2^1 = K{T) ycoyH 2 o
2. How much oxygen was consumed? What is the fractional conversion of oxygen?
3.
Write
the extent of reaction equation (4.6-3) for methane, oxygen,and CO2. Use
each equationtodeterminethe extent ofreaction,£,substituting inletand
outletvaluesfrom
theflowchart.4.7 Balances
on
Reactive Processes 1354.
How many
independent molecularspeciesbalances canbewritten?How many
indepen- dent atomicspeciesbalances canbe
written?!
5. Write the followingbalances
and
verify thatthey areallsatisfied.The
solution of thefirstone
isgivenasan example.(a) Methane. (I
= O +
C. 100mol CH
4 in=
40mol CH
4 out+
60mol CH
4consumed)
(b)
Atomic oxygen
(O).(c) Molecular
oxygen (0
2).(d) Water.
(e)
Atomic
hydrogen.4.7f
Product Separation and Recycle
Two
definitionsof reactantconversionareused
intheanalysisofchemicalreactorswith product separationand
recycleofunconsumed
reactants:Overall Conversion:
™
ntinpUttQprOCeSS~
reactant 0UtP
utfrom P
rocess(4.7.x) reactant inputtoprocess
Single-Pass Conversion: reactant input to reactor
-
reactanto
utputfrom
reactor reactant inputtoreactor"
As
usual,thecorresponding percentage conversionsareobtained bymultiplying these quanti- tiesby 100%.
For example,consider the following labeled flowchartfora simplechemical process based
on
the reactionA
-» B:75 mol A/min 100molA/min
REACTOR 25mol A/min 75mol B/min
PRODUCT SEPARATION
UNIT
75mol B/min
25mol A/min
TEST
YOURSELF
(An^*ei^p. 657)
EXAMPLE4jf-2\
The
overallconversionofA
isfrom Equation
4.7-1:(75
mol
A/min)jn-
(0mol/min)
out(75
moi
A/min)inThe
single-passconversionisfrom Equation
4.7-2:(100
mol
A/min)jn-
(25mol A/min)
outX 100% = 100%
X 100% = 75%
(100
mol A/min)
inThis
example
providesanotherillustrationof the object ofrecycle.We
have achievedcom-
plete use of the reactant forwhich we
arepaying—the
freshfeed— even though
only75%
of the reactant entering the reactorisconsumed
before emerging.The
reasonthe overall conver- sionis100%
isthatperfect separationwas assumed: any A
thatdoesnot reactgetssentback
to thereactor. Ifa less-than-perfect separationwere
achievedand some A
leftwith theproduct stream,the overallconversionwould
be lessthan100%,
althoughitwould
alwaysbe greater thanthesingle-passconversion.What
are the overalland
single-pass conversions for the processshown
in Figure 4.5-1on
p. 110?
Dehydrogenation of Propane
Propane
isdehydrogenatedtoformpropyleneinacatalytic reactor:CsHg —
*C
3H
6+ H
2The
processisto be designed fora95%
overallconversion of propane.The
reactionproducts are separated into two streams: the first, which containsH
2, C3H6, and 0.555% of the propane that leaves the reactor, is taken off as product; the second stream, which contains the balance ofthe unreactedpropane and5%
of thepropylene inthe firststream,isrecycled to the reactor.Calculate the composition of the product, the ratio (moles recycled)/(mole fresh feed), and the single-pass conversion.SOLUTION
Basis:100 mol
FreshFeedFresh feed
j_
100molC3H8 1i~
_i/ijtmolC3H
8)1 n2(molC3H6) |
REACTOR
Recycle
n3(molC3Hg)i
n4(molC3H6)|
n5(molH2)
/!9(molC3H8)
n10{molC3H6)(5%ofn7)
SEPARATOR
' Product
n6(molC3Ha) (0.555%ofn3)
n7(molC3H5) /i8(molH2)
In terms ofthe labeled variables,thequantities tobecalculated are themole fractionsofproduct stream
components
[n6/(n6+
n7+
ns )],... , the recycleratio [(n9+
n10)/100 mol],andthesingle- pass conversion[100% X (m -
«3)/m].We
musttherefore calculaterti, «3,and throughnlQ.As
