• Tidak ada hasil yang ditemukan

ANALISIS SIMULASI STRUKTUR CHASSIS MOBIL MESIN USU BERBAHAN BESI STRUKTUR TERHADAP BEBAN STATIK DENGAN MENGGUNAKAN PERANGKAT LUNAK ANSYS 14.

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISIS SIMULASI STRUKTUR CHASSIS MOBIL MESIN USU BERBAHAN BESI STRUKTUR TERHADAP BEBAN STATIK DENGAN MENGGUNAKAN PERANGKAT LUNAK ANSYS 14."

Copied!
10
0
0

Teks penuh

(1)

70

ANALISIS SIMULASI STRUKTUR

CHASSIS

MOBIL MESIN USU

BERBAHAN BESI STRUKTUR TERHADAP BEBAN STATIK

DENGAN MENGGUNAKAN PERANGKAT LUNAK ANSYS 14.5

Ary Fadila1, Bustami Syam2 Email: Aryfadila@yahoo.co.id 1,2

Departemen Teknik Mesin, Universitas Sumatera Utara, Jln.Almamater Kampus USU Medan 20155 Medan Indonesia

Abstrak

Merancang chassis perlu dilakukan analisis simulasi elemen hingga untuk mengetahui kekuatan chassis pada mobil Mesin USU pada saat driver berada di dalamnya. Tujuan penelitian ini adalah mendapatkan hasil simulasi chassis pada mobil Mesin USU I dan mobil Mesin USU II apabila mengalami pembebanan dengan menggunakan perangkat lunak Ansys 14.5. Penelitian ini dilakukan dalam beberapa tahap pengerjaan yaitu: pemodelan chassis dengan perangkat lunak SolidWorks Premium 2011 dan simulasi elemen hingga menggunakan perangkat lunak Ansys 14.5. Setelah melakukan simulasi dengan beban 700 N terhadap chassis Mesin USU I didapat defleksi maksimum = 0,96 mm, defleksi ground clearence = 0,6415 mm, tegangan maksimum = 22,563 Mpa, regangan maksimum = 11,65e-5 mm/mm. Dengan beban 700 N terhadap chassis Mesin USU II didapat defleksi maksimum = 3,29 mm, defleksi ground clearence = 2,236 mm, tegangan maksimum = 53,217 Mpa, regangan maksimum = 26,71e-5 mm/mm. Dengan beban 25 kN terhadap chassis Mesin USU I didapat defleksi maksimum = 31,542 mm, defleksi ground clearence = 21,682 mm, tegangan maksimum = 741,59 MPa, regangan maksimum = 371,12e-5 mm/mm. Dengan beban 3,8 kN terhadap chassis Mesin USU II didapat defleksi maksimum = 17,074 mm, defleksi ground clearence = 11,582 mm, tegangan maksimum = 277,64 MPa, regangan maksimum = 139,39e-5 mm/mm. Kesimpulan dari penelitian ini adalah efek dari pembebanan chassis dapat diketahui melalui simulasi dengan perangkat lunak Ansys dengan pemodelan geometry gambar yang benar.

Kata kunci: Analisis Simulasi, defleksi maksimum, defleksi ground clearence,tegangan maksimum, regangan maksimum, ANSYS

Abstract

Chassis designing needs to be analized by finite element simulation to get the strength of chassis on Mesin USU car actually the driver is in it. The purpose is how to getting the simulation’s effect of chassis on Mesin USU I car and on Mesin USU II car when both are applied loading which using Ansys 14.5 software. The research was carried out in several stages of working: the chassis modeling by software SolidWorks Premium 2011 and finite element simulation using ANSYS 14.5 software. After doing the simulation with 700 N load on chassis Mesin USU I acquired 0,96 mm maximum deflection, 0,6415 mm ground clearence deflection, 22,563 MPa maximum stress, 11,65e-5 mm/mm maximum strain. And 700 N load on chassis Mesin USU II acquired 3,29 mm maximum deflection, 2,236 mm ground clearence deflection, 53,217 MPa maximum stress, 26,71e-5 mm/mm maximum strain. With 25 kN load on chassis Mesin USU I acquired 31,542 mm maximum deflection, 21,682 mm ground clearence deflection, 741,59 MPa maximum stress, 371,12e-5 mm/mm maximum strain. And 3,8 kN load on chassis Mesin USU II acquired 17,074 mm maximum deflection, 11,582 mm ground clearence deflection, 277,64 MPa maximum stress, 139,39e-5 mm/mm maximum strain. The conclusion of this study is the effect of chassis loading can be determined through the simulations with Ansys software during the geometry modeling is correct

