• Tidak ada hasil yang ditemukan

4. HASIL DAN PEMBAHASAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "4. HASIL DAN PEMBAHASAN"

Copied!
13
0
0

Teks penuh

(1)

24

4.1. Kondisi dan Variasi Temporal Parameter Fisika-Kimiawi Perairan Kondisi perairan merupakan faktor utama dalam keberhasilan hidup karang. Perubahan kondisi perairan dapat mempengaruhi morfologi maupun fisiologi karang. Kondisi perairan tempat pengambilan sampel karang berdasarkan data (Lampiran 1) dengan kondisi perairan tempat transplantasi karang memiliki perbedaan yang tidak terlalu signifikan, namun masih memenuhi karakter baik untuk pertumbuhan karang (Tabel 5) pada bulan September 2011 hingga bulan Februari 2012.

Tabel 5. Nilai Parameter Fisika-Kimiawi Perairan Selama Penelitian Parameter

Waktu Pengamatan Paremeter (Bulan ke-i) Baku Mutu September Oktober November Desember Januari Februari

Suhu(a) (oC) 29 29 29 29 28 29 28-30 Salinitas(b) (0/00) 30 31 31 35 34 33 33-34 Kekeruhan(c) (NTU) 0,250 0,370 0,360 1,050 0,560 0,310 <5 Oksigen Terlarut (mg/l) 4,879 5,011 5,045 6,031 5,573 5,375 >5 Nitrat (mg/l) 0,246 0,156 0,354 0,163 0,045 0,065 0,008 Amonia (mg/l) 0,327 0,369 0,340 0,126 0,212 0,208 0,3 Ortofosfat (mg/l) 0,004 0,004 0,005 0,278 0,010 0,064 0,015 Berdasarkan : Keputusan Menteri Lingkungan Hidup No. 51 Tahun 2004

Keterangan : Untuk terumbu karang; (a) Diperbolehkan terjadi perubahan sampai dengan <20C dari suhu alami, (b) Diperbolehkan terjadi perubahan sampai dengan <5 % salinitas rata-rata musiman, (c) Diperbolehkan terjadi perubahan sampai dengan <10 % kedalaman euphotic.

Kondisi perairan tempat pengamatan transplantasi karang memiliki kisaran suhu 28 0C sampai 29 0C. Kisaran suhu yang diperoleh masih dalam kisaran

(2)

optimum bagi pertumbuhan biota karang, hal ini dinyatakan oleh Thamrin (2006), karang hermatipik tumbuh dan berkembang dengan subur antara 25 0C sampai 29 0

C. Menurut baku mutu air laut untuk biota laut, suhu pada tempat pengamatan masih tergolong normal (perubahan suhu yang terjadi tidak lebih dari 2 0C dari suhu alami).

Nilai salinitas yang didapatkan pada saat pengamatan berkisar antara 30 0

/00 hingga 35 0/00. Pengaruh salinitas terhadap kehidupan hewan karang sangat bervariasi tergantung pada kondisi perairan laut setempat atau pengaruh alam, seperti run off, badai dan hujan (Supriharyono, 2007). Romimohtarto dan Juwana (2001) menyatakan bahwa keadaan perairan disenangi pertumbuhan karang meliputi salinitas di atas 30 0/00 tetapi di bawah 35 0/00. Nilai salinitas ini

menunjukkan batas cukup baik untuk pertumbuhan karang pada saat pengamatan. Kekeruhan merupakan indikasi peningkatan sedimentasi yang masuk ke dalam perairan. Kekeruhan tertinggi terjadi pada bulan Desember dengan nilai sebesar 1,05 NTU, sedangkan nilai terendah terjadi pada bulan September dengan nilai 0,25 NTU. Meningkatnya sedimentasi yang masuk ke perairan dapat

mengakibatkan penurunan laju pertumbuhan karang, hal ini dikarenakan sedimen yang masuk ke perairan menyebabkan kekeruhan. Kisaran nilai kekeruhan selama penelitian masih baik untuk biota laut karena nilainya berada di bawah 5 NTU (MENLH, 2008).

