACT

Conventional efforts for emediation of soils contaminated by gold mine waste containing Hg has not been conducted because of its high cost. An inexpensive technology that has not been applied in Hg contaminated soil is phytoremediation. The purpose of this research was to study and determine the potential of Lindernia

crustacean, Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia, and Caladium bicolor in phytoremediation of Hg contaminated

soil, and the effect the phytoremediation on the growth of maize. The experiment was conducted in two phases. The first phase was a pot field trial to determine the potential Lindernia crustacean, Digitaria radicosa, Zingiber purpurium,

Paspalum conjugatum, Cyperus kylingia, and Caladium bicolor) as Hg

accumulator plants. The second phase was is to study the impact of Hg phytoremediation on the growth and production of maize. The results showed that

Paspalum conjugatum, Cyperus kylingia and Lindernia crustacean were three

species of indigenous plants that have the potential to be used as Hg fitoremediator plants. The addition of ligand containing S, i.e. thiosulfate, to the Hg contaminated soil increased accumulation of Hg by fitoremediator plants. Growth andbiomass production of maize increased by 33%. Highest dry biomass production observed in treatment with Paspalum conjugatum.

(4)

RINGKASAN

Penambangan emas rakyat umumnya dilakukan dengan menggunakan sistem tradisional dengan metode sederhana yaitu amalgamasi merkuri (Hg) dan membutuhkan investasi kecil. Pembuangan limbah proses pendulangan emas berupa lumpur yang mengandung Hg dan berbagai logam berat lainnya umumnya dilakukan di lahan sekitar lokasi proses amalgamasi sehingga mencemari lahan pertanian yang berada di sekitar lokasi tersebut. Sisa lumpur yang dibuang ke lahan pertanian berdampak negatif terhadap produksi tanaman pangan karena dapat menghambat pertumbuhan tanaman, bahkan tanaman mati, akibat keracunan Hg. Upaya konvensional untuk reklamasi (remediasi) tanah pertanian tercemar Hg limbah tambang emas tersebut belum banyak dilakukan karena kendala biaya yang tinggi. Salah satu teknologi mudah dan murah yang belum diterapkan di lahan tercemar Hg adalah fitoremediasi. Tujuan dari penelitian ini adalah untuk (1) mempelajari dan mengetahui potensi fitoekstrasi tanaman

Lindernia crustacean, Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia, Caladium bicolor dalam fitoremediasi tanah yang

tercemar oleh limbang tambang emas mengandung unsur Hg, (2) Mempejalari dan mengetahui pengaruh penambahan bahan ligand mengandung S terhadap pelarutan Hg dalam tanah tercemar Hg dan perubahan serapan Hg oleh enam jenis tanaman di atas, dan (3) Mempelajari pertumbuhan dan produksi tanaman jagung pada tanah pascafitoremediasi di atas. Penelitian dilaksanakan dalam dua tahap yang akan berlangsung selama 6 bulan. Tahap pertama berupa percobaan pot lapangan di lokasi lahan tercemar Hg limbah tambang emas di Kecamatan Sekotong, Lombok Barat. Tujuan penelitian tahap pertama adalah untuk mengetahui potensi 6 spesies (Lindernia crustacean, Digitaria radicosa, Zingiber

purpurium, Paspalum conjugatum, Cyperus kylingia, Caladium bicolor) sebagai

akumulator Hg, serta pengaruh penambahan thio sulfat (ammonium thiosulfat) sebagai pemacu serapan Hg oleh tanaman akumulator Hg. Setelah penelitian pertama berakhir (60 hari), sisa bahan tanah penelitian tahap pertama (pascafitoremediasi) digunakan untuk pertumbuhan tanaman jagung untuk mempelajari dampak fitoremdiasi Hg terhadap pertumbuhan dan produksi tanaman jagung. Penelitian tahap kedua akan dilaksanakan selama 70 hari.