Keywords: Simulation Analysis, maximum deflection, ground clearance deflection, maximum stress, maximum strain, ANSYS.

1. Pendahuluan

Konsumsi energi di sektor transportasi dari tahun ke tahun telah meningkat secara signifikan, sehingga diperlukan upaya untuk mendapatkan sistem

transportasi yang hemat energi. Dalam menyanggupi tantangan itu sebuah kompetisi Indonesia Energy Marathon Challenge (IEMC) 2012 merupakan kegiatan yang diadakan oleh Dikti di

▸ Baca selengkapnya: arsono 1995 lingkaran besi

(2)

71 Surabaya yang bertujuan untuk menguji

kemampuan para mahasiswa dalam merancang dan membangun kendaraan yang aman, irit dan ramah lingkungan dimana lomba ini setiap tim mahasiswa harus membangun kendaraan yang mampu menempuh jarak terjauh dengan satu liter bahan bakar minyak. Sama halnya dengan kompetisi Shell Eco

-Marathon Asia. Oleh karena dalam pembuatan mobil ini, salah satunya adalah pembuatan chassis merupakan bagian yang sangat fundamental dari sebuah kendaraan secara keseluruhan. 2. Tinjauan Pustaka

2.1 Chassis

Chassis adalah rangka yang berfungsi sebagai penopang berat kendaraan, mesin serta penumpang. Biasanya chassis terbuat dari kerangka baja yang memegang body dan engine

dari sebuah kendaraan [1]. Saat proses manufaktur body kendaraan dibentuk sesuai dengan struktur chassisnya.

Chassis mobil biasanya terbuat dari logam ataupun komposit. Material tersebut harus memiliki kekuatan untuk menopang beban dari kendaraan.

Chassis juga berfungsi untuk menjaga agar mobil tetap rigid, kaku dan tidak mengalami bending [2].

2.2 Jenis - Jenis Chassis

Chassis memilki beberapa jenis diantaranya:

1. Ladder Frame

Ladder Frame adalah dua batangan panjang yang menyokong kendaraan dan menyediakan dukungan yang kuat dari berat beban dan umumnya berdasarkan desain angkut. Bahan material yang paling umum untuk jenis

Ladder frame ini adalah material dengan bahan baja ringan [3]. Berikut adalah salah satu contoh Ladder Frame modern yang biasa digunakan pada mobil pickup

dan SUV [4] dapat dilihat pada gambar 2.1.

Gambar 2.1: LadderFrame

2. TubularSpaceFrame

Tubular Space Frame memakai berbagai macam pipa circular (kadang – kadang dipakai bentuk squaretube agar mudah disambung, meskipun begitu bentuk circular memiliki kekuatan begitu besar).

Posisinya yang berbagai arah menghasilkan kekuatan mekanikal untuk melawan gaya dari berbagai arah. Pipa tersebut dilas sehingga terbentuk struktur yang kompleks [5].Chassis ini dapat dilihat pada gambar 2.2.

Gambar 2.3: TubularSpaceFrame

3. Monocoque

Monocoque merupakan satu kesatuan stuktur chassis dari bentuk kendaraannya sehingga chassis ini memiliki bentuk yang beragam yang menyesuaikan dengan body mobil.

Chassis ini dapat dilihat pada gambar 2.4.

Gambar 2.4: Chassis Monocoque

4. Backbone

Ini adalah aplikasi langsung dari teori jenis rangka pipa. Ide awalnya adalah dengan membuat struktur depan dan belakangnya yang terhubung dengan sebuah rangka tube yang melintang disepanjang mobil Chassis Backbone memiliki kekakuan dari luas

(3)

72 area bagian ‘backbone’ itu sendiri.