Oksigen sangat diperlukan untuk metabolisme hewan karang. Nilai oksigen terlarut pada perairan memiliki nilai terendah sebesar 4,879 mg/l yang terjadi pada bulan September, sedangkan nilai tertinggi terjadi pada bulan Desember dengan nilai sebesar 6,031 mg/l. Nilai oksigen terlarut yang terjadi

(3)

pada bulan September tidak masuk ke dalam kategori baik, karena menurut Effendi (2003) perairan yang diperuntukkan bagi kepentingan perikanan memiliki kadar oksigen tidak kurang dari 5 mg/l. Kadar oksigen terlarut kurang dari 4 mg/l menimbulkan efek kurang menguntungkan bagi organisme akuatik.

Nitrat (NO3) merupakan bentuk utama dari nitrogen di perairan dan merupakan nutrien utama bagi pertumbuhan tanaman dan alga (Effendi, 2003). Kandungan nitrat tertinggi terjadi pada bulan November dengan nilai 0,354 mg/l. Nilai tersebut sudah berada di atas nilai baku mutu yang ditetapkan untuk biota laut. Nitrat tidak bersifat toksik bagi organisme akuatik, akan tetapi apabila kadar nitrat lebih dari 0,2 mg/l, maka dapat mengakibatkan terjadinya eutrofikasi

perairan yang dapat menyebabkan pertumbuhan alga dan tumbuhan air meningkat secara pesat (blooming) (Effendi, 2003).

Amonia merupakan salah satu senyawa kimia yang bersifat racun bagi biota perairan jika jumlahnya berlebihan di dalam perairan (Effendi, 2003). Kandungan amonia terendah adalah 0,126 mg/l sedangkan kandungan tertinggi mencapai 0,369 mg/l. Kandungan amonia yang terjadi pada bulan September hingga November berada sedikit lebih tinggi dari nilai yang ditetapkan pada baku mutu, yaitu sebesar 0,3 mg/l. Namun, nilai tersebut tidak terlalu mempengaruhi pertumbuhan karang, karena tiga bulan setelah itu kadar amonia menurun sehingga pertumbuhan karang semakin baik.

Ortofosfat merupakan bentuk fosfat yang dapat digunakan oleh tumbuhan akuatik secara langsung (Effendi, 2003). Nilai ortofosfat yang terdapat pada tiap bulan mengalami perbedaan, nilai tertinggi terjadi pada bulan Desember sebesar 0,278 mg/l. Hal ini menyebabkan ortofosfat dapat secara langsung dimanfaatkan

(4)

oleh alga, seperti filamentous alga dan makro alga seperti jenis Padina sp. (Gambar 7), alga ini dapat tumbuh dengan baik di sekitar rak dan pinggiran substrat fragmen.

Gambar 7. Alga Padina sp. yang Tumbuh pada Rak Transplantasi

Variasi temporal karakteristik fisik-kimiawi perairan pada saat pengamatan dapat dihubungkan dengan bulan pengamatan. Hasil analisis ini menggunakan Analisis Komponen Utama (PCA) dengan memperoleh dua sumbu utama penyusun yang masing-masing memberi kontribusi terhadap hubungan antara parameter fisika-kimiawi perairan.

Sumbu 1 (F1) mempunyai akar ciri (Eigenvalue) sebesar 4,17 dengan kontribusi sebesar 59,63%. Sumbu 2 (F2) memiliki akar ciri sebesar 2,13 dengan kontribusi sebesar 30,46%, sehingga interpretasi Analisis Komponen Utama ini dapat mewakili keadaan yang terjadi dengan tidak mengurangi informasi yang banyak dari data yang dianalisis.

Hasil PCA (Gambar 8) menunjukkan bahwa nilai suhu dan amonia memiliki korelasi terhadap bulan September, Oktober dan November (2011). Hal ini dapat dilihat dari nilai suhu yang konstan pada ketiga bulan ini yaitu 29 0C, sedangkan nilai amonia berada pada nilai baku mutu 0,3 mg/l (Lampiran 1).

