2^1 = K{T) ycoyH 2 o
1. Wet Basis => Dry Basis
4.8
Combustion
Reactions 143When
a fuel is burned, carbon in the fuel reacts toform
eitherC0
2 orCO, hydrogen
formsH
20,and
sulfurformsS0
2.At
temperaturesgreaterthan approximately 1800°C,some
of the nitrogenin theairreacts to
form
nitricacid(NO). A combustion
reactioninwhich CO
is
formed from
ahydrocarbon
is referred to as partialcombustion
orincompletecombustion
of thehydrocarbon.Examples:
C + o
2 ->co
2C
3H
8+
50
2—
3C0
2Complete combustion
ofcarbon 4H
20 Complete combustion
ofpropane
C
3H
8+ \Oi
-* 3CO +
4H
20
Partialcombustion
ofpropane
SOLUTION
Basis:100 mol Wet Gas
60.0
mol N
215.0
mol C0
210.0
mol Q
285.0
mol
drygas60.0
0.706
mol N
285.0
mol
drygas15.0
0.176
mol C0
285.0
_
mol
dry gas 10.00.118
mol 0
285.0 moldrygas
2.
Dry
BasisWet
Basis.An
Orsatanalysis (atechniqueforstackanalysis) yieldsthe followingdrybasiscomposition:N
265%
CO, 14%
CO 11%
0
210%
A
humiditymeasurement
showsthatthemole
fractionofH
20
inthe stackgasis0.0700. Calculate thestackgascompositionon
awetbasis.SOLUTION
Basis:100
lb-molesDry Gas
0.0700
lb-
m
°leH2 ° <=>
0.930 lb-m0kdrygas
lb-molewetgas lb-molewetgas
I
0.0700lb-mole
H
2Q/lb-mole wetgas_ 0Q753
lb-moleH
20
0.930lb-mole dry gas/lb-molewetgas " lb-mole dry gas
Hence
thegasintheassumed
basiscontainslb-moleH-,0
=
7.53lb-molesH
20
=
65.0lb-molesN
2100 lb-moles dry gas 0.0753 lb-mole
H
20
lb-mole drygas 100 lb-moles dry gas 0.650lb-mole
N
2lb-mole dry gas
(100)(0.140)lb-moles
C0
2=
14.0lb-molesC0
2(100)(0.110)lb-moles
CO =
11.0lb-molesCO
(100)(0.100) lb-moles
0
2=
10.0lb-moles0
2107.5lb-moleswetgas
The
molefractionsofeachstackgascomponent may now
easilybecalculated:7.53 lb-moles
H
2Q
lb-moleH
20
yn2o
= <mt
„ ,— =
0.070107.5 lb-moleswetgas ' lb-molewetgas'
"
4.8
Combustion
Reactions 145TEST
!•What
istheapproximate molar
composition ofair?What
istheapproximatemolar
ratioYOURSELF
ofN
2 to0
2 inair?(Answers,
p.657)
2.A
gascontains1mol H
2,1mol 0
2,and
2mol H
20.What
isthemolar
compositionofthis gason
awet
basis?On
adrybasis?3.
