TEST
SOLUTION 1. Semilog plot
2.8 SUMMARY
This chapterintroduces
some
fundamental problem-solvingtoolsthatyou
willneed
intherest ofthis course,in subsequent engineeringand
science courses,and
almost every time inyour careerwhen you perform
mathematical calculations.The main
points of the chapter are as follows.•
You
can convert a quantityexpressedinone
set ofunitsinto itsequivalentin otherdimen- sionally consistentunitsusingconversion factors, likethose in the tableon
theinside front coverof thetext.•
A
weightisthe force exertedon
anobjectbygravitationalattraction.The
weightofanobject ofmass m may
becalculatedasW =
mg,where
gisthe acceleration of gravityatthe location ofthe object.At
sea levelon
theearth,g=
9.8066Tin's2=
32.174ft/s2.
To
convertaweight (orany
force)innaturalunitslikekg-m/s2orlbm
-ft/s2toitsequivalentina derived forceunit likeN
orlb{,usetheconversionfactortable.•
The
significant figures(si.)withwhichanumber
isreportedspecify the precision withwhich thenumber
isknown.
Forinstance,x=
3.0 (2 si.)states thatx
issomewhere between
2.95Problems
31and
3.05,whilex =
3.000(4s.f.)statesthat itisbetween
2.9995and
3.0005.When you
mul- tiplyand
divide numbers, thenumber
of significant figures of the resultequals the lowestnumber
ofsignificantfigures ofany ofthe factors. Incomplex
calculations,keep
the maxi-mum number
ofsignificant figures untilthefinalresultisobtained, thenround
off.• If
X
is ameasured
process variable,thesample mean
ofa setofmeasured
values,X, isthe averageoftheset(thesum
of the valuesdividedby
thenumber
ofvalues).It isan
estimate of the truemean,
the valuethatwould
be obtainedby
averaging aninfinitenumber
ofmea-
surements.The sample
variance of the set, sx
, is ameasure
of thespread of themeasured
valuesaboutthe sample
mean.
Itis calculatedfrom
Equation (2.5-3).The sample
standard deviation, s\,isthesquareroot of thesample
variance.• If
X and
s\ aredeterminedfrom
a setofnormal
process runsand
asubsequentlymeasured
valueofX
fallsmore
than 2s\away from
X, the chancesarethatsomething
haschanged
in theprocess—
thereislessthana10%
chance thatnormal
scattercanaccountforthe devia- tion.Ifthedeviationisgreaterthan3sx, thereislessthana 1%
chancethatnormal
scatteristhe cause.
The
exactpercentagesdepend on how
themeasured
values are distributedabout themean — whether
they followaGaussiandistribution,forexample — and how many
points are inthedatasetused tocalculate themean and
standarddeviation.•
Suppose you
are givena set of values ofadependent
variable,y, corresponding to values ofan
independentvariable,x
,and you
wish toestimatey fora specifiedx
.You
caneitherassume
astraight-linedependence
for thetwo
datapoints thatbracket the specifiedx and
use two-point linear interpolation (Equation 2.7-1) or fit afunction to the datapointsand
use itfor thedesired estimation.• If(x,y)dataappearto scatteraboutastraight line
on
aplotofy
versus x,you may
fitaline usingEquations (2.7-3)and
(2.7-4)or,forgreater precisionand
anestimate of thegoodness of thefit,use themethod
ofleastsquares(Appendix
A.1).Ifaplotofy
versusx
isnonlinear,you may
try tofit various nonlinear functionsby
plottingfunctionsofx and y
in amanner
thatshouldyieldastraightline.For example,tofita function y2
=
a/ x+
bto(x,y)data, plot y2versus l/x.Ifthefitisgood,theplotshouldbe
astraight linewith slopeaand
interceptb.
• Plotting
y
(log scale) versusx
(linear scale)on
a semilogplotisequivalenttoplotting Iny
versusx on
rectangular axes. Ifthe plotis linear in either case,x and y
are relatedby an
exponentialfunction, y=
aebx.• Plottingyversus
x on
logarithmicaxesisequivalenttoplotting Iny
versusInx on
rectangular axes.Iftheplotislinear in either case,x and y
are relatedby
apower
lawfunction,y~
axb.PROBLEMS
2.1. Usingdimensionalequations,convert(a) 3
wk
to milliseconds. (c) 554m
4/(daykg) tocmV(inin-g).(b) 38.1 ft/sto miles/h.
23.. Usingthe tableof conversionfactorsontheinside front cover,convert (a) 760miles/h to m/s. (c) 5.37
X
103 kJ/minto hp.(b) 921
kg/m
3tolbm/ft3.23. Using a single dimensional equation, estimate the
number
of golf ballsitwould
take to fillyour classroom.Usinga singledimensionalequation,estimatethe
number
of stepsitwouldtakeyou, walkingatyour normalstride,towalkfromtheEarthtoAlpha
Centauri,a distance of4.3 light-years.The
speedof lightis 1.86X
105 miles/s.A
frustratedprofessoronceclaimedthatifallthereportsshehad gradedinher careerwerestackedon
top ofoneanother, theywouldreachfromtheEarthto themoon. Assume
thatanaveragereportisthethicknessof about 10sheetsof printerpaperandusea singledimensional equationtoestimate the
number
of reports the professorwould have had togradeforher claimtobevalid.You
aretrying todecidewhichoftwoautomobilesto buy.The
firstisAmerican-made,costs $14,500,and
hasa rated gasolinemileageof28miles/gal.The
secondcarisofEuropean
manufacture,costs$21,700,andhasaratedmileage of 19km/L.Ifthe cost of gasolineis$1.25/galandifthe cars actually deliver their rated mileage, estimate
how many
milesyouwould
have todrive for thelower fuel consumptionofthesecondcar tocompensateforthehighercostofthiscar?2.7.
A
supersonic aircraft consumes 5320 imperial gallons ofkerosene per hour offlightand flies an average of 14 hours perday.Ittakesroughlyseventonsofcrudeoiltoproduceoneton of kerosene.The
density ofkeroseneis0.965g/cm3.How many
planeswould
ittaketoconsume
the entireannual worldproduction of4.02X
109metrictonsofcrude oil?2.8. Calculate
(a) theweightinlbfof a 25.0-lb
m
object.(b) themassinkgofanobject thatweighs25 newtons.
(c) theweightindynes of a10-ton object(notmetrictons).
A
waste treatmentpond
is50m
longand15m
wide,andhasanaveragedepthof2m.The
densityof the wasteis85.3lbm/ft3.Calculatetheweightof thepond
contentsin lbf,usinga singledimensional Student equationforyourcalculation.2.10. Fivehundredlbmofnitrogenistobechargedintoasmallmetalcylinderat25°C,atapressure such thatthegasdensityis11.5
kg/m
3.Withoutusinga calculator,estimate the requiredcylindervolume.Show
yourwork.2.11. According to Archimedes'principle, themassofa floating objectequals the massofthe fluid dis- placedbytheobject.
Use
thisprinciple to solve thefollowingproblems.(a)
A wooden
cylinder 30.0cm
highfloatsvertically ina tub ofwater(density=
1.00g/cm3).The
topofthecylinderis14.1cm
abovethesurfaceof theliquid.What
isthe densityofthewood
9(b)
The same
cylinder floats vertically in a liquid ofunknown
density.The
top of the cylinder is20.7
cm
abovethesurfaceof theliquid.What
isthe liquiddensity?2.12.
A
right circularconeofbaseradius R,heightH, andknown
densityps floatsbasedown
ina liquid ofunknown
densitypf.A
height h of the cone is above theliquid surface. Derive a formulafor pf interms of ps, R, and h/H, simplifying it algebraically to the greatest possible extent. [Recall Archimedes'principle,statedinthepreceding problem,andnotethatthevolumeof aconeequals (base area)(height)/3.]2.13.
A
horizontalcylindricaldrum
is2.00m
indiameterand4.00m
long.The drum
isslowlyfilledwith benzene(density=
0.879g/cm3). DeriveaformulaforW, theweightinnewtonsofthebenzenein the tank,asafunctionofh,thedepthofthe liquidincentimeters.2.14.
A
poundalisthe forcerequiredtoaccelerate amassof1lbm
ata rateof1 ft/s2,anda slugisthemass ofanobject thatwillaccelerateat a rateof1ft/s2
when
subjectedtoa force of1 lbf.(a) Calculatethemassinslugsandtheweightinpoundals ofa175lbm
man
(i)onearthand(ii)on themoon,
wheretheaccelerationofgravityisone-sixthofitsvalueon
earth.(b)
A
force of355 poundals isexertedon
a 25.0-slug object.At
whatrate (m/s2) doesthe object accelerate?2.15.
The
fernisdefinedasthe unitofforcerequiredto accelerate a unitof mass,called thebung, withthe gravitational accelerationonthesurfaceof themoon,
whichisone-sixth of thenormalgravitational accelerationon
earth.(a)
What
istheconversionfactor thatwould
be usedtoconvert aforcefrom the natural unittothe derivedunitin thissystem? (Givebothitsnumerical valueanditsunits.)(b)
What
istheweightinferns ofa3-bungobjectonthemoon? What
doesthesame
objectweighinLizardLick,NorthCarolina?
2.16. Performthefollowing calculations.Ineachcase,firstestimatethe solutionwithout usingacalculator, following theprocedure outlined in Section2.5b,and thendo thecalculation, paying attention to significant figures.
(a) (2.7)(8.632) (c) 2.365+125.2
(b) (3.600
x
10"4)/45 (d) (4.753x
104)-
(9x
102)
Problems
332.17.
The
following expression has occurredinaproblemsolution:(0.6700)(264,980)(6)(5.386
X
104)R =
(3.14159)(0.479
X
107)Equipment
•
Encyclopedia thermocouple
The
factor 6 is a pure integer. Estimate the value ofR
without using a calculator, following the procedureoutlinedinSection2.5b.Then
calculate R,expressingyour answer inbothscientificand decimal notationandmaking
sureithasthe correctnumber
ofsignificant figures.2.18.
Two
thermocouples(temperaturemeasurement
devices)aretestedbyinsertingtheirprobesin boil- ing water, recording the readings, removing and drying the probes, and then doing it again.The
resultsoffivemeasurementsareasfollows:
r(°C)—
ThermocoupleA
72.4 73.1 72.6 72.8 73.0 r(°C)—
ThermocoupleB
97.3 101.4 98.7 103.1I
100.4
(a) For each setof temperature readings, calculate the sample mean, the range, and the sample standarddeviation.
(b)
Which
thermocouplereadingsexhibitthehigherdegree ofscatter?Which
thermocoupleismore
accurate?2.19. Productqualityassurance
(QA)
isa particularly tricky businessinthedye manufacturingindustry.A
slightvariationinreactionconditions can lead toa measurable changeinthe color of theprod- uct,andsincecustomersusuallyrequireextremely highcolor reproducibilityfrom one shipmentto another,evena smallcolorchangecanlead to rejectionof a productbatch.Supposethevariouscolorfrequencyandintensityvaluesthatcomprisea color analysis arecom- binedintoa singlenumericalvalue,C,foraparticularyellowdye.Duringatestperiodinwhichthe reactor conditions arecarefullycontrolledandthereactoristhoroughly cleanedbetweensuccessive batches(nottheusualprocedure),product analysesof 12 batchesrun on successive days yield the followingcolor readings:
Batch 1 j 2 3 4 5 6 7 8 9 10 11 12
C
74.3 71.8 72.0 73.1 75.1 72.6 75.3 73.4 74.8 72.6 73.0 73.7(a)
The QA
specification forroutineproductionis that a batchthat fallsmore
than two standard deviationsaway
fromthetestperiodmean must
berejectedandsent forreworking.Determine theminimum
andmaximum
acceptable values ofC.(b)
A
statistician workinginqualityassuranceand
aproduction engineer are havinganargument.One
ofthem, Frank,wants to raisetheQA
specificationto three standard deviationsand the other,Joanne,wants toloweritto one.Reworking
istime-consuming, expensive,andvery un- popular withtheengineerswho
havetodoit.Who
ismore
likelytobethestatisticianandwho
theengineer?Explain.
(c) Suppose thatinthefirst fewweeksofoperationrelatively fewunacceptable batches are pro- duced, but thenthe
number
beginsto climb steadily. Thinkofup
to five possible causes, andstate
how you
might go aboutdeterminingwhetherornoteachofthem
mightinfactbe respon- sibleforthedropin quality.*2.20.
Your company
manufacturesplasticwrapforfoodstorage.The
tear resistanceof the wrap,denoted byX,mustbecontrolledsothatthewrapcan be tornofftherollwithout toomuch
effortbutitdoes notteartooeasilywhen
inuse.In a series of test runs, 15 rolls of
wrap
aremade
undercarefully controlled conditions and thetear resistanceof eachrollismeasured.The
resultsare usedas the basis of a quality assurance specification (see Problem 2.19). IfX
for asubsequently produced roil failsmore
than two stan- darddeviationsaway
from the testperiod average, the processisdeclared outof specification and productionissuspendedfor routinemaintenance.*Computerproblem.
The
test seriesdataare asfollows:Roll 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X
134 131 129 133 135 131 134 130 131 136 129 130 133 130 1332.21.
(a) Writea spreadsheettotakeasinputthetest seriesdataandcalculatethesample
mean
(X) and sample standarddeviation(jx),preferably usingbuilt-infunctions forthecalculations.(b)
The
followingtear resistancevalues are obtainedforrollsproducedin14 consecutive production runssubsequentto thetest series: 128, 131, 133, 130, 133, 129, 133, 135, 137, 133, 137, 136, 137, 139.On
the spreadsheet (preferably usingthe spreadsheet plotting capability), plot a control chartofX
versusrunnumber, showinghorizontallinesforthevaluescorrespondingtoX,X -
2sx,and
X +
2sxfromthetestperiod,andshow
the pointscorrespondingtothe 14 production runs.(See Figure2.5-2.)Which
measurementsled tosuspension of production?(c) Followingthelastof theproductionruns,thechief plantengineerreturns
from
vacation,exam- inestheplantlogs, andsays that routine maintenance wasclearlynotsufficient and a processshutdown
andfullsystem overhaul shouldhave beenorderedatonepointduringthetwo weeks hewasaway.When
wouldithave beenreasonable totakethis step,andwhy?
A
variable,Q,isreportedtohavea value of 2.360X
10~4kg-m
2/h.(a) Writea dimensional equation forQ',the equivalentvariable value expressedin
American
en- gineeringunits,usingsecondsastheunit for time.(b) EstimateQ' without usinga calculator,followingtheprocedure outlinedinSection2.5b.
(Show
yourcalculations.)Then
determineQ'with acalculator,expressingyouranswerinbothscientificanddecimalnotationand
making
sureithasthe correctnumber
ofsignificant figures.2.22.
The
Prandtl number,N
Pr, is a dimensionless group important in heat transfer calculations. It isdefined as
C>/
k, whereC
p is the heat capacity ofa fluid, p. is the fluid viscosity, andk
is the thermal conductivity. For a particularfluid,C
p
=
0.583 J/(g-°C), k=
0.286 W/(m-°C), and p.=
1936 lb
m
/(ft-h). Estimate the value ofjVPr withoutusing a calculator (remember, it is dimension- less),showing yourcalculations;then determineitwithacalculator.2.23.
The
Reynoldsnumber
isadimensionlessgroupdefinedfor afluidflowingina pipeasRe = Dup/
p,where D
ispipe diameter, uisfluid velocity,pisfluid density,andp
isfluid viscosity.When
the value of theReynoldsnumber
islessthanabout2100,theflowislaminar—
thatis,thefluidflowsinsmooth
streamlines. For Reynolds
numbers
above2100, theflowisturbulent,characterizedbyagreat deal ofagitation.Liquidmethylethylketone
(MEK)
flowsthrough a pipe with an innerdiameterof 2.067 inches at an average velocity of 0.48ft/s.At
the fluid temperature of20°C
the density ofliquidMEK
is0.805g/cm3 and theviscosityis0.43 centipoise [1cP
=
1.00X
10"3 kg/(m-s)]. Withoutusinga cal-culator,determine whetherthe flowislaminar orturbulent.
Show
yourcalculations.2.24.
The
followingempiricalequationcorrelatesthe values ofvariablesinasysteminwhichsolidparti- cles aresuspendedinaflowinggas:k9
d
pyD =
2.00+
0.600f-^ \pD
1/3 d„up 1/2
Both
(fx/pD)
and(dpup/p.) aredimensionless groups; kg isa coefficient thatexpresses the rateat
whichaparticular species transfersfromthegasto thesolid particles;and thecoefficients 2.00and 0.600 are dimensionlessconstants obtainedbyfitting experimental data covering a widerange of values of the equationvariables.
The
value of kgisneededtodesignacatalytic reactor.Sincethiscoefficientisdifficultto deter-mine
directly,values of theothervariablesaremeasuredorestimatedand kgiscalculatedfromthe givencorrelation.The
variablevaluesare as follows:dp
=
5.00mm
y
=
0.100 (dimensionless)Problems
35D =
0.100cm
2/s fi=
1.00X
10"5 N-s/m2p
=
1.00X
10~3 g/cm3«
=
10.0m/s (a)What
istheestimated value ofkgl (Giveitsvalueandunits.)
(b)
Why
mightthe truevalue of kginthe reactorbesignificantlydifferentfromthevalue estimated inpart (a)? (Giveseveral possible reasons.)*(c) Create a spreadsheetinwhich uptofivesetsof values ofthegivenvariables (d
p throughu)are enteredincolumns andthe corresponding values ofkgare calculated.Testyour
program
using the following variable sets: (i) the values given above; (ii) as above, only double the particle diameter dp (making it10.00mm);
(iii) asabove, only doublethe diffusivityD; (iv) as above, only doubletheviscosity (v) asabove, onlydoublethe velocityu.Reportallfivecalculated valuesof kg.
A
seed crystalof diameterD (mm)
is placedin a solution of dissolved salt, andnew
crystalsare observedto nucleate (form) at aconstant rate r (crystals/min). Experiments withseed crystalsof differentsizesshow
thattherate of nucleation varieswith theseedcrystaldiameterasr(crystals/min)
= 200D - 10D
2 (£>inmm)
(a)
What
are theunitsofthe constants200and 10?(Assume
thegiven equationisvalidand there- foredimensionallyhomogeneous.)(b) Calculate the crystal nucleationrate in crystals/s correspondingto a crystal diameter of0.050 inch.
(c) Deriveaformulaforr(crystals/s) interms of D(inches). (See
Example
2.6-1.)Check
theformula using the resultofpart(b).The
densityof afluidisgivenbythe empiricalequation p=
70.5exp(8.27X
10"7P)where
pisdensity(lbm
/ft3) andP
ispressure(lbf/in.2).(a)
What
arethe unitsof70.5 and8.27X
10"7?(b) Calculate thedensitying/cm3 forapressure of9.00
x
106N/m
2.(c) Deriveaformulaforp(g/cm3)asa functionof
P(N/m
2).(SeeExample
2.6-1.)Check
yourresult using the solutionofpart(b).2.27.
The volume
of amicrobialcultureisobservedtoincrease accordingtotheformulaV(cm
3)=
e!where
f istimeisseconds.(a) Calculate theexpressionfor V(in.3)interms off(h).
(b)
Both
the exponential function and its argument must be dimensionless.The
given equation seems to violatebothoftheserules,andyet theequationisvalid. Explain thisparadox. [Hint:Observethe resultofpart(a).]
2.28.
A
concentrationC
(mol/L)varieswith time (min) accordingtotheequationC =
3.00 exp(-2.00?) (a)What
arethe units of 3.00and2.00?(b) Supposethe concentration ismeasuredatt
=
0and t=
1 min.Use
two-pointlinearinterpo- lationor extrapolationto estimate C(f=
0.6min) andt(C=
0.10mol/L)from
the measured values,andcompare
theseresultswith the truevalues ofthese quantities.(c) Sketchacurve of
C
versust,andshow
graphically the pointsyou determinedinpart(b).*2.29.
The
vaporpressures of 1-chlorotetradecaneatseveraltemperaturesaretabulatedhere.T(°C)
98.5 131.8 148.2 166.2 199.8 215.5p
*(mm Hg)
1 5 10 20 60 100*Coraputer problem.
(a)
Use
two-pointlinear interpolation toestimate the valueofp*atT =
185°C.(b) Write a computer subroutine to estimate the vapor pressure of 1-chlorotetradecane for any temperature between98.5°Cand 215.5°Cusing two-pointlinearinterpolation.
The
subroutine must determine which two tabulated temperatures bracket the given temperature, andapply the interpolation to estimatep*
(T).Then
write amain
program to read and store the val- ues of p* andT
givenin the tableand to generate a table ofvapor pressuresat temperaturesT =
100°C, 105°C,110°C, ...,215°C, callingyoursubroutine toestimate p* at each tempera- ture.Check
yourprogramusing theresultofpart(a).2.30. Sketchtheplotsdescribedbelow andcalculate the equationsfory(x)fromthe given information.
The
plotsareallstraightlines.Note
thatthe givencoordinatesrefertoabscissaandordinatevalues, notx
andy values. [Thesolutionofpart(a)isgivenasanexample.](a)
A
plot oflny versusx on rectangular coordinates passes through (1.0, 0.693) and (2.0, 0.0)(i.e.,atthefirstpointx
=
1.0andIny=
0.693).Solution: Iny
=
bx+
Ina=>
y=
aebxb
=
(lny2-
\nyl)/{x1-
x{)=
(0-
0.693)/(2.0-
1.0)=
-0.693Ina
=
lnvi-
bxx=
0.693+
0.693* 1.0=
1.386=>
a=
eim =
4.00
I
y
=
4.00e'°-693x(b)
A
semilogplotof y (logarithmicaxis)versusxpassesthrough(1,2)and(2, 1).(c)
A
log plotof y versusx passesthrough (1,2)and(2, 1).(d)
A
semilogplot ofxy(logarithmicaxis)versusyj x passes through(1.0,40.2)and(2.0,807.0).(e)
A
log plotof y2/xversus (x-
2) passesthrough(1.0,40.2)and(2.0,807.0).231. Statewhat you wouldplottoget a straightlineifexperimental(x, y)dataare tobecorrelatedbythe followingrelations,and whatthe slopesandintercepts
would
beinterms ofthe relationparameters.If
you
could equally welluse twodifferentkinds ofplots (e.g., rectangular or semilog),statewhat youwould
plotineachcase. [Thesolution to part(a) isgivenasan example.](a) y2
=
ae~b-/x.Solution:Constructasemilogplotof y2versus \j x ora plotofIn(y2)versus llx
on
rectangular coordinates. Slope=
-b,intercept=
Ina.(b) y
2
=
rax3—
n(c) 1/ln(y
-
3)=
(1+
afx)/b
(d) (y
+
l)2=
[a(x-
3)3]"1 (e) y
=
exp(aJx +
b)(f)
xy = WW*
2(g) y
=
[ax+
b/x]-12.32.
A
hygrometer,which measurestheamount
ofmoistureinagas stream,istobecalibratedusing the apparatusshown
here:Student Workbook
Air
Water