Ukuran luas penampangnya sekitar [6]. Chassis ini dapat dilihat pada gambar 2.5.

. Gambar 2.5: ChassisBackbone

5. Aluminium Space Frame

Aluminium Chassis Frame dibuat untuk menggantikan chassis baja

monocoque karena untk menghasilkan sebuah rangka yang ringan [7]. Chassis

ini dapat dilihat pada gambar 2.6.

Gambar2.6: AluminiumChassisFrame

2.3 Pembebanan pada Chassis Mobil Mesin USU

Pada dasarnya pembahasan utama daripada chassis mobil Mesin USU ini adalah dengan pemberian beban pada saat diam (static load). Berikut ini merupakan gaya yang diterima oleh

chassis mesin USU, yaitu pada bagian driver.

Adapun pada gambar 2.7 merupakan gambar beban yang diterima oleh chassis mesin USU.

Gambar 2.7: Gaya yang diterima chassis

2.4 Tegangan

2.4.1 Transformasi Tegangan

Pada dasarnya Kesetimbangan suatu benda dapat ditentukan dengan , dan sama dengan nol [8]. Kondisi tegangan di sebuah elemen yang

memiliki orientasi dengan sudut . Hal ini dapat dilihat pada gambar 2.8.

Gambar 2.8: Kondisi tegangan pada bidang

x’-y’

Maka dengan persamaan

kesetimbangan akan didapat variabel dan sebagai berikut.

!..(2-1) " ! ...(2-2)

2.4.2 Tegangan utama (principal stress) Untuk menentukan tegangan normal maksimum dan minimum yaitu dengan mendiferensialkan persamaan 2-1 terhadap sama dengan nol. Maka:

# $% & ....(2-3) 2.4.3 Tegangan Geser Maksimum

Untuk mendapatkan tegangan geser

maksimum yaitu dengan

mendiferensialkan persamaan 2-2 terhadap sama dengan nol. Maka:

'() *+,-.+/ $%" & ..(2-4) 2.5 Regangan 2.5.1 Transformasi Regangan

Elemen yang mengalami suatu regangan pada suatu bidang x-y seperti ditunjukkan pada gambar 2.9.

Gambar 2.9: Regangan pada elemen (a) Regangan normal, 0; (b) Regangan geser, 1 W driver

(4)

73 Persamaan transformasi regangan pada

regangan normal 0 pada arah 23adalah: 04556 4556

7

!..(2-5) Untuk regangan geser 1 yang berorientasi pada sudut adalah:

7 " 4556 ! 7 ....(2-6) 2.5.2 Regangan Utama

Seperti halnya sama dengan pencarian tegangan utama dalam menentukan regangan normal maksimum dan minimum yaitu dengan mendiferensialkan persamaan 2-5 terhadap sama dengan nol. Maka:

0455 6# 89455 6: %7 &

...(2-7)

2.5.3 Regangan Geser Maksimum Untuk mendapatkan regangan geser maksimum pada arah 23yaitu dengan mendiferensialkan persamaan 2-6 terhadap sama dengan nol. Maka:

7;<= >?@AB?C

894556 : %7&....(2-8) 2.6HukumHooke

Diagram tegangan-regangan di kebanyakan material engineering memperlihatkan hubungan yang linear antara tegangan dan regangan di wilayah elastis. Dengan demikian peningkatan tegangan menyebabkan kesebandingan peningkatan regangan. Fakta inilah yang ditemukan oleh Robert Hooke 1676 dalam penerapan pegas dan dikenal dengan hukum Hooke.

D0...(2-9) Dimana : = Tegangan (N/m2)

E = Modulus elastisitas atau modulus young (N/m2) 0 = Regangan yang terjadi (m/m)

2.7 Momen Inersia

2.7.1 Momen Inersia Penampang Hollow Segiempat

Untuk luas penampang dari rangka utama yang merupakan besi hollow

persegi dapat dilihat pada gambar 2.10.