A
fluegas contains5mole% H
20. Calculate theratios (a)kmol
flue gas/kmolH
20.(b)
kmol
dryfluegas/kmolflue gas.(c)
kmol H
2Q/kmol
dryfluegas.4.8b Theoretical and Excess Air
If
two
reactants participateina reactionand one
isconsiderablymore
expensivethantheother, the usualpracticeis tofeedthelessexpensivereactantinexcess of the valuable one. Thishas theeffectof increasing theconversionofthevaluable reactantattheexpenseof thecostof the excess reactantand
additionalpumping
costs.The
extreme case ofan
inexpensive reactant is air,which
is free.Combustion
reactions are therefore invariablyrun withmore
airthan isneeded
tosupplyoxygen
in stoichiometric proportion to the fuel.The
following terms arecommonly
used to describe the quantities of fueland
airfed to a reactor.Theoretical
Oxygen: The moles
(batch)ormolar
flowrate(continuous) ofO? needed
forcom-
plete
combustion
ofall the fuelfed to the reactor, assuming that all carbon in the fuelisoxidizedto
C0
2and
all thehydrogen
is oxidizedtoH
20.Theoretical Air:
The
quantity ofairthatcontains the theoreticaloxygen.ExcessAir:
The amount by which
theairfed to the reactorexceedsthetheoreticalair.(molesair)fed
-
(molesair)theoreticalPercent ExcessAir:
x 100%
(4.8-1)(molesair) the0retical
If
you know
the fuelfeedrateand
the stoichiometricequation(s) forcompletecombustion
of the fuel,you
can calculate the theoretical0
2and
airfeed rates. Ifinadditionyou know
the actual feed rateofair,you
cancalculate thepercentexcess airfrom
Equation 4.8-1. Itisalso easyto calculate the airfeedratefrom
the theoretical airand
a given value of the percentage excess: if50%
excessairissupplied, forexample, then(molesair)fed
=
1.5 (molesair)theoreticaiEXAMPLEt4i8-2'
Theoreticaland Excess Air
One
hundred mol/h of butane(QHio)
and 5000 mol/h of air are fed into a combustion reactor.Calculate thepercent excessair.
SOLUTION
First, calculate the theoretical air from the feed rate of fuel and the stoichiometric equation for complete combustionof butane:C
4H
10+ A2Q
2—
4C0
2+
5H
20
("Oitheoretical
—
100mol C
4H,0 6.5mol 0
2 requiredh
mol
C4H10650
mol 0
2("air)theoretical
650mol
0
2 4.76mol
airh
mol 0
2=
3094mol
air146
Chapter
4Fundamentals
ofMaterialBalancesHence
%
excessair ("air)fed (wa ir)theoreticalX 100%
5000-
3094 3094X 100% = 61.6%
(^air)theoretical
Ifinsteadyou had beengiven
61.6%
excessair,youcouldhavecalculated thefeedrate ofairas ("air)fed=
l-616(/tair )theoreticai=
1.616(3094 mol/h)=
5000mol/h.Two
pointsofconfusionoftenarise inthe calculation oftheoreticaland
excessair,bothofwhich
arecausedby
ignoring thedefinitionsof these terms.1.
The
theoretical airrequiredtoburn
a given quantityof
fueldoes notdepend on how much
isactuallyburned.
The
fuelmay
notreactcompletely,and
itmay
reacttoform
bothCO
and CO2,
butthe theoreticalair is stillthatwhich would be
required to reactwithallof thefuel toform C0
2 only.2.
The
valueofthepercent excessairdepends
onlyon
the theoretical airand
theairfeedrate,and
noton how much O2
isconsumed
inthereactoror whether combustioniscompleteor partial.(Answers,
p.657)
TEST Methane
burnsinthe reactionsYOURSELF C H
4
+
2o
2 -*C0
2+
2H
20 CH
4+ §0
2 -»CO + 2H
20
One hundred
mol/hofmethane
isfedtoareactor.1.
What
isthetheoretical0
2 flow rate ifcompletecombustionoccursin thereactor?2.
What
is the theoretical0
2 flow rate assuming that only70%
of themethane
reacts?(Careful!)
3.
What
isthetheoreticalairflow rate?4. If
100%
excessairissupplied,what
istheflowrateofairentering the reactor?5. Ifthe actual flowrateofairissuchthat300
mol 0
2/henters thereactor,what
isthe percent excessair?CREATIVITY EXERCISES
Equipment Encyclopedia heattransfer
boilers
1. Years agoit
was common
to operateboilerfurnaceswithairfedin20%
excess ormore, while todayimproved
boiler designs enable the use of5-10%
excess air. Cite asmany
possiblenegativeconsequencesas
you
canthink offortheair-to-fuelfeedratiobeing(a) toolow and
(b) toohigh.2.