usual,
we
begin withthe degree-of-freedomanalysis todeterminewhetherthe problemisproperly specified(i.e.,whetheritispossibletosolveit).Degree-of-Freedom
AnalysisWhen
analyzing subsystems in whichreactions occur (the overallsystem and the reactor),we
will countatomicbalances; fornonreactivesubsystems(therecyclemixingpointandtheseparationunit)we
willcountmolecularspecies balances.• Overallsystem (the outerdashed
box on
the flowchart). 3unknown
variables (n6, n7, ns )-
2 independentatomic balances(C andH) —
1additional relation(95%
overallpropaneconversion)==>
0degrees offreedom.We
willthereforebeable todetermine«6,«7,andn$byanalyzingthe overallsystem. Let uscountthese three variablesasknown
at thispoint.• Recycle-freshfeed mixingpoint. 4
unknown
variables (n9,nw
,nx,n2 )—
2balances(C3
H
g,CiH$) 2 degrees offreedom. Sincewe do
not haveenough
equationsto solve for theunknowns
associated withthissubsystem,we
proceedtothe nextone.• Reactor. 5
unknown
variables(n\throughn$)-2
atomic balances(C andH)
3degreesof freedom.No
helphere.Letusconsider theremainingunit.• Separator. 5
unknown
variables (n3, n4,n5, n9, «io) («6 through ng areknown from
the overall systemanalysis)-
3balances (C3H8, C3H6,H
2 )-
2additional relations(«6-
0.00555«3, nw =
0.05n7 )
=>
0 degrees of freedom.We
can therefore determinethe fivegivenvariables associatedwiththeseparatorand then return toanalyzeeither themixingpointorthe reactor;ineithercasewe
canwritetwo atomicbalancesto solve forthetwo remainingunknowns
(«i andn2 )»thereby completingthe solution. (Infact,notallof thesystemvariables are requiredbytheproblemstatementso
we
willbeable tostopwell short of the fullanalysis.)The
calculations follow, beginning withthe analysis of the overallsystem.95%
OverallPropane
Conversion(=> 5%
unconverted) n6=
0.05(100mol)=
5mol C
3H
8We
are leftwith two overall system atomic balances to write.An H
balance involves both re-maining
unknowns
(n7 andng)but aC
balanceinvolvesonlyn7;we
thereforebegin with the latter balance.4.7 Balances
on
Reactive Processes 137 OverallC
Balance(100
mol C
3H
8)(3mol
C/molC
3H
8 )=
[«6(molC
3H
8)](3mol C/molC
3H
8)rtf,
=
5mol+
[;i7(moIC
3H
6)](3mol C/molQH
6)n7
=
95mol C
3H
6Overall
H
Balance(Fillin units.)(100)(8)
=
n6(8)+
«7(6)+
n8(2)The
productthereforecontains5
mol C
3H
895
mol C
3H
6=
95
mol H
2n6
=
5mol. «7=
95moln8
=
95mol H
22.6
mole% C
3H
848.7
mole% C
3H
648.7
mole%H,
GivenRelations
Among
Separator Variables n6=
5moln6
=
0.00555«3> =
900molC
3H
8n10
=
0.0500n7«7
=
95 mol«io
=
4.75molC
3H
6Propane
BalanceAbout
Separation Unitn3
=
900 mol, n6=
5moln3
=
n6+
ng ng=
895molC
3H
8We
could continue writingbalances aboutthe separation unit todetermine the values ofnAand n5 butthere isno
reasontodo
so,since these values werenot requestedinthe problemstatement.The
only valuestilltobe determinedisthatofnu
whichcan becalculatedfrom apropane balance aboutthemixingpoint.Propane
BalanceAbout Mixing
Point 100mol +
«9= m
n9
=
895molm =
995molC
3H
8We now
haveallthevariablevalueswe
need.The
desiredquantities are (n9+
nw
)mol
recycle "9=
895 mol. n10=
4.75molRecycleratio
=
100
mol
fresh feed 9.00mol
recycle molfreshfeed„. ,
m - m
n\=
995 mol, ni=
900molSingle-passconversion
= — X 100%
>"1
9.6%
Consider
what
ishappening
intheprocessjust analyzed.Only
about10%
of thepropane
entering the reactoris converted topropylene in a single pass;however, over99%