Hasil penelitian menunjukkan bahwa Tanaman Lindernia crustacean,

Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia

dan Caladium bicolor mampu mengakumulasi Hg 2,96; 1,65; 0,85; 8,82; 3,97; dan 0,14 mg/kg selama pertumbuhan 9 minggu. Berdasar kemampuan di atas, tanaman Paspalum conjugatum, Cyperus kylingia, dan Lindernia crustacean merupakan tiga spesies tanaman liar yang berpotensi untuk digunakan sebagai fitoremediator Hg pada lahan pertanian yang tercemar Hg. Penambahan bahan ligand mengandung S, yaitu thiosulfat, pada tanah tercemar Hg meningkatkan pelarutan Hg dalam tanah dan peningkatan serapan Hg oleh Lindernia crustacean,

Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia

dan Caladium bicolor. Secara rata-rata, penambahan thiosulfat meningkatkan 71% serapan Hg oleh enam spesies tanaman di atas, dengan pola jumlah serapan seperti pada perlakuan tanpa pemberian thiosulfat. Tinggi tanaman dan produksi biomasa tanaman jagung yang ditanam selama 8 minggu pada tanah

(5)

pascafitoremediasi Hg rata-rata meningkat 33% dibandingkan dengan tinggi tanaman yang ditanam pada tanah sebelum fitoremediasi. Penggunaan thiosulfat dalam proses fitoremediasi yang menyebabkan peningkatan serapan Hg oleh tanaman fitoremediator dapat meningkatkan tinggi tanaman sebesar 69%. Pertumbuhan terbaik dijumpai pada perlakuan pascafitoremediasi dengan

Paspalum conjugatum. Dibandingkan dengan produksi biomasa jagung yang

ditanam pada tanah tanpa fitoremediasi, produksi biomasa kering tajuk dan akar tanaman jagung yang ditanam pada tanah pascafitoremediasi meningkat 24% pada pada perlakuan tanpa thiosulfat dan 41% pada perlakuan penambahan thiosulfat dalam proses fitoremediasi. Produksi biomasa kering tertinggi dijumpai pada perlakuan pascafitoremediasi dengan Paspalum conjugatum.

(6)

SUMMARY

In Artisanal and small-scale gold mining (ASGM), extraction of gold is generally done by using a traditional system with a simple method which is the amalgamation of mercury (Hg) and requires a small investment. Disposal of waste in the form of sludge containing Hg and various other heavy metals is generally done in the land around the site so that the amalgamation process contaminates agricultural land around the site. The remaining sludge discharged into farmland negatively impact crop production because it can inhibit plant growth. Conventional efforts for remediation of Hg contaminated soils has not been conducted because of its high cost. An inexpensive technology that has not been applied in Hg contaminated soil is phytoremediation. The purposes of this study were to (1) study and determine the potential of Lindernia crustacean, Digitaria

radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia, Caladium bicolor in phytoremediation of Hg contaminated soils, (2) determine the

effect of the addition of ligands containing S toward dissolving Hg in Hg contaminated soil and changes in Hg accumulation by six plant species above, and (3) study the growth and biomass production of maize grown on post phytoremediation process.

The experiment was conducted in two phases for 6 months. The first phaese was a pot trial field at the field site contaminated with Hg at Sekotong gold mine area of West Lombok. The first phase of the research objective was to investigate the potential of Lindernia crustacean, Digitaria radicosa, Zingiber

purpurium, Paspalum conjugatum, Cyperus kylingia, and Caladium bicolor as Hg

accumulator plants, and the effect of the addition of thio sulphate (ammonium thiosulfate) on Hg accumulation by plants . After the end of the first phase (60 days), the remaining soil material was used for the growing maize to study the impact fitoremdiasi Hg on growth and biomass production of maize. The second phase of the study was conducted for 70 days.