The
costsofpetroleumand
naturalgashave
increased dramaticallysince the early1970s,and
thereissome
question abouttheircontinued long-termavailability.Listasmany
al- ternative energy sources asyou
can think of, being as creative asyou
can,and
thengoback and
suggest possibledrawbacks
toeach one.4.8c Material Balances on Combustion Reactors
The
procedure for writingand
solvingmaterialbalancesforacombustion
reactoristhesame
asthat for
any
otherreactivesystem.Bear
inmind
these points,however:1.
When you draw and
labelthe flowchart,besure theoutletstream(thestack gas) includes (a) unreactedfuelunlessyou
aretold thatallthefuelisconsumed,
(b)unreacted oxygen,(c) water
and
carbon dioxide, aswell ascarbonmonoxide
iftheproblem
statementsaysany
ispresent,and
(d) nitrogenifthefuelisburned
withairand
notpure oxygen.4.8
Combustion
Reactions 1472.
To
calculatetheoxygen
feedratefrom
a specified percent excessoxygen
orpercentexcess air (bothpercentageshave
thesame
value,so itdoesn'tmatterwhich one
is stated),first calculate the theoreticalO2 from
the fuel feed rateand
the reaction stoichiometry for complete combustion, then calculate theoxygen
feedrateby
multiplying thetheoreticaloxygen by
(1+
fractionalexcessoxygen).3. Ifonly
one
reaction is involved, all three balancemethods
(molecular species balances, atomic species balances, extent of reaction) are equally convenient. Ifseveral reactions occursimultaneously,however —
suchascombustion
of afueltoform
bothCO and C0
2—
atomicspecies balancesare usually
most
convenient.EXAMPLE 4.&3\ Combustion of Ethane
Ethaneisburnedwith
50%
excessair.The
percentage conversionof theethaneis90%;
oftheethane burned.25%
reactstoformCO
andthebalancereacts toformC0
2.Calculatethemolarcomposition of thestackgas onadrybasisandthemole
ratioofwatertodrystackgas.SOLUTION
Basis:100 mol C
2H
6Fed
100 molC2H6 njtmoiC2HS) /i2(mol02) /i3(molN2)
50%excessair n4(molCO)
n6(molC02)
n6(molH20) n0(mol)
0.21 mol02/mol 0.79 molN2/mol
C2H6+ -£-0
2
—
- 2C02+3H20 C2H6+J-02
—
- 2C0+3H20Notes
1. Since noproduct stream
mole
fractions areknown,
subsequentcalculations are easierifindi- vidualcomponent amounts
ratherthana totalamount
and molefractionsare labeled.2.
The
composition ofairistaken tobe approximately21mole% 0
2,79mo!e% N
2.3. Ifthe ethane reacted completely, n\
would
be omitted. Sinceexcess airis supplied,0
2 must appearintheproduct stream.4. Inmaterialbalancecalculationson combustionprocessesitisreasonable toassumethatnitro-
genisinert
—
thatis,toneglect the traceamounts
ofNO, NO2,
andN
20
4 (collectivelyreferred toasNO*)
thatmightformintheburner.On
the otherhand,in environmental impactstud- iesNO* may
not automaticallybeneglected;traceamountsofnitrogenoxidesmay
havelittleimpact
on
the nitrogen balance butmay
haveasignificantpolluting effectiftheyarereleased intothe atmosphere.Degree-of-
Freedom
Analysis7
unknowns
(n0,«i,...,n6)
-
3 atomic balances(C,H,O) -
1N
2 balance-