of the un-consumed propane
inthe reactoreffluentisrecoveredinthe separationunitand
recycledback
tothereactor,
where
itgetsanother chanceto react.The
netresultisthat95%
of thepropane
entering the processisconvertedand 5%
leaves withthe finalproduct.In general, high overallconversions can be achievedin
two
ways:(a)design the reactorto yield a highsingle-passconversion, or(b) designthe reactorto yieldalowsingle-passconver- sion(e.g.,10%,
asinthepreceding example),and
followitwithaseparationunit torecoverand
recycleunconsumed
reactant. Ifthesecondscheme
is used, the reactormust
handle a larger throughput, but it takes amuch
larger reactionvolume
to achieve a95%
conversion than a10%
conversioninasingle pass.The
lowersingle-passconversion consequentlyleads to ade- crease in the costofthereactor.On
the otherhand, the savingsmay
be offset by the cost ofRecycle 40molC2H4/s
20mol02/s
452molN2/s
Purge stream
50molC2H4/s
25mol02/s
565mol N2 /s
10 molC2H4/s
5 mol02/s
113mol N2/s
Fresh feed 60molC2H4/s 30mol02/s
113 molN2/s
100mol C2H4/s
50mol02/s
565molN2/s
REACTOR
50molC2H4/s 25mol02/s
565molN2/s
50molC2H40/s
ABSORBER
Solvent
Product 50molC2H40/s Solvent
Figure4.7-2 Process withrecycleandpurge.
theseparation processunit
and
thepump,
pipes,and
fittingsinthe recycleline.The
finaldesignwould
be basedon
adetailedeconomic
analysisof thealternatives.4.7g Purging
A problem may
arise inprocesses thatinvolverecycling.Suppose
a materialthatenters with the fresh feed or isproduced
in a reaction remains entirely in a recycle stream, rather than beingcarriedoutinaprocess product.Ifnothingwere done
aboutthissituation,thesubstancewould
continuouslyenter the processand would have no way
ofleaving; itwould
therefore steadilyaccumulate,making
theattainmentofsteadystateimpossible.To
preventthisbuildup, aportion of the recyclestreammust
bewithdrawn
asapurge streamtoridtheprocess of the substanceinquestion.The
flowchartshown
in Figure 4.7-2 forthe production of ethylene oxidefrom
ethylene illustratesthissituation.The
reactionis2C
2H
4+ O2
-* 2C
2H
40.A
mixtureof ethyleneand
airconstitutesthefreshfeedtotheprocess.
The
effluentfrom
the reactor passestoan absorberand
iscontactedwith aliquid solvent.All oftheethyleneoxideisabsorbedintothesolvent.The
gasstreamleaving the absorber,whichcontainsnitrogen
and
unreactedethyleneand
oxygen,isrecycled to thereactor.
If there
were no
nitrogen (or any other inertand
insoluble substance) inthe feed, therewould
beno need
for a purgestream.The
recyclewould
contain only ethyleneand
oxygen;the freshfeed
would
containjustenough
of these substances tomake up
for theamount
lost inthe reaction,and
thesystemwould
be atsteadystate.However,
thereis nitrogen. Itenters thesystematarateof113mol/sand
leaves thesystematthesame
rateinthepurge stream.If thesystemwere
not purged,nitrogenwould
accumulateatthisrate untilsomething—
probablyunpleasant
—
occurredtoshutdown
theprocess.Material balance calculations
on
systems involving recycleand
purge follow the proce- dures giveninprevioussections.When
labelingthe flowchart,notethatthe purge streamand
the recyclestream beforeand
afterthepurgetakeoffallhave
thesame
composition.TEST
YOURSELF
(Answers,
p.657)
A
reactionwith stoichiometryA
-*B
takes place inaprocess withthefollowingflowchart:REACTOR SEPARATOR
60molA '1 200molA 150molA 50mol B
10 molA 50mol B
140molA
4.7 Balances
on
Reactive Processes 1391.