The results showed that Lindernia crustacean, Digitaria radicosa,

Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia and Caladium bicolor were able to accumulate 2.96; 1.65; 0.85; 8.82; 3.97, and 0.14 mg Hg / kg

for 9 weeks of growth. Based on the above capabilities, Paspalum conjugatum,

Cyperus kylingia and Lindernia crustacean are three species of indigenous plants

that have the potential to be used as Hg fitoremediators for Hg contaminated soil. The addition of thiosulfate to the Hg contaminated soil increased accumulation of Hg by Lindernia crustacean, Digitaria radicosa, Zingiber purpurium, Paspalum

conjugatum, Cyperus kylingia and Caladium bicolor. On average, the addition of

thiosulfate increased 71% uptake of Hg by six plant species above, the pattern of uptake was similar to treatments with no addition of thiosulfate. Plant height and biomass production of maize grown for 8 weeks increased 33% compared to those of no phytoremediation soil. The use of thiosulfate in phytoremediation processes that lead to increased Hg accumulation by fitoremediator plants increased plant height by 69%. Best growth observed in treatment with Paspalum conjugatum pascafitoremediasi. Compared with biomass production of maize grown on soil without phytoremediation, dry biomass production and plant roots of maize grown on soil pascafitoremediasi increased 24% in the treatment without thiosulfate and

(7)

41% on the addition of thiosulfate in the treatment process of phytoremediation. Highest dry biomass production observed in treatment with Paspalum

(8)

DAFTAR PUSTAKA

Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Kumar, A., Singh, N., Behl, H.M. and Singh, S.P. 2000. Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L.

Bulletin of Environmental Contamination and Toxicology 65:573-582.

Angle, J. S., Chaney, R. L., Baker, A. J. M, Li, Y., Reeves, R., Volk, V., Roseberg, R., Brewer E., Burke S. and Nelkin J. 2000. Developing commercial phytoextraction technologies: practical considerations. South

African Journal of Science 97: 619-623.

Berti, W.R. and Cunningham, S.D. 2000. Phytostabilization of metals. In: Phytoremediation of Toxic Metals–Using Plants to Clean Up the Environment .I. Raskin and B.D. (eds), p 71-88. New York:John Wiley & Sons.

Birdstrup, P. L. 1964. Toxicity of mercury and its compounds. London; Elsevier publishing company.

Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, 0., Gussman, C., Kapulnik, Y., Ensley, B.D. and Raskin, I. 1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environment Science and

Technology 31:860-865.

Boening, D.W. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335-1351.

Chandra Sekhar K., Kamala, C. T., Chary, N. S. Balaram, V. and Garcia, G. 2005. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58: 507-514

Ensley, B. D. 200). Rationale for use of phytoremediation. In: I. Raskin and B. D. Ensley (Eds.), Phytoremediation of Toxic Metals. Using Plants to Clean

up the Environment, J. Wiley & Sons, New York, USA: 3-11.

Evans, L.J. 1989. Chemistry of metal retention by soils. Environmental Science

and Technology 23(9):1046-1056.

Ferreira, C., Lopes Vieira, C., Azevedo, H. and Caldeira, G. 1998. The effects of high levels of Hg on senescence, proline accumulation and stress enzymes activities of maize plants. Agrochimica 42(5):209-218.

Fitter, A.H, dan Hay, R.K.M. 2004. Fisiologi Lingkungan Tanaman. Terjemahan oleh Sri Andani dan E.D. Purbayanti. Universitas Gadjah Mada Press. Yogyakarta.

Glass, D. J. 2000. Economic potential of phytoremediation. In: I. Raskin and B. D. Ensley, (Eds.), Phytoremediation of Toxic Metals. Using Plants to Clean

up the Environment, J. Wiley & Sons, New York, USA: 15-3 1.

Grill, E., Winnacker, E.L. and Zenk, M.H. 1985. Phytochelatins: the principal heavy- metal complexing peptides of higher plants. Science 230:674-676.

(9)

Gunradi, R, 2000 Laporan Penyelidikan Pernantauan Unsur Hg (mercury) Akibat Penambangan Emas Tanpa Ijin (PET1) di Daerah Pongkor, Jawa Barat, Dengan Pemetaan Geokimia. Koordinator Urusan Departemen Energi dan Sumberdaya Mineral, Propinsi Jawa Barat.

