iv
KAJIAN METODE ROBUST LEAST TRIMMED SQUARE (LTS) DALAM MENGESTIMASI PARAMETER REGRESI LINEAR BERGANDA
UNTUK DATA YANG MENGANDUNG PENCILAN
ABSTRAK
Menentukan parameter regresi linear berganda dapat menggunakan metode Ordinary Least Square (OLS). Metode OLS harus memenuhi asumsi dari Best Linear Unbiased Estimator (BLUE) untuk menghasilkan model persamaan regresi linear berganda yang baik dimana dapat dilihat berdasarkan nilai residualnya (kuadrat sisanya). Saat mengestimasi menggunakan metode OLS jika terdapat pencilan pada himpunan data maka metode OLS tidak efektif untuk menghasilkan model persamaan regresi linear berganda yang baik. Metode robust least trimmed square (LTS) merupakan metode alternative yang dapat digunakan apabila terdapat pencilan pada himpunan data. Metode robust least trimmed square bertujuan untuk menghasilkan model persamaan regresi linear berganda yang efisien tanpa menghilangkan pencilan tersebut. Model persamaan regresi linear berganda yang baik setelah melakukan estimasi menggunakan metode robust least trimmed square (LTS) yaitu dengan melihat nilai residualnya (kuadrat sisanya) yang semakin kecil atau konvergen ke nol.
Kata Kunci: Metode Ordinary Least Square (OLS, Pencilan, Regresi Linear Berganda, Metode Robust Least Trimmed Square (LTS)
v
ASSESSMENT METHOD ROBUST LEAST TRIMMED SQUARE (LTS) TO ESTIMATION MULTIPLE LINEAR REGRESSION PARAMETERS
FOR DATA THAT CONTAIN OUTLIERS
ABSTRACT
Determining parameters of multiple linear regression can use the method of ordinary least squares (OLS). OLS must meet the assumption of Best Linear Unbiased Estimator (BLUE) to produce a multiple linear regression model was good which can be seen based on the residual value (the square of the rest). When using the OLS estimate if there are outliers in the data set then OLS is not effective to produce multiple linear regression model was good. Robust method of least trimmed square (LTS) is an alternative method that can be used if there are outliers in the data set. Robust method of least trimmed square method aims to generate a multiple linear regression model that efficiently without removing the outliers. Multiple linear regression model was good after a robust estimation method least trimmed square (LTS) by looking at the residual value (the remaining squares) are getting smaller or converging to zero.
Keywords: Method Ordinary Least Square (OLS), Outliers, Multiple Linear Regression, Method Robust of Least Trimmed Square (LTS)