What
istheoverallconversionofA
for this process?What
isthe single-passconversion?2.
The
separationunitand
recyclepump and
piping are expensive.Why
noteliminatethem and
selltheeffluentfrom
thereactor asis?Alternatively,why
notkeep
the separatorbut discard thebottom
streaminsteadof recyclingit?3.
Suppose
a traceamount
(say,0.1%)
ofan
inert materialC
iscontainedin the freshfeedand
allofitstays inthebottom
effluentstreamfrom
the separation unit (andso isrecy- cled).Why would
the process eventuallyshutdown? What would you
havetodo
togetitto
work?
4.
Why
not design the reactortoproduce
10mol A and
50mol B from
60mol A
inasinglepass,therebyeliminating the
need
fortheseparationand
recycle?E^lflPEEt^^ Recycle and Purge
in theSynthesisof Methanol
Methanol
isproducedinthe reactionofcarbondioxideandhydrogen:C0
2+
3H
2— CH
3OH + H
20
The
fresh feedto theprocess contains hydrogen, carbon dioxide,and0.400mole%
inerts (I).The
reactoreffluentpassestoacondenserthatremoves
essentiallyallof themethanol and water formed andnone
ofthereactantsorinerts.The
lattersubstances arerecycled to the reactor.To
avoid buildup of theinerts in thesystem,apurge streamiswithdrawn fromtherecycle.The
feed to the reactor (not the fresh feed to the process) contains 28.0mole% C0
2,70.0
mole% H
2, and 2.00mole%
inerts.The
single-pass conversion of hydrogen is 60.0%. Cal- culatethemolarflowrates and molarcompositions ofthe fresh feed, thetotalfeed to the reactor, therecyclestream, andthepurgestreamfor amethanolproductionrateof155kmol CH
3OH/h.
SOL UTION
Basis:100 mol Combined Feed
totheReactor EquipmentEncyclopedia reactor, condenser
«r(mol)
jr5c(molC02/mol)
*5H (molH^mol)
(1-*5c-*5h)(moll/mol)
np(mol)
x
x
(mo\COymol)jr5H (molH^mol)
(1-x
x
-jt5h)(moll/mol) n5(mol).*5c(molC02/mol)
jr5H (mol Hj/mol) (1-.T5c-*5h)(moll/mol)
n0{mo\) 100mol
xoclmolCO^mol) (0.996-jtqc)(molH^mol) 0.00400moll/mol
0.280molCO^mol 0.700 molH^mol 0.020moll/mol
REACTOR
rtjfmolC02)
n2(molH2)
2.0molI
n3(molCH3OH) n4 (molH20)
CONDENSER
n3(molCH3OH) n4(molH20)
As
ageneralrule,thecombined
feedtothe reactorisa convenient streamtouseasabasisofcalcu- lation for recycle problemswhen
the streamcompositionisknown.We
willtherefore temporarily ignorethe specifiedmethanolproductionrate,balance theflowchart for theassumedbasis,andthen scale theprocesstotherequiredextent. Interms of the labeledvariables,theproblemstatementwillbe solvedbydetermining n0, xoc,n3,x5C,x5H, np,
and
n{ for theassumedbasis, thenscalingup n0,100
mol
(fedtoreactor),np,andnt bythe factor(155kmol CH
3OH/h)/n3.Degree-of -Freedom
AnalysisIn the analysis that follows,
we
will count molecular species balances for all systems.(We
could equallywell useatomicspecies balances or the extent ofreaction.) Note that the reaction occurswithin the overall system and the reactor subsystem and so must be included in the degree-of- freedomanalysesforbothsystems.
• Overall system. 7
unknowns
(no,.*oc>«3>''4>*p.*5Ci-*5H)+
1 reaction-
5 independentbalances(C0
2,H
2,I,CH
3OH,H
20) ==>
3 degreesoffreedom. Sincewe
do nothaveenough
equations tosolve forthenumber
ofunknowns
intheoverallsystem,we
checksubsystemstoseeifonecan befoundwithzerodegreesoffreedom.• Recycle-freshfeed mixing point. 5
unknowns
(no,*oc,«r,-*5C,-*5H)~
3 independent balances (CO2,H
2, 1)==>
2degrees offreedom.• Reactor. 4
unknowns
(nu
n2,n3,n4)+
1 reaction-
4independentbalances(C0
2,H
2,CH3OH,
H
20)-
1single-passconversion 0 degrees of freedom.We
willthereforebeabletodetermine«i,«2,"3,andn4and proceed fromthere.
