lb
m
-ft/s2).'R. H. PerryandD.W.Green,Eds., Perry'sChemicalEngineers'Handbook, 7thEdition,McGraw-Hill
New
York,1997.
2.3
Systems
ofUnits 11 Table23-1 SIandCGS
UnitsBase
UnitsQuantity Unit
Symbol
Length meter(SI)
m
centimeter
(CGS) cm
Mass
kilogram(SI) kggram (CGS)
gMoles gram-mole
mol
org-moleTime
second sTemperature kelvin
K
Electriccurrent
ampere A
Lightintensity candela cd
MultipleUnitPreferences tera(T)
=
1012 centi (c)=
1CT2 giga(G)=
109 milli(m)=
10"3mega (M)
:=
106 micro(u.)=
10-6 kilo(k)=
103 nano(n)=
1(T9DerivedUnits
Quantity Unit
Symbol
EquivalentinTerms
ofBase
UnitsVolume
literL
0.001m
31000
cm
3Force newton(SI)
N
1kg-m/s2dyne
(CGS)
1g-cm/s2 Pressure pascal (SI) Pa 1N/m
2Energy,
work
joule (SI) J 1N-m =
1kg-m
2/s2erg
(CGS)
1dyne-cm=
1g-cm
2/s2gram-calorie cal 4.184J
=
4.184kg-m
2/s2
Power
wattW
1 J/s=
1kg-m
2/s3TEST
1«What
are the factors(numericalvaluesand
units)needed
toconvertYOURSELF
(a) meterstomillimeters?(Answers,
p.655)
(b)nanoseconds
toseconds?(c) squarecentimeters tosquare meters?
(d) cubicfeet tocubicmeters(use theconversionfactortable
on
the inside front cover)?(e)
horsepower
to Britishthermalunitsper second?2.
What
is the derived SI unit for velocity?The
velocity unit in theCGS
system? In theAmerican
engineering system?Conversion Between Systems of
UnitsConvert23lb
m
- ft/min2toitsequivalentinkg-cm/s2.SOLUTION As
before, begin by writing the dimensional equation, fill in the units of conversion factors (new/old) and then the numerical values of these factors, and thendo
the arithmetic.The
resultis
23lb
m
-ft 0.453593kg 100cm
l2min
2min
2 lib™ 3.281ft (60)2 s2(Cancellationof units leaveskg-cm/s2
)
(23)(0.453593)(100) kg -cm (3.281 )(3600) s2
0.088 kg
cm
2.4
FORCE AND WEIGHT
According
toNewton's
second law ofmotion, force is proportional to the product ofmass and
acceleration (length/time2). Natural force units are, therefore, kg-m/s2 (SI),g-cm/s
2(CGS), and
lbm
-ft/s2(American
engineering).To
avoid havingtocarryaround
thesecomplex
units inall calculations involvingforces, derived forceunitshave
been
definedin eachsystem.In themetricsystems, the derived forceunits (the
newton
inSI, thedyne
intheCGS
system) aredenned
toequalthe natural units:1
newton
(N)=
1 kg-m/s2 (2.4-1)1
dyne =
1g-cm/s2 (2.4-2)In the
American
engineering system, the derived forceunit—
called a pound-force (lbf)—
isdefined asthe product of aunit
mass
(1lbm
)and
the acceleration of gravityat sea leveland
45° latitude,which
is32.174ft/s2:
llb
f=
32.174lbm
ft/s2 (2.4-3)Equations
2.4-1through2.4-3defineconversionfactorsbetween
naturaland
derivedforce units.For
example, the force innewtons
requiredto accelerate amass
of 4.00kg
ata rate of 9.00m/s
2 isF =
4.00
kg
9.00m
1N
s2 1 kg-m/s2
=
36.0N
The
force inlbfrequiredtoaccelerateamass
of 4.00lbm
atarateof9.00ft/s2 isF =
4.00lbm
9.00ft llbfs2
32.174lb
m
-ft/s2=
1.12lbfFactors
needed
toconvertfrom one
force unit to anotheraresummarized
in thetableon
the inside frontcover.The symbol g
c issometimes
usedtodenote theconversionfactorfrom
natural toderivedforce units:forexample,=
1 kg-m/s2=
32.174lbm
-ft/s29c
IN
llbfWe
will not use this symbol in the text, but ifyou
should encounterit elsewhereremember
thatitissimplyaconversion factor (notto be confusedwithgravitationalacceleration, which
isusually
denoted
byg).The
weightofanobjectisthe forceexertedon
the object bygravitational attraction.Sup- pose thatan
object ofmass m
is subjected to a gravitational forceW (W
isby
definition the weight of the object)and
that if this objectwere
falling freely its accelerationwould
be g.The
weight, mass,and free-fallacceleration of the object are relatedby Equation
2.4-4:W = mg
(2.4.4)The
gravitational acceleration(g)variesdirectlywith themass
of theattractingbody
(the earth, inmost problems you
willconfront)and
inverselywiththesquareof the distancebetween
the centers ofmass
of theattractingbody and
theobjectbeingattracted.The
value ofg atsealevel2.5 Numerical Calculation
and
Estimation 13and
45°latitudeisgivenbelow
ineach systemofunits:g
=
9.8066m/s2=
980.66 cm/s2=
32.174ft/s 2(2.4-5)
The
acceleration of gravitydoesnot varymuch
withpositionon
theearth'ssurfaceand
(withinmoderate
limits) altitude,and
the valuesinEquation
2.4-5may
accordinglybe
used formost
conversionsbetween mass and
weight.TEST
1.What
isa force of2 kg-m/s2equivalent toinnewtons? What
isa force of2lbm
•ft/s2equiv-YOURSELF
alenttoin lb{?(Answers,
p.655)
2. If the acceleration of gravity at a point is fir=
9.8 m/s2and an
object is restingon
theground
atthispoint,isthisobject acceleratingatarateof9.8m/s2?3.