Gambar 2.10: Penampang rangka utama Untuk luas penampang persegi panjang rumus inersia luas penampangnya adalah:

EFF GHI...(2-10) Maka dari persamaan 2-10, dapat dicari momen inersia luas penampang rangka utama:

E EFF GHI" F

FG3H3I...(2-11) 2.7.2 Momen Inersia Penampang Hollow

Lingkaran

Untuk luas penampang dari rollbar yang merupakan besi hollow lingkaran dapat dilihat pada gambar 2.11.

Gambar 2.11 Penampang rollbar

Untuk luas penampang lingkaran rumus inersia luas penampangnya adalah:

E JKML...(2-12) Maka dari persamaan 2-12, dapat dicari momen inersia luas penampang rollbar :

E J4KLMKL6...(2-13) 2.8 Defleksi

Ketika suatu batang dibebani dengan gaya atau momen, defleksi terjadi pada batang. Sebelum mencari defleksi pada batanng perlu diketahui tegangan normal dan tegangan geser.

(5)

74 Untuk menentukan besarnya

tegangan-tegangan ini pada suatu bagian atau titik tersebut dan menentukan besarnya resultan pada tumpuan dapat menggunakan persamaan-persamaan kesetimbangan.

Maka untuk rangka utama yang menerima beban seperti ditunjukkan pada gambar 2.12

. Gambar 2.12: Pembebanan pada

rangka utama

Dimana mengalami pembebanan merata dengan reaksi pendukung fixed support A dan B [9] pada gambar 2.13. Maka untuk analisisnya adalah

Gambar 2.13: Pembebanan merata batang

1. Diagram benda bebas kesetimbangan gaya - gaya luar dan momen dapat dilihat pada gambar 2.14.

Gambar 2.14 Diagram benda bebas kesetimbangan gaya –

gaya luar

2. Diagram benda bebas gaya – gaya dalam di sepanjang N 2 N O dapat dilihat pada gambar 2.15.

Gambar 2.15: Diagram benda bebas gaya-gaya dalam

Maka didapat persamaan kurva kemiringan: F PQ% F MRO2" F SR2I" TUV F &...(2-14) W PQF%FFRO2I" F MR2M" TUVV M &.(2-15) 2.9 Perangkat Lunak Analisis Elemen Hingga

2.9.1 Ansys

Ansys adalah suatu perangkat lunak komputer umum yang mampu menyelesaikan persoalan-persoalan elemen hingga dari pemodelan hingga analisis. Ansys ini digunakan untuk mensimulasikan semua disiplin ilmu fisika baik statis maupun dinamis, analisis struktural (kedua-duanya linier dan nonliner), perpindahan panas, dinamika fluida, dan elektromagnetik untuk para engineer [10].

2.9.2 Cara Kerja Ansys

ANSYS bekerja dengan sistem metode elemen hingga, dimana penyelesaiannya pada suatu objek dilakukan dengan pendeskritisasian dimana membagi atau memecah objek analitis satu rangkaian kesatuan ke dalam jumlah terbatas elemen hingga [11].

Ada 3 langkah utama dalam analisis Ansys yaitu:

1. Model generation:

a. Penyederhanaan, idealisasi. b. Menentukan bahan/sifat material. c. Menghasilkan model elemen

hingga. 2. Solusi:

a. Tentukan kondisi batas. b. Menjalankan analisisnya untuk

mendapatkan solusi. 3.Hasil ulasan:

a. Plot/daftar hasil. b. Periksa validitas [12]. 3. Metodologi Penelitian 3.1 Material yang Digunakan

Material chassis yang digunakan adalah besi struktur yaitu hollow structural section, square ASTM A500 Gr.B.