1 excessairspecification (relatesn0tothe quantity of fuel fed)-
1 ethane conversionspecification-
1CO/C0
2 ratiospecification=
0 degrees offreedom50%
ExcessAir(n02 theoretical
=
100mol C
2H
6 3.50mol0
2 1 molC
2H
6=
350mol0
2J|50% excess
air
0.21no
=
1.50(350mol 0
2 )=>
n0=
2500molairfed90% Ethane
Conversion: (=> 10%
unreacted)«i
=
0.100(100mol C
2H
6 fed)=
I 10.0molC
2H
60.900(100
mol C
2H
6fed)=
90.0mol C
2H
6react25%
ConversiontoCO
(0.25
X
90.0)mol C
2H
6react toformCO
2mol CO
generated1
mol C
2H
6react45.0
mol CO
Nitrogen Balance: output
=
input«3
=
0.79(2500mol)Atomic Carbon
Balance: input=
output1975
mol N
2100
mol C
2H
62molC «,(molC
2H
6) 2 molC
«4(molCO)
1molC
1
mol C
2H
6 1mol C
2H
6 1mol CO
+
«5(molC0
2)ImolC
1
mol C0
2N
n\
=
10mol n4=
45mol n5 -= 135mol C0
2A
tornicHydrogen
Balance: input—
output100
mol C
2H
66molH
10mol C
2H
66molH
1
mol C
2H
6 1mol C
2H
6n6(mol
H
20) 2molH
1
mol H
20
I
n6
=
270mol H
20
Atomic Oxygen
Balance: input=
output 525mol 0
22molO
1 mol
0
2n2(mol
0
2) 2mol O
45mol CO
+
1molO
1
mol 0
2 1 molCO
^
135mol C0
22molO
1
mol C0
2n2
=
232mol 0
2+
270mol H
20
1mol O
1
mol H
20
4.8
Combustion
Reactions 149The
analysis of the stackgasisnow
complete. Summarizing:m = 10molC
2H
6«2
=
232 mol0
2n3
=
1974mol N
2n4
=
45mol CO
«5
=
135molCQ
2+
«6=
2396
mol
dry gas 270molH
2Q
2666
mol
totalHence
the stackgascompositionon
adrybasisisy\
=
y2
=
y*
ys
=
10
mol C
2H
62396
mol
dry gas 232mol Q
22396
mol
dry gas 1974mol N
22396
mol
dry gas 45mol CO
2396
mol
dry gas 135mol CQ
22396
mol
dry gas=
0.00417=
0.0970mol C
2H
6mol mol
Oi=
0.824=
0.019=
0.0563mol mol N
2mol mol CO
mol mol C0
2mol andthe moleratioofwatertodrystackgasis
270
mol H
2Q
2396
mol
drystackgas=
0.113mol H
20
mol
drystackgasEXAMPLE
4.8-4iIfa fuelof
unknown
compositionis burned,you may
be abletodeduce something
aboutits composition
by
analyzing thecombustion
productsand
writingand solving atomicspecies balances.The
procedureisillustrated in thenextexample.Combustion of a Hydrocarbon Fuel of Unknown Composition
A
hydrocarbongasisburnedwithair.The
dry-basisproduct gas compositionis1.5mole% CO, 6.0%
C0
2,8.2% 0
2,and84.3%N
2.Thereisnoatomicoxygeninthefuel.Calculatetheratioofhydrogen tocarbonin the fuelgasandspeculateon
whatthefuelmightbe.Then
calculatethepercentexcess airfedtothe reactor.SOLUTION
Basis:100 mol
ProductGas
Sincethemolecularcompositionofthefuelis
unknown, we
labelitsatomicspeciescomposition.We
alsorecognizethatsince the fuelisahydrocarbon, watermust be oneof thecombustionproducts.
nc(mol C) nH(mol H) na(molair)
0.21 mol02/mol 0.79 mol N2/mol
100moldrygas
0.015molCO/moldrygas 0.060mol C02/moldrygas 0.082mol02/moldrygas 0.843 mol N2/moldrygas
«w(molH20)
150
Chapter
4Fundamentals
of MaterialBalancesC + o
2— co
22C + 0
2—
*2CO 4H + 0
2— 2H
zO
Degree-of-FreedomAnalysis
4
unknowns
(«H,He,"a,«w)-3
independentatomic balances(C,H,O) -1 N
2balance=
0degrees offreedomA
solutionprocedurethatdoesnotrequire solvingsimultaneous equationsisasfollows:iV2