Suppose
anobjectweighs9.8N
atsealevel.What
isitsmass? Would
itsmass be
greater, less,or thesame on
themoon? How
aboutitsweight?4.
Suppose
an objectweighs2lbfat sealevel.What
isitsmass? Would
itsmass
begreater, less,or thesame
atthe center of the earth?How
aboutitsweight?(Careful!)EXAMPLE 2:4-n Weight and Mass
Water
hasa density of 62.4lbm/ft3.How much
does2.000ft3of waterweigh (1) atsealeveland45°
latitudeand(2) inDenver,Colorado,wherethealtitudeis5374ftandthegravitational acceleration
is32.139ft/s2
?
M =
(62.4^1
(2ft3)=
124.8lb nSOLUTION The
massofthe waterisM =
\fOAft3
The
weight of the wateris'ftV
llbfW =
(124.8lbm
)<732.174lbm-ft/s2
1.
At
sealevel,g=
32.174ft/s2,sothat
W =
124.8 lbf.2. InDenver, g
=
32.139ft/s2,and
W =
124.7lbf.As
thisexampleillustrates,theerrorincurredby assumingthatg=
32.174ft/s2 isnormallyquite small aslong asyou remainon
theearth'ssurface.In asatelliteoron
another planetitwould
bea differentstory.2.5
NUMERICAL CALCULATION AND ESTIMATION
2.5a
ScientificNotation,
SignificantFigures, and Precision
Both
verylargeand
verysmallnumbers
arecommonly
encounteredinprocesscalculations.A
convenient
way
to represent suchnumbers
is to use scientificnotation, inwhich
anumber
isexpressed astheproduct ofanother
number
(usuallybetween
0.1and
10)and
apower
of 10.Examples:
123,000,000
=
1.23X
108 (or0.123X
109) 0.000028=
2.8x
10~5 (or0.28x
10-4)The
significant figuresof anumber
are thedigitsfrom
thefirstnonzero
digiton
theleftto either(a) thelast digit(zero ornonzero)on
theright ifthereisadecimalpoint, or(b) thelastnonzero
digitof thenumber
ifthereisno
decimalpoint.For example,2300
or2.3X
103hastwo
significantfigures.2300. or2.300
x
103has foursignificantfigures.2300.0 or2.3000
X
103 hasfivesignificantfigures.23,040 or2.304
X
104has foursignificantfigures.0.035 or3.5
X
10~2 hastwo
significantfigures.0.03500or 3.500
x
10-2 has foursignificantfigures.(Note:
The number
ofsignificant figuresiseasilyshown and
seenifscientificnotationisused.)The number
ofsignificant figures inthereportedvalue of ameasured
or calculated quantity providesan
indication of the precisionwithwhich
the quantity isknown:
themore
significant figures,themore
preciseisthevalue.Generally,ifyou
report the value of ameasured
quantity withthree significantfigures,you
indicate thatthevalue of the third ofthese figuresmay be
offby
asmuch
asahalf-unit. Thus,ifyou
report amass
as 8.3 g (twosignificant figures),you
indicate that the
mass
liessomewhere between
8.25and
8.35 g, whereas ifyou
give the value as 8.300g(foursignificant figures)you
indicate that themass
liesbetween
8.2995and
8.3005g.Note, however, thatthis rule applies onlyto
measured
quantitiesornumbers
calculatedfrom measured
quantities.Ifa quantityisknown
precisely—likeapureinteger(2)oracounted
ratherthanmeasured
quantity (16oranges)—
its value implicitlycontainsan
infinitenumber
ofsignificantfigures (5
cows
reallymeans
5.0000 . .. cows).When two
ormore
quantitiesarecombined
bymultiplicationand/ordivision, thenumber of
significant figures in the resultshould equalthe lowestnumber
ofsignificantfiguresof any of
the multiplicands ordivisors. Iftheinitialresult of a calculationviolatesthis rule,you must round
offtheresult to reducethenumber
ofsignificant figures toitsmaximum
allowedvalue, although ifseveralcalculations areto beperformed
in sequenceitis advisable tokeep
extra significant figuresof intermediate quantitiesand
toround
offonly thefinal result.Examples:
(3) (4) (7) (3)
(3.57)(4.286)
=
15.30102 15.3(2) (4) (3) (9) (2) (2)
(5.2
X
10"4)(0.1635x
107)/(2.67)=
318.426966=>
3.2x
102=
320(The
raised quantitiesinparenthesesdenotethenumber
ofsignificant figures inthegivennum-
bers.)Warning:If
you
calculate,say,3x4, and
yourcalculator orcomputer
givesyou
ananswer
like 11.99999,
and you copy
thisanswerand hand
itin,your
instructormay become
violent!The
rule for additionand
subtraction concernsthe position of the lastsignificant figure in thesum—
thatis, the location ofthis figure relativeto the decimalpoint.The
ruleis:When two
ormore numbers
areadded
orsubtracted, the positionsof
thelastsignificantfiguresof
eachnumber
relative to thedecimalpointshould be compared.Of
these positions, theone
farthest to theleftisthe positionof
thelastpermissiblesignificantfigureof
thesum
ordifference.Severalexamplesofthisrule follow, in
which an arrow
(J)denotesthelastsignificant figure ofeach number.
4
1530 i
-2.56
1527.44 1530
T
4
114
1.0000
+
0.036+
0.22=
1.2560=>
1.264 4
2.75
x
106+
3.400X
104=
(2.75+
0.03400)x
106 4=
2.784000X
106=>
2.78X
1062.5
Numerical
Calculationand
Estimation 15 Finally,aruleofthumb
forroundingoffnumbers
inwhichthedigittobe dropped
isa 5 isalwaysto
make
thelast digitof therounded-offnumber
even:1.35
=^>
1.4 1.25=>
1.2Express the following quantitiesin scientific notation
and
indicatehow many
significant figureseachhas.(a) 12,200 (b) 12,200.0 (c) 0.003040
Expressthefollowing quantities instandarddecimal
form and
indicatehow many
signif- icant figureseachhas.(a) 1.34
X
105 (b) 1.340x
10~2 (c) 0.00420X
106How many
significantfigureswould
thesolution ofeachof the followingproblems have?
What
are the solutionsof(c)and
(d)?(a) (5.74)(38.27)/(0.001250) (c) 1.000
+
10.2 (b) (1.76x
104)(0.12x
10~6) (d) 18.76-
7Round
offeachofthefollowingnumbers
to threesignificantfigures, (a) 1465 (b) 13.35 (c) 1.765x
10~7When
the value of anumber
isgiven, thesignificant figuresprovide an indication of the uncertaintyinthe value; forexample,avalueof2.7 indicates thatthenumber
liesbetween
2.65and
2.75.Give
rangeswithinwhich
eachof the following valueshe.(a) 4.3 (d) 2500
(b) 4.30 (e) 2.500
x
103 (c) 2.778X
10~32.5b Validating Results
Every problem you
willeverhave
to solve—
inthisand
other coursesand
inyour
professional career—
willinvolvetwo
criticalquestions:(1)How do
Iget a solution?(2)When
Igetone,how do
Iknow
it'sright?Most
ofthisbook
isdevoted
toQuestion1—
thatis,tomethods
of solvingproblems
that arise in the designand
analysis ofchemicalprocesses.However, Question
2 isequallyimportant,
and
seriousproblems
canarisewhen
itisnotasked. All successfulengineers get into the habitofaskingitwhenever
they solve aproblem and
theydevelopawide
variety ofstrategiesforansweringit.Among
approachesyou
can use to validate a quantitativeproblem
solution are back- substitution, order-of-magnitudeestimation,and
thetestofreasonableness.• Back-substitutionisstraightforward:after
you
solveasetof equations, substituteyour
solu- tionback
into theequationsand make
sureitworks.• Order-of-magnitude estimation
means coming up
with acrudeand
easy-to-obtain approx- imation of the answer to aproblem and making
sure that themore
exact solutioncomes
reasonablyclosetoit.•
Applying
the test ofreasonablenessmeans
verifying thatthe solutionmakes
sense. It for example, a calculated velocity ofwaterflowing in apipe is fasterthan thespeed
oflightor the calculated temperaturein achemicalreactorishigherthanthe interiortemperature of the sun,you
shouldsuspect that amistake hasbeen made somewhere.
The
procedureforcheckingan
arithmetic calculationby
order-of-magnitudeestimation isas follows:
1. Substitute simple integers forall numericalquantities,using
powers
of10 (scientificno- tation) forvery smalland
verylargenumbers.27.36
—
* 20or30 (whichever
makes
thesubsequentarithmeticeasier) 63,472—
6X
1040.002887