B A

(6)

75 3.2 Pemodelan Chassis Mobil Mesin

USU

Sesuai dengan regulasi peraturan kompetisi Indonesia Energy Marathon Challenge, maka pendesainan kenderaan harus sesuai dengan pasal 47: tentang kendaraan, yakni isinya adalah sebagai berikut:

a. Tinggi keseluruhan kendaraan antara 100 cm dan 130 cm.

b. Lebar keseluruhan kendaraan antara 120 cm dan 130 cm.

c. Panjang keseluruhan kendaraan antara 220 cm dan 350 cm.

d. Lebar track (jarak antar roda pada satu sumbu) tidak boleh kurang dari 100 cm untuk poros depan dan 80 cm untuk poros belakang, diukur dari kedua titik kontak roda dengan lintasan.

e. Jarak wheelbase (sumbu roda) tidak boleh kurang dari 120 cm.

f. Tinggi ruang kemudi tidak boleh kurang dari 88 cm dan lebar minimum 70 cm pada bahu pengemudi.

g. Jarak terendah komponen kendaraan dari lintasan (groundclearance) tidak boleh kurang dari 10 cm.

3.2.1 Pemodelan Chassis Mobil Mesin USU I

a. Rangka Utama

Rangka utama yang dipakai adalah besi hollow persegi (rectangular tube) berdimensi X X, dengan tebal . Hal ini dapat dilihat pada gambar 3.1.

Gambar 3.1 Model besi hollow persegi b. Rollbar

Untuk bagian rollbar, material yang dipakai adalah besi hollow lingkaran (circular tube) berdimensi Y , dengan tebal . Hal ini dapat dilihat pada gambar 3.2.

Gambar 3.2 Model besi hollow lingkaran Dengan adanya konsep dari rangka utama dan rollbar yang telah disesuaikan dimensinya, maka model chassis mobil Mesin USU I dapat dilihat pada gambar 3.3.

Gambar 3.3 Chassis mobil Mesin USU I (a) Rangka utama; (b)

Rollbar

3.2.1 Pemodelan Chassis Mobil Mesin USU II

Sama halnya dengan Chassis Mobil Mesin USU I dengan beda dimensi yaitu pada Rangka utama yang dipakai adalah besi hollow persegi (rectangular tube) berdimensi , dengan tebal . Dan untuk bagian rollbar, material yang dipakai adalah besi hollow

lingkaran (circular tube) berdimensi Y Z, dengan tebal .

3.5 Simulasi

1.Buka program ansys14.5, dan pilih

static structural, seperti yang ditunjukkan pada gambar 3.4.

Gambar.3.4 Jendela utama Ansys 14.5 2. Pilih engineering data, kemudian isi data engineering yang akan digunakan, seperti ditunjukkan pada gambar 3.5.

a b

(7)

76 Gambar 3.5 Jendela engineeringdata

Ansys 14.5

3. Return to project kemudian pilih geometri untuk mendapatkan geometri yang akan disimulasikan seperti yang ditunjukkan pada gambar 3.6

. Gambar 3.6: Geometri yang di input dari

Solidwork

4. Pemberian meshing pada benda seperti yang ditunjukkan pada gambar 3.7.

Gambar 37: Pemberian meshing

5. Masukkan parameter simulasi yaitu

Standard earth gravity,fixed support, dan pemberian beban. Untuk parameter gravitasi Bumi, dengan memasukkan nilai ‘Standard earth gravity’. Untuk parameter tumpuan, dengan memilih part chassis untuk diberi ‘fixed support’. Untuk parameter pemberian beban pada pengemudi, dengan memasukkan nilai ‘force’ pada chassis dapat ditunjukkan pada gambar 3.8.

Gambar 3.8 Parameter simulasi 6. Langkah berikutnya adalah menentukan variabel yang akan disimulasi, dalam simulasi ini adalah defleksi, tegangan, dan regangan seperti yang ditunjukkan pada gambar 3.9.