(5)

Gambar 8. Hasil PCA terhadap Parameter Fisik-Kimiawi Perairan dengan Bulan Pengamatan

Korelasi nilai kekeruhan serta ortofosfat dapat dilihat pada bulan Desember 2011. Pada bulan ini nilai kekeruhan serta ortofosfat mengalami peningkatan yang cukup signifikan dibandingkan bulan lainnya. Karakteristik fisik-kimiawi pada bulan Januari 2012 berkorelasi positif dengan nilai salinitas dan DO, sedangkan korelasi negatif dapat dilihat pada nilai suhu, amonia dan nitrat yang memiliki nilai paling rendah dibandingkan bulan lainnya. Selanjutnya, pada bulan Februari 2012 karakteristik fisik-kimiawi tidak memiliki perbedaan yang cukup signifikan, sehingga korelasi dari semua parameter memiliki nilai yang hampir sama dengan bulan-bulan lainnya.

4.2. Pemulihan dan Perubahan Warna Karang

Pemulihan luka karang (Gambar 9) terjadi pada bulan Oktober, setelah itu terjadi pelebaran jaringan hingga bulan keenam pengambilan data. Luka yang terbentuk berasal dari pemotongan koloni karang (induk karang) yang dipotong menjadi beberapa bagian (fragmen karang) untuk ditransplantasikan. Johan et al.

(6)

(2008) menyatakan bahwa awal pertumbuhan karang ditandai dengan mulai menutupnya bekas potongan yang terjadi saat fragmentasi karang.

September Oktober November

Desember Februari

Gambar 9. Pemulihan Luka dan Perubahan Warna pada Acanthastrea echinata

Hasil penelitian yang dilakukan oleh Margono (2009) menunjukkan bahwa karang jenis Lobophyllia hemprichii yang diberikan 2 perlakuan, yaitu Perlukaan 1 dan Perlukaan 2, terlihat bahwa karang yang mengalami Perlukaan 1 mengalami pemulihan yang lebih cepat dibandingkan Perlukaan 2. Hal ini diduga akibat lendir yang dikeluarkan pada perlukaan 2 lebih banyak dibandingkan Perlukaan 1, akan tetapi pada bulan ke-2 pengamatan Perlukaan 2 memiliki tingkat pemulihan yang lebih cepat dibandingkan perlukaan 1. Hal tersebut menunjukkan bahwa tingkat stres pada karang sudah berkurang.

Penelitian yang dilakukan Kamalikasari (2012) menunjukkan bahwa penutupan luka pada karang jenis Blastomus wellsi terjadi setelah 2 bulan pengamatan. Setelah itu, terjadi pelebaran jaringan hingga bulan ke-6

(7)

pengamatan. Pada akhir pengamatan, fragmen yang mengalami luka telah sembuh dan tumbuh berkembang menyeluruh ke semua bagian polip karang.

Karang jenis Acanthastrea echinata yang ditransplantasikan mengalami perubahan warna tiap bulannya. Pada bulan September karang berwarna hijau, kemudian bulan selanjutnya karang menjadi berwarna hijau pekat lalu berubah menjadi coklat kekuningan hingga bulan terakhir pengamatan. Perubahan warna karang juga terjadi pada penelitian Prastiwi (2011), karang jenis Lobophytum strictum mengalami perubahan warna pada minggu ke-2, dari warna coklat pucat menjadi warna coklat segar.

Suharsono (2008) menyatakan bahwa karang yang hidup di tempat yang dangkal biasanya mempunyai warna yang cerah, hal tersebut dilakukan oleh karang untuk mengurangi penetrasi cahaya yang berlebihan. Oleh karena itu, salah satu penyebab perubahan warna pada karang jenis Acanthastrea echinata dapat disebabkan oleh perbedaan kedalaman pada saat pengambilan sampel awal dengan kedalaman pada saat karang ditransplantasikan. Koloni karang (induk karang) ditemukan pada kedalaman 20-21 meter, sedangkan pada saat

ditransplantasikan fragmen karang diletakkan pada kedalaman 12 meter.

4.3. Tingkat Kelangsungan Hidup

Tingkat kelangsungan hidup karang memberikan pengaruh terhadap kelestarian ekosistem terumbu karang. Berdasarkan penelitian yang telah

dilakukan terhadap karang jenis Acanthastrea echinata pada kedalaman 12 meter, tingkat kelangsungan hidup karang yang ditransplantasikan dibandingkan dengan bulan-bulan sebelumnya.

(8)

Seluruh fragmen yang ditransplantasikan memiliki tingkat kelangsungan hidup sebesar 100 %. Karang jenis Acanthastrea echinata yang ditransplantasikan pada awalnya berjumlah 10 fragmen dan pada akhirnya dapat bertahan hidup hingga bulan keenam pengamatan. Harriot dan Fisk (1998) menyatakan bahwa kegiatan transplantasi dikatakan berhasil dari sudut pandang biologis apabila jumlah karang yang hidup antara 50-100 %. Tingkat kelangsungan hidup tertinggi pada kegiatan transplantasi ini menunjukkan bahwa transplantasi berjalan dengan baik. Karang dari famili Mussidae memiliki ketahanan hidup baik dan bersifat invasif terhadap jenis karang lain yang berdekatan (Soedharma dan Arafat, 2005).

4.4. Pertumbuhan Rata-Rata Transplantasi Karang

Bentuk pertumbuhan karang jenis Acanthastrea echinata adalah massive. Nilai ukur pertumbuhan karang dilihat dari nilai rata-rata panjang dan lebar (Tabel 6). Pengukuran fragmen pada transplantasi karang dilakukan pada bulan Agustus 2011 (pengukuran awal) hingga bulan Februari 2012.

Tabel 6. Ukuran Rata-rata dan St.dev Fragmen Karang Transplantasi

Ukuran Waktu Pengamatan

Agust-11 Sep-11 Okt-11 Nop-11 Des-11 Jan-12 Feb-12 Panjang (cm) 6,83 ± 1,04 7,03 ± 1,03 7,37 ± 1,12 7,76 ± 1,24 8,22 ± 1,21 8,45 ± 1,39 8,77 ± 1,57 Lebar (cm) 5,55 ± 0,69 5,72 ± 0,71 6,01 ± 0,63 6,24 ± 0,60 6,48 ± 0,59 6,73 ± 0,59 7,06 ± 0,63

Rata-rata pertumbuhan karang jenis Acanthastrea echinata yang dilihat dari pertambahan panjang dan lebar mengalami peningkatan dari bulan awal pengamatan hingga akhir pengamatan.

Pertumbuhan karang jenis Acanthastrea echinata selama enam bulan (Gambar 10) mengalami peningkatan panjang hingga mencapai 8,77 cm, dengan

(9)

rata-rata peningkatan yang terjadi tiap bulannya sebesar 0,23 cm – 0,46 cm. Ukuran lebar mencapai 7,06 cm, dengan rata-rata peningkatan yang terjadi tiap bulannya sebesar 0,22 cm – 0,32 cm.

Gambar 10. Rasio Pertumbuhan Panjang dan Lebar Karang Selama 6 Bulan Pengamatan

Rasio pertumbuhan panjang dan lebar karang dapat diketahui dengan menggunakan analisis regresi linear (Azis, 2002). Rasio pertumbuhan karang menunjukkan bahwa terjadi peningkatan panjang maupun lebar tiap bulannya, sehingga dapat terlihat pola pertumbuhan linear yang konstan dari karang jenis

Acanthastrea echinata.

Suharsono (2008) mengungkapkan bahwa karang berbeda dengan hewan lain dalam hal pengertian pertumbuhan. Pola pertumbuhan hewan pada umumnya mengikuti pola grafik sigmoid, yaitu pada awal pertumbuhannya akan lambat, kemudian diikuti dengan pertumbuhan yang cepat pada umur muda dan

pertumbuhan berhenti pada umur tua. Karang pada umumnya mempunyai pola 0 1 2 3 4 5 6 7 8 9 10 Per tu m b u h an (c m ) Bulan Pengamatan Panjang (y = 0,011x - 445,3) R² = 0,991 Lebar (y = 0,008x - 328,7) R² = 0,996

(10)

pertumbuhan linier extension, dimana kecepatan tumbuh relatif konstan sepanjang hidupnya.

Pertumbuhan mutlak karang (Gambar 11) yang ditransplantasikan selama 6 bulan memiliki nilai panjang sebesar 1,94 ± 1,37 cm, dan nilai lebar sebesar 1,51 ± 1,06 cm. Pertumbuhan ini tergolong lambat, sama halnya seperti yang diungkapkan oleh Suharsono (2008), karang dengan bentuk pertumbuhan massive

dan karang yang hidup soliter biasanya lambat pertumbuhannya.