Hidayati, N, Juhaeti, T, dan Syarif, F. 2009. Mercury and Cyanide Contaminations in Gold Mine Environment and Possible Solution of Cleaning Up by Using Phytoextraction. Hayati Journal of Biosciences. Vol. 16, No. 3: 88-94

Hinton, J. 2002. Earthworms as a Bioindicator of Mercury Pollution in an Artisanal Gold Mining Community, Cachoeira do Pink Brazil. Master Thesis. University of British Columbia, Canada, 140 pp.

Hylander, L.D., Plath, D., Miranda, C.R., Lucke, S., Ohlander, J. and Rivera, A.T.F. 2007. Comparison of different gold recovery methods with regard to pollution control and efficiency. Clean 35: 52-61.

Ismawati, Y. 2010. Presentation at the National Mercury Roundtable Forum, Jakarta, 4 August 2010.

Kabata-Pendias, A. and Pendias, H. 2000. Trace Elements in Soils and Plants, CRC Press, Florida,USA, 413 pp.

Krisnayanti, B.D., Arifin, Z. Bustan, Sudirman. and Yani, A. 2012. Mercury Concentration on Tailing and Water from One Year of ASGM at Lantung, Sumbawa, Indonesia. In: Environmental, Socio-economic, and Health Impacst of Artisanal and Small-Scale Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). p 61-66. UB Press, Malang, Indonesia Kumar, P. and Chandra, R. 2004. Detoxification of distillery effluent through

Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential

of Spriodela polyrrhiza (L.) Schliden. Bulletin of Environmental

Contamination and Toxicology 73:903-910

Li, Y. M., Chaney, R., Brewer, E., Rosenberg, R., Angle, S.J., Baker, A. J. M., Reeves, R. D. and Nelkin, J. 2003. Development of technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and Soil 249: 107-115

Liao, S.W. and Chang, W.L. 2004. Heavy metal phytoremediation by Water Hyacinth at constructed wetlands in Taiwan. Journal of Aquatic Plant

Management 42: 60-68.

McLaren, R.G. and Cameron, K.C. 1996. Soil Science. Oxford University Press, NZ, 304. pp.

Meagher, R.B., Rugh, C.L., Kandasamy, M.K., Gragson, G. and Wang, N.J. 2000. Engineering phytoremediation of mercury pollution in soil and water using bacterial genes. In: Phytoremediation of Contaminated Soil and Water, N. Terry, and G. Bailuelos. Eds. Lewis Publishers, USA, pp 201-219.

Mitra, S. 1986. Mercury in the ecosystem its dispersion and pollution today. Netherlands: Technomic Publishing Co., Inc.

(10)

Morel, F.M.M., Kraepiel, A.M.L. and Amyot, M. 1998. The chemical cycle and bioaccumulation of mercury. Annual Reviews in Ecological Systems 29:543-566.

Moreno, F.N., Anderson, C.W.N., Robinson, B.H. and Stewart, R.B. 2004. Phytoremediation of mercury-contaminated mine tailings by induced plant-Hg accumulation. Environmental Practice 6(2):165-175.

Munzuroglu, O. and Geekil, H. 2002. Effect of metals on seed germination root elongation and coeoptiles and hypocotyls growth in Triticum aestivum and

Cucumis salivus. Archieve of Environmental and Contamination Toxicology. 43: 203-213.

Patra, M., and Sharma, A. 2000. Mercury toxicity in plants. Bot. Rev, 66(3), 379-422.

Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56:15-39.

Prasad, M. N. V. 2001. Metals in the environment analysis by biodiversity. Newyork: Marcel Dekker, Inc.

Rahmawati, I. 2011. Pengaruh Kemiskinan Terhadap Maraknya Pertambangan Tanpa Ijin (Studi Kasus Di Kecamatan Sekotong, Kabupaten Lombok Barat). Media Bina Ilmiah, Fakultas Teknik Universitas Muhammadiyah Mataram, Desember 2011: 16-20.

Rauser, W.E. 1995. Phytochelatins and related peptides. Plant Physiology. 109:11411149.

Rugh, C. L. 2004. Genetically engineered phytoremediation: one man’s trash is another man’s transgene. Trends in Biotechnology 22: 496-468.