Gambar 3.9: Menentukan variabel yang akan ditentukan

4. Hasil dan Diskusi

4.1 Hasil Modelling Chassis Mobil

Mesin USU

4.1.1 Hasil ModellingChassis Mobil Mesin USU I

Gambar 4.1: Model struktur chassis

Mobil Mesin USU I

4.1.2 Hasil Modelling Chassis Mobil Mesin USU II

(8)

77

Gambar 4.2: Model struktur chassis

Mobil Mesin USU II

4.2 Hasil Simulasi Analisis Struktur

Chassis Mobil Mesin USU

4.2.1 Defleksi Chassis Mobil Mesin USU dengan Pembebanan 700 N 1. Defleksi maksimum chassis

Mesin USU I akibat beban 700 N

Gambar 4.3: Defleksi chassis Mesin USU I

dengan beban 700 N

2. Defleksi maksimum chassis

Mesin USU II akibat beban 700 N

Gambar 4.4: Defleksi chassis Mesin USU II

dengan beban 700 N

hasil simulasi berupa defleksi

chassis dengan menunjukkan 10 sampel

yang mewakili setiap bagian chassis

maka diperoleh grafik distribusi

deformasi seperti yang ditunjukkan pada gambar 4.5

.

Gambar 4.5: Grafik distribusi deformasi chassis akibat beban 700 N

3. Defleksi Ground clearencechassis

Mesin USU I akibat beban 700 N Hasil simulasi chassis mesin USU I dengan pembebanan 700 N pada terjadi

defleksi ground clearence sebesar

0,6415 mm pada gambar 4.6.

Gambar 4.6: Defleksi ground clearence chassis Mesin USU I dengan beban 700 N Untuk studi kasus dalam penelitian ini adalah adanya defleksi groundclearence

karena beban 700 N sebesar 0,6415 mm. Gambar 4.7 menunjukkan jarak normal dari bagian paling bawah chassis

terhadap lintasan dengan besar 122,1 mm.

(9)

78

Gambar 4.7: Pandangan kiri chassis

Mesin USU I

Dengan terjadinya defleksi pada chassis

akan didapat selisih jarak ground

clearence chassis terhadap lintasan. Perhitungannya adalah sebagai berikut: Jarak akhir = Jarak awal – defleksi

ground clearence

= 122,10 – 0,641 = 121,45 mm

Maka dengan adanya beban driver

yang berada di chassis didapat jarak

terendah chassis terhadap lintasan

sebesar 121,45 mm. Sehingga masih

memenuhi standar jarak ground

clearence minimal 100 mm.

Sama halnya untuk chassis Mesin

USU II.Hasil simulasi pada pembebanan

700 N pada chassis mesin USU II terjadi defleksi ground clearence sebesar 2,236 mm. Untuk studi kasus dalam penelitian

ini adalah adanya defleksi ground

clearence karena beban 700 N sebesar 2,236 mm. Jarak normal dari bagian paling bawah chassis terhadap lintasan

dengan besar 112,1 mm. Gambar 4.12

Pandangan kiri chassis Mesin USU II Dengan terjadinya defleksi pada

chassis akan didapat selisih jarak ground clearence chassis terhadap lintasan. Perhitungannya adalah sebagai berikut: Jarak akhir = Jarak awal – defleksi

ground clearence

= 112,10 – 2,236 = 109,86 mm

Maka dengan adanya beban driver

yang berada di chassis didapat jarak

terendah chassis terhadap lintasan

sebesar 121,45 mm. Sehingga masih

memenuhi standar jarak ground

clearence minimal 109,86 mm.

5. Kesimpulan

Dalam hal ini kesimpulan akan disajikan dalam tabel.

Tabel 5.1 Perbandingan Hasil Analisis struktur dengan pembebanan 700 N Analisis Chassis Mesin USU I Chassis Mesin USU II Defleksi maks 0,96 mm 3,29 mm Defleksi ground clearence 0,6415 mm 2,236 mm Tegangan

maks 22,563 MPa 53,217 MPa Regangan maks 11,655e-5 mm/mm 26,71e-5 mm/mm

Tabel 5.2 Perbandingan Hasil Analisis struktur dengan variasi beban

Analisis Chassis Mesin USU I (25 kN) Chassis Mesin USU II (3,8 kN) Defleksi maks 31,542 mm 17,074 mm Defleksi ground clearence 21,682 mm 11,582 mm Tegangan

maks 741,59 MPa 277,64 MPa Regangan maks 371,12e-5 mm/mm 139,39e-5 mm/mm

Tabel 5.3 Perbandingan sifat chassis

Mesin USU I dengan chassis

Mesin USU II Properti Chassis Mesin USU I Chassis Mesin USU II Volume 5,5829e 6 mm³ 3,7556e6 mm³ Massa 43,825 kg 29,482 kg