Gambar 11. Pertumbuhan Mutlak Panjang dan Lebar Karang Bulan Agustus 2011 – Februari 2012

Beberapa jenis karang yang berasal dari genus Porites, Favites, Favia

mempunyai kecepatan tumbuh antara 1,5 – 2 cm/tahun (Suharsono, 2008). Penelitian transplantasi yang telah dilakukan oleh Cahyadi tahun 2001 di Pulau Pari, Kepulauan Seribu, kecepatan tumbuh dari karang keras jenis Porites

nigrescens bernilai antara 1,25-1,47 cm/bulan, sedangkan karang keras dari jenis

Favites spp, Favia spp mempunyai kecepatan tumbuh antara 1,5-2 cm/tahun. Penelitian lainnya yang dilakukan oleh Kamalikasari (2012) mengenai transplantasi karang jenis Blastomussa wellsi, menghasilkan nilai pertumbuhan mutlak panjang pada 3 bulan awal sebesar 1,84 mm, lalu 3 bulan kemudian

0 0.5 1 1.5 2 2.5 Panjang (cm) Lebar (cm) P er tu m b u h an M u tl ak / 6 B u lan

(11)

sebesar 2,63 mm. Selanjutnya nilai mutlak lebar pada 3 bulan awal sebesar 1,83 mm, lalu 3 bulan kemudian sebesar 2,46 mm.

4.5. Hubungan Pertumbuhan Karang Transplantasi dengan Parameter Fisika-Kimiawi di Perairan

Data pertumbuhan karang merupakan nilai dari panjang dan lebar karang. Peubah tak bebas berupa X diganti dengan nilai parameter fisik-kimiawi perairan berikut :

X1 = Suhu (T) X2 = Salinitas (S) X3 = Kekeruhan (K) X4 = Nitrat (N) X5 = Oksigen Terlarut (D) X6 = Amonia (A) X7 = Ortofosfat (O)

Hasil analisis Regresi Berganda (Multiple Regression) dengan metode

Stepwise pada panjang dan lebar karang adalah sebagai berikut :

a. Panjang

Hasil analisis korelasi menunjukkan bahwa semua peubah bebas dalam data ini memiliki korelasi yang rendah dengan nilai koefisien determinasi (R2) 0,306. Model regresi penuh yang melibatkan semua peubah bebas (Tabel 7).

P = -29,051 + 0,839T + 0,707S + 0,680K – 1,798D -1,821A Tabel 7. Analisis Regresi Model Penuh Data Panjang

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -29,051 0 65535 - -29,051 -29,051 T 0,839 0 65535 - 0,839 0,839 S 0,707 0 65535 - 0,707 0,707 K 0,680 0 65535 - 0,680 0,680 D -1,798 0 65535 - -1,798 -1,798 N 0,000 0 65535 - 0,000 0,000

(12)

A -1,821 0 65535 - -1,821 -1,821

O 0,000 0 65535 - 0,000 0,000

Pada model ini terjadi multikolinear pada peubah T, S, K, D, N, A dan O. Setelah melakukan metode Stepwise sebanyak 4 kali (Lampiran 4), langkah terbaik yang didapatkan ada pada langkah 4. Model ini mengandung peubah bebas K, D, N dan A dengan persamaan

P = 220,194 + 24,249K -37,774D – 83,363N -51,277A

Nilai koefisien determinasi (R2) yang dihasilkan dari model ini sebesar 0,941. Hal ini menunjukkan bahwa keempat parameter fisik-kimiawi tersebut berkorelasi sangat kuat (Tabel 8).

Tabel 8. Analisis Regresi Model Terbaik Hasil Metode Stepwise

Coefficients

Standard

Error t Stat P-value

Lower 95% Upper 95% Intercept 220,194 104,491 2,107 0,282 -1107,485 1547,872 K 24,249 11,138 2,177 0,274 -117,278 165,777 D -37,774 18,660 -2,024 0,292 -274,875 199,327 N -83,363 39,687 -2,101 0,283 -587,634 420,908 A -51,277 23,956 -2,140 0,278 -355,671 253,116 b. Lebar

Hasil analisis korelasi menunjukkan bahwa semua peubah bebas dalam data ini memiliki korelasi yang rendah dengan nilai koefisien determinasi (R2) 0,264. Model regresi penuh yang melibatkan semua peubah bebas (Tabel 9).

P = -19,053 + 0,608T + 0,563S + 0,351K -1,811D -2,300A Tabel 9. Analisis Regresi Model Penuh Data Lebar

Coefficients

Standard

Error t Stat P-value

Lower 95% Upper 95% Intercept -19,053 0 65535 - -19,053 -19,053 T 0,608 0 65535 - 0,608 0,608

(13)

S 0,563 0 65535 - 0,563 0,563 K 0,351 0 65535 - 0,351 0,351 D -1,811 0 65535 - -1,811 -1,811 N 0,000 0 65535 - 0,000 0,000 A -2,300 0 65535 - -2,300 -2,300 O 0,000 0 65535 - 0,000 0,000

Sama halnya dengan panjang, pada model ini terjadi multikolinear pada peubah T, S, K, D, N, A dan O. Setelah melakukan metode Stepwise sebanyak 5 kali (Lampiran 5), langkah terbaik yang didapatkan ada pada langkah 5. Model ini mengandung peubah bebas T, S dan K dengan persamaan

P = -29,199 + 0,792T + 0,397S + 0,344K

Nilai koefisien determinasi (R2) yang dihasilkan dari model ini sebesar 0,972. Hal ini menunjukkan bahwa ketiga parameter fisik-kimiawi tersebut berkorelasi sangat kuat (Tabel 10).

Tabel 10. Analisis Regresi Model Terbaik Hasil Metode Stepwise

Coefficients

Standard

Error t Stat P-value

Lower 95% Upper 95% Intercept -29.119 7.459 -3.904 0.060 -61.214 2.976 T 0.792 0.213 3.722 0.065 -0.124 1.708 S 0.397 0.053 7.529 0.017 0.170 0.623 K 0.344 0.196 1.751 0.222 -0.501 1.188

Gambar

Tabel 5. Nilai Parameter Fisika-Kimiawi Perairan Selama Penelitian  Parameter
Gambar 7. Alga Padina sp. yang Tumbuh pada Rak Transplantasi
Gambar 8. Hasil PCA terhadap Parameter Fisik-Kimiawi Perairan dengan Bulan              Pengamatan
Gambar 9. Pemulihan Luka dan Perubahan Warna pada Acanthastrea echinata
+3

Referensi

Dokumen terkait

Berdasarkan kriteria interpretasi data 75% termasuk kualifikasi cukup valid, karena tampilan media animasi secara keseluruhan sudah cukup baik untuk digunakan dalam

Dalam pemenuhan kebutuhan ini, ibu hendaknya memberi kesempatan bagi anak untuk bersosialisasi dengan teman sebayanya.Kebutuhan spiritual, adalah pendidikan yang

Tes Kesegaran Jasmani Indonesia adalah bagian dari pembinaan fisik atau salah satu bentuk alat ukur untuk mengukur, mengetahui, dan menentukan tingkat kesegaran jasmani siswa,

Salah satu olahan makanan yang sehat dan bergizi adalah keripik dari sayur (keripik vegetable ). Keripik merupakan salah satu makanan ringan yang paling disukai masyarakat

Pengertian sistem aplikasi perbankan adalah penggunaan komputer dan alat-alat pendukungnya dalam operasional perbankan yang meliputi pencatatan, penghitungan,

Lord Rahl was a fool if he thought Lord General Tobias Brogan of the Blood of the Fold was going to surrender like a baneling under hot iron.. Lunetta

Kalau ia melihat dunia, ia tidak melihat dunia, ia tidak akan akan merasa senang di dalamnya sampai ia dapat melahirkan pertemuan kembali dengan Tuhan merasa senang di

Tujuan dari penelitian ini adalah menganalisis dampak pertumbuhan ekonomi di sektor industri dan pertanian terhadap kualitas lingkungan hidup yang diukur dengan emisi gas rumah