Noticethat
we
only subtracted four balancesandnotone
foreachof thefivespecies.The
reasonisthat
when we
labeledthe outletflow ofIas2.0mol,we
implicitlyusedthebalanceonI(input=
output) and so can no longercount it inthe degree-of-freedom analysis.
We
will use thesame
reasoninginthe analysis of thecondenser.• Condenser. 3
unknowns
(h5,*5c,*5h)-
3 independent balances(C0
2,H
2,1)=>
0 degreesof freedom.We may now presume
thatn5,xsc,and*share known.Inthisanalysis
we presumed
thatwe knew
n\,n2,«3,andn4fromthe reactoranalysis,andsincewe
used themethanol and waterbalanceswhen we
labeled the bottom productstreamwe
only countedthreeavailablebalancesinthe degree-of-freedomanalysis.• Purge-recyclesplitting point. 2
unknowns
(nT,np)-
1 independent balance 1 degree of freedom. Since the labeledcomponent mole
fractions are thesame
inall three streams in this subsystem, balanceson
allthreespeciesreducetothesame
equation(tryitandsee).• Recycle-freshfeed mixing point (revisited). 3
unknowns
(/io,*oc,«r)~
3 independentbalances=>
0 degrees of freedom.We
cannow
determine (no,xqc,andnr ).• Purge-recyclesplittingpoint (revisited). 1
unknown
(np)
-
1independentbalance=>
0degrees offreedom.The
finalunknown
variablecannow
becalculated.The
solutionprocedurewillthereforebetowritebalanceson the reactor,thenthecondenser,then the freshfeed-recyclemixingpoint,andfinallythepurge-recyclesplittingpoint.The
flowchartmay
thenbescaledup bytherequired
amount
toobtainamethanolproductionrate of155kmol/h.The
calculations follow.
Reactor Analysis
We
willusemolecularbalances. RecallthatthestoichiometricreactionisC0
2+ 3H
2—
*CH3OH + H
20
60%
Single-PassHz
Conversion: (40%
isunconvertedand emergesatthe reactor outlet)m =
0.40(70.0mol H
2fed)=
28.0mol H
2Hi
Balance: consumption=
input-
outputCons
H2=
(70.0-
28.0)mol H
2=
42.0mol H
2consumed COz
Balance: output=
input-
consumptionhi
=
28.0mol C0
2-
42.0mol H
2consumed
1mol C0
2consumed
3
mol H
2consumed
=
14.0mol C0
2CH3OH
Balance: output=
generation"3
42.0
mol H
2consumed
1mol CH3OH
generated3
mol H
2consumed
H2O
Balance: output=
generation«4
=
42.0mol H
2consumed
1mol H
20
generated3
mol H
2consumed
=
14.0mol CH3OH
=
14.0mol H.O
4.7 Balances
on
ReactiveProcesses 141 CondenserAnalysisTotal
Mole
Balance: input=
output«1
+
«2+
"3+
w4+
2-0mol =
n3+
«4+
«5J|n2
=
28.0mol,rti=
n3=
h4=
14.0mol n5=44.0 mol
COt
Balance: input=
output=
14.0mol, n5=
44.0moljc5C
=
0.3182mol C0
2/molHz
Balance: input=
output"2
=
«5*5Hj|«2
=
28.0mol, n5-
44.0mol x5H=
0.6364mol C0
2/molx\
=
1-
xsc-
x5h=
0.04545mol
I/mol /revA Feed-RecycleMixing
PointAnalysisTotal
Mole
Balance: input=
output n0+
nr=
100mol
IBalance: input=
outputn0(0.00400)
+
nr(0.04545)=
2.0mol
ISolvingthesetwoequations simultaneouslyyields
no
=
61.4mol
fresh feed, nr=
38.6molrecycleCOi
Balance: input=
output«o-*oc
+
nTxsc=
28.0mol C0
2jjn0
=
61.4mol, nr = 38.6mol, x5C=
0.3182molC0
2/mol xqc=
0.256mol C0
2/mol*oh
=
(1_
*oc
~
xqi)=
0.740mol H