(10)

79 Daftar Pustaka [1] http://en.wikipedia.org/wiki/Frame_ %28 vehicle%29 [2] http://www.scribd.com/doc/585161 10/ Chasis-and-Karoseri

[3] Costin, Michael and Phipps, David. Racing and Sports Car Chassis Design. London: B. T. Batsford Ltd.

[4] Julian Happian-Smith. An Introduction to Modern Vehicle Design. New Delhi: Butterworth-Heinemann. 2003.

[5] Keith J. Wakeham. Introduction To Chassis Design. Newfoundland and Labrador: Memorial University. 2009.

[6] Jason C.Brown, A.John Robertson, Stan T. Serpento. Motor Vehicle Structure: Concepts and Fundamentals. Oxford: Elsevier Ltd. 2002.

[7] M.J. Nunney. Light and Heavy Vehicle Technology, fourth edition. Oxford: Elsevier Ltd. 2007.

[8] Hibbler, R. C. Engineering Mechanics Statics, Twelfth Edition. New Jersey: Prentice Hall. 2011. [9] Hibbler, R. C. Mechanics of

Materials, Eighth Edition. New Jersey: Prentice Hall. 2011.

[10]

http://www.figes.com.tr/english/an sys /ansys.php

[11] T.A.Stolarski, Y.Nakasone and S.Yoshimoto. Engineering Analysis With ANSYS Software. Oxford: Elsevier Ltd. 2006.

[12] Erdogan Madenci dan Ibrahim Guven. The Finite Element Method and Applications in Engineering Using Ansys®. New york:springer. 2006

Gambar

Gambar 2.6: Aluminium Chassis Frame  2.3  Pembebanan  pada  Chassis  Mobil  Mesin USU
Gambar 2.14  Diagram benda bebas  kesetimbangan  gaya  –
Gambar 3.1 Model besi hollow persegi  b. Rollbar
Gambar 37: Pemberian meshing  5.  Masukkan  parameter  simulasi  yaitu
+3

Referensi

Dokumen terkait

6 Pada tahap persiapan, pertemuan pertama, dilakukan pemberitahuan kepada mitra kerjasama tentang akan dilaksanakannya kegiatan PKM-M ini, dan diskusi mengenai hal-hal yang

Selain dapat berikatan dengan atom-atom lain, atom karbon dapat juga berikatan kovalen dengan atom karbon lain, baik ikatan kovalen tunggal maupun rangkap dua dan

Pada grafik hubungan kuat tekan beton mutu tinggi dan kuat tarik beton mutu tinggi diatas dapat dilihat bahwa kenaikan nilai kuat tarik dari ketiga dimensi

Makalah ini menjelaskan usulan konsep pengembangan Sistem Transportasi Wilayah (Sistrawil) terpadu yang mengacu pada Rencana Tata Ruang Wilayah (RTRW) baik Nasional, Propinsi,

2 Hitung jumlah linen yang rusak Teliti, akurat 3 Catat dalam daily linen inventory Tercatat 4 Kumpulkan pada keranjang linen OO Terkumpul 5 Isikan pada bincard item

Argumen yang diberikan pada perintah-perintah ini adalah nama bab, subbab, dll. seper- ti yang terlihat pada Contoh 2. Dalam naskah buku yang dituliskan dengan kelas dokumen book ,

Selanjutnya dengan fenomena yang terjadi ini, peneliti ingin melihat bagaimana proses pembentukan identitas diri pada mahasiswi yang menggunakan cadar di Universitas Bangka Belitung

Sedangkan dari hasil survei kuesioner mengenai karakteristik bangkitan perjalanan diketahui bahwa mayoritas warga perumahan Pucang Gading, Batursari, Mranggen, Demak berusia antara