Schnoor, J. L., Light, L. A., Mccutcheon, S. C., Wolfe, N. L. and Carreira, L. H. 1995. Phytoremediation of organic and nutrient contaminants.

Environmental Science and Technology 29: 3 18-323.

Schuster, E. 1991. The behaviour of mercury in the soil with special emphasis on the complexation and adsorption processes- a review of the literature.

Water, Air, and Soil Pollution 56:667-680

Subowo, M., Widodo, S. dan Nugraha, A. 2007. Status dan Penyebaran Pb, Cd, dan Pestisida pada Lahan Sawah Intensifikasi di Pinggir Jalan Raya. Prosiding. Bidang Kimia dan Bioteknologi Tanah, Puslittanak, Bogor. Telmer, K. 2007. Mercury and Small Scale Gold Mining –Magnitude and

Challenges Worldwide. GEF/UNDP/UNIDO Global Mercury Project Thangavel, P. and Subhuram, C. V. 2004. Phytoextraction – Role of hyper

accumulators in metal contaminated soils. Proceedings of the Indian

National Science Academy. Part B 70: 109–130.

Truu, J. Talpsep, E. Vedler, E. Heinaru, E. and Heinaru, A. 2003. Enhanced Biodegradation of Oil Shale Chemical Industry Solid Wastes by Phytoremediation and Bioaugmentation. Estonia Academy Publisher

(11)

Wallschlager, D., Desai, V.M.M. and Wilken, R. 1996. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, Air, and Soil Pollution 90:507-520.

Wallschlager, D., Desai, V.M.M., Spengler, M., and Wilken, R. 1998 a. Mercury speciation in floodplain soils and sediments along a contaminated river transect. Journal of Environmental Quality 27:1034-1044.

Wallschlager, D., Desai, V.M.M., Spengler, M., Windmilller, C.C. and Wilken R. 1998 b. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments. Journal of Environmental

Quality 27:10441057.

Wang, J., X, Feng, X. and C.W.N. Anderson, C.W.N. 2012. Thiosulphate Assisted Phytoextraction of Mercury (Hg) Contaminated Soils at The Wanshan Mercury Mining District, Southwest China. In: Environmental, Socio-economic, and Health Impacst of Artisanal and Small-Scale Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). p 67-76. UB Press, Malang, Indonesia.

Wolfe, A. K. and Bjornstad, D. J. 2002. Why would anyone object? An exploration of social aspects of phytoremediation acceptability. Critical

Reviews in Plant Science 21: 429-438

Yayasan Tambuhak Sinta. 2010. Scoping Study Report of Poboya, Palu ASGM Site.

Referensi

Dokumen terkait

Dalam pengembangannya mesin pembubur kertas ini harus menggunakan motor dengan kapasitas yang lebih besar, sehingga tidak terjadi kemacetan putaran ketika

Pound cake dengan substitusi tepung labu kuning termodifikasi asam laktat menghasilkan tingkat pengembangan yang jauh lebih besar dibandingkan dengan cake yang

Sama seperti pada siklus II, guru mitra dibantu peneliti menyiapkan bahan dan materi yang akan dibahas dengan menggunakan aplikasi dari model pembelajaran inkuiri

Berdasarkan kontrak perjanjian (MoU) yang telah dibuat oleh PT Mitratani Agro Unggul dengan petani mitra yang diketahui oleh Dinas Pertanian Tanaman Pangan dan

Hal ini ditemukan bahwa diferensiasi dan inovasi memiliki pengaruh positif terhadap strategi keunggulan kompetitif yang berkelanjutan yang pada akhirnya meningkatkan

Belanja modal Pengadaan Alat Peraga/Praktek Sekolah Bidang 1.242.228.000,00 Pendidikan/Keterampilan Lain-lain.. Belanja Modal Tanah Untuk

Bagi pihak kepolisian hendaklah lebih meningkatkan penjagaan dan pengaturan lalu lintas. Agar mengingatkan kembali kesadaran masyarakat dalam berlalu lintas, dengan