2/mol Recycle-PurgeSplittingPointAnalysisTotal
Mole
Balance: input=
output ns=
nT+
«p
jj^n5
=
44.0mol, nr=
38.6mol np=
5.4mol
purgeFlowchartScaling
Forthe assumedbasisof100
mol
feed to the reactor,the productionrate ofmethanolis /13=
14.0mol CH3OH. To
scale theprocesstoamethanolproductionrate of155kmol CH
3OH/h, we
multiply eachtotalandcomponent
molarflowratebythefactor155
kmol CH
3OH/h
\ 11.1kmol/h 14.0mol CH3OH
/mol
142
Chapter
4Fundamentals
of MaterialBalancesThe mole
fractionsremain unchanged bythescaling.The
results follow.Variable BasisValue ScaledValue Fresh feed 61.4
mol
25.6
mole% C0
274.0
mole% H
20.400
mole%
I681kmol/h 25.6
mole% C0
274.0
mole% H
20.400
mole%
IFeedtoreactor 100
mol
28.0
mole% C0
270.0
mole% H
22.0
mole %
I1110kmol/h 28.0
mole% C0
270.0
mole% H
22.0
mole%
IRecycle 38.6
mol
31.8
mole% C0
263.6
mole%H
24.6
mole%
I428kmol/h 31.8
mole% C0
263.6
mole% H
24.6
mole%
IPurge 5.4
mol
31.8
mole% C0
263.6
mole% H
24.6
mole%
I59.9kmol/h 31.8
mole% C0
263.6
mole% H
24.6
mole%
I4.8
COMBUSTION REACTIONS
Combustion —
the rapid reaction of a fuelwithoxygen—
is perhapsmore
important than any otherclassofindustrial chemical reactions, despite the factthatcombustion
products(C0
2,H
20,and
possiblyCO and SO2)
areworth much
less than the fuelsburned
to obtain them.The
significance of these reactions liesin thetremendous
quantities ofenergy theyrelease energythatisusedto boilwatertoproduce
steam,whichisthenusedtodrivethe turbinesthat generatemost
oftheworld's electricalpower.The
job of designingpower
generationequipment
usually fallsto mechanical engineers, but theanalysis ofcombustion
reactionsand
reactorsand
theabatement and
controlofenvi- ronmentalpollutioncausedby combustion
productslikeCO, C0
2,and S0
2 areproblems
with which chemical engineersare heavily involved. In Chapter 14, forexample,we
present acase study involving thegeneration ofelectricityfrom
thecombustion
of coaland removal
ofS0
2 (apollutant)from combustion
products.In the sections that follow,
we
introduce terminologycommonly
used in the analysis ofcombustion
reactorsand
discuss material balance calculations for such reactors.Methods
of determiningthe energy that can be obtainedfrom combustion
reactions are given inChap-
ter9.
4.8a Combustion Chemistry
Most
of thefuelusedinpower
plantcombustion
furnaces iseithercoal (carbon,some
hydro- genand
sulfur,and
variousnoncombustiblematerials), fuel oil(mostlyhighmolecular weight hydrocarbons,some
sulfur),gaseousfuel(suchasnaturalgas,which
isprimarilymethane),or liquefiedpetroleumgas,which
isusuallypropane
and/or butane.4.8
Combustion
Reactions 143When
a fuel is burned, carbon in the fuel reacts toform
eitherC0
2 orCO, hydrogen
formsH
20,and
sulfurformsS0
2.At
temperaturesgreaterthan approximately 1800°C,some
of the nitrogenin theairreacts to
form
nitricacid(NO). A combustion
reactioninwhich CO
is
formed from
ahydrocarbon
is referred to as partialcombustion
orincompletecombustion
of thehydrocarbon.Examples: