• Tidak ada hasil yang ditemukan

Appendix: Effects of Correlation between Collisional Stress and

Dalam dokumen Effect and Motility-Induced Phase Separation (Halaman 104-110)

Chapter IV: Mechanical Theory of Phase Coexistence

4.8 Appendix: Effects of Correlation between Collisional Stress and

which is not satisfied in [60]. Indeed, eq. (4.99) shows why∫

𝑑𝑛1/𝑈instead ofΠ𝑐 could have been used in [60] as an integrating factor to determine the binodal within our framework; the correct integrating factorΠ𝑐can be expressed as the integral of 1/𝑈under aforementioned Speck’s assumption.

4.8 Appendix: Effects of Correlation between Collisional Stress and Orien-

<latexit sha1_base64="VHse0T5AsJ4YtdhcbSOTP1N3NQQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPBi94q2A9oY9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2L1gOOE+xEdKBEKRtFKrW5dPGZs0itX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx27oScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahkg3BW3x5mTTPqt5l9fz+olK7y+MowhEcwyl4cAU1uIU6NIDBCJ7hFd6cxHlx3p2PeWvByWcO4Q+czx9a2I+d</latexit>

c

<latexit sha1_base64="QbQ5TBnV0E8NlWPzajt/c3eyKLs=">AAACCXicbZDLSsNAFIZPvNZ6i7p0M1gEQSiJiroRCm50V8FeoI1lMp22Q2eSMDNRSsjWja/ixoUibn0Dd76N0yYLbf1h4OM/53Dm/H7EmdKO823NzS8sLi0XVoqra+sbm/bWdl2FsSS0RkIeyqaPFeUsoDXNNKfNSFIsfE4b/vByXG/cU6lYGNzqUUQ9gfsB6zGCtbE6NmpX2V2CiU7RRcYkRYcZqQcm0o5dcsrORGgW3BxKkKvasb/a3ZDEggaacKxUy3Ui7SVYakY4TYvtWNEIkyHu05bBAAuqvGRySYr2jdNFvVCaF2g0cX9PJFgoNRK+6RRYD9R0bWz+V2vFunfuJSyIYk0Dki3qxRzpEI1jQV0mKdF8ZAATycxfERlgaYIx4RVNCO70ybNQPyq7p+Xjm5NS5TqPowC7sAcH4MIZVOAKqlADAo/wDK/wZj1ZL9a79ZG1zln5zA78kfX5A02KmX4=</latexit>

act

= ⇧

c

+ ⇧

swim <latexit sha1_base64="OpcP5lbmFa08FPNtkUyrpd7IItc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix40VsL9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHssHM07Qj+hA8pAzaqxUd3ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDGz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveVeWiflmu3udxFOAYTuAMPLiGKtxBDRrAAOEZXuHNeXRenHfnY9664uQzR/AHzucPfdCMww==</latexit>

0

<latexit sha1_base64="FmUnEGw60hHUUQ5NWE26JokDvYs=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJUZFXVZcKO7CvYBnaFk0kwbmklCkpGWsQt/xY0LRdz6G+78G9N2Ftp64MLhnHu5955IMqqN5307haXlldW14nppY3Nre8fd3WtokSpM6lgwoVoR0oRRTuqGGkZaUhGURIw0o8H1xG8+EKWp4PdmJEmYoB6nMcXIWKnjHgRJJIaZZkKSMQyQlEoMod9xy17FmwIuEj8nZZCj1nG/gq7AaUK4wQxp3fY9acIMKUMxI+NSkGoiER6gHmlbylFCdJhN7x/DY6t0YSyULW7gVP09kaFE61ES2c4Emb6e9ybif147NfFVmFEuU0M4ni2KUwaNgJMwYJcqgg0bWYKwovZWiPtIIWxsZCUbgj//8iJpnFb8i8rZ3Xm5epvHUQSH4AicAB9cgiq4ATVQBxg8gmfwCt6cJ+fFeXc+Zq0FJ5/ZB3/gfP4AFm6WKg==</latexit>

slope⇡1

<latexit sha1_base64="zP7qZ0JqH5uABuUNi8tlx49PPa0=">AAAB/3icbVC7TsMwFHXKq5RXAImFxaJCYqoSQMBYiQW2ItGH1ITKcZ3Uqu1EtgOqQgZ+hYUBhFj5DTb+BjftAC1HutLxOffK954gYVRpx/m2SguLS8sr5dXK2vrG5pa9vdNScSoxaeKYxbITIEUYFaSpqWakk0iCeMBIOxhejv32PZGKxuJWjxLicxQJGlKMtJF69p7XoHeZeqA8h14UweKJ855ddWpOAThP3CmpgikaPfvL68c45URozJBSXddJtJ8hqSlmJK94qSIJwkMUka6hAnGi/KzYP4eHRunDMJamhIaF+nsiQ1ypEQ9MJ0d6oGa9sfif1011eOFnVCSpJgJPPgpTBnUMx2HAPpUEazYyBGFJza4QD5BEWJvIKiYEd/bkedI6rrlntZOb02r9ehpHGeyDA3AEXHAO6uAKNEATYPAInsEreLOerBfr3fqYtJas6cwu+APr8wfFGpX5</latexit>

swimc

<latexit sha1_base64="LQGK255fM9z50tIS92jY5yGj8GU=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5KoqMuCG91VsA9oYplMJ+3QeYSZiaWEuvFX3LhQxK1/4c6/cdpmoa0HLhzOuZd774kSRrXxvG9nYXFpeWW1sFZc39jc2nZ3dutapgqTGpZMqmaENGFUkJqhhpFmogjiESONqH819hsPRGkqxZ0ZJiTkqCtoTDEyVmq7+0GV3md6QPkIBop2ewYpJQfQa7slr+xNAOeJn5MSyFFtu19BR+KUE2EwQ1q3fC8xYYaUoZiRUTFINUkQ7qMuaVkqECc6zCYfjOCRVTowlsqWMHCi/p7IENd6yCPbyZHp6VlvLP7ntVITX4YZFUlqiMDTRXHKoJFwHAfsUEWwYUNLEFbU3gpxDymEjQ2taEPwZ1+eJ/WTsn9ePr09K1Vu8jgK4AAcgmPggwtQAdegCmoAg0fwDF7Bm/PkvDjvzse0dcHJZ/bAHzifP3P+luo=</latexit>

swim ! 0

<latexit sha1_base64="loqDufc2j/QAIkKqUPQUXWsJ8io=">AAAB/nicdVDLSgNBEJz1bXxFxZOXwSB4WnbN05vgRW8KRoUkhNlJxwyZnVlmesWwBPwVLx4U8ep3ePNvnMQIKlrQUFR1090VJVJYDIJ3b2p6ZnZufmExt7S8srqWX9+4sDo1HOpcS22uImZBCgV1FCjhKjHA4kjCZdQ/GvmXN2Cs0OocBwm0YnatRFdwhk5q57eaCLeYKU25NgbkWB6284XAD0pBuVqjgV8s7xfDkiOVg9pBtUpDPxijQCY4beffmh3N0xgUcsmsbYRBgq2MGRRcwjDXTC0kjPfZNTQcVSwG28rG5w/prlM6tKuNK4V0rH6fyFhs7SCOXGfMsGd/eyPxL6+RYrfWyoRKUgTFPxd1U0lR01EWtCMMcJQDRxg3wt1KeY8ZxtEllnMhfH1K/ycX+35Y8YtnpcLhySSOBbJNdsgeCUmVHJJjckrqhJOM3JNH8uTdeQ/es/fy2TrlTWY2yQ94rx+dUpac</latexit>

no correlation

<latexit sha1_base64="3mqqJe5qgficgCv3nzsrmSajCQo=">AAACAHicdVDJSgNBEO2JW4xb1IMHL41B8BQmCzHeAl70FsEskITQ06kkTXoWumvUMOTir3jxoIhXP8Obf2NnMoKKPih4vFdFVT0nkEKjbX9YqaXlldW19HpmY3Nreye7u9fUfqg4NLgvfdV2mAYpPGigQAntQAFzHQktZ3I+91s3oLTwvWucBtBz2cgTQ8EZGqmfPegi3GF0K3BMua8UyNiY9bM5O39WLVdKNrXzdow5KZbsYoUWEiVHEtT72ffuwOehCx5yybTuFOwAexFTKLiEWaYbaggYn7ARdAz1mAu6F8UPzOixUQZ06CtTHtJY/T4RMVfrqeuYTpfhWP/25uJfXifEYbUXCS8IETy+WDQMJUWfztOgA6GAo5wawrgS5lbKx0wxjiazjAnh61P6P2kW84VKvnRVztUukzjS5JAckRNSIKekRi5InTQIJzPyQJ7Is3VvPVov1uuiNWUlM/vkB6y3Twzyl2I=</latexit>

with correlation

Figure 4.7: A schematic ofΠ𝑎 𝑐𝑡𝑐plot with a van-der Waals-like loop. The corre- lation between the collisional stress and orientation leads to∫

Π𝑎 𝑐𝑡−Π𝑐𝑜 𝑒𝑥𝑎 𝑐𝑡 𝑑Π𝑐 > 0 resulting in a drop in the coexistence active pressure.

bulk phases after multiplying it with𝑑Π𝑐/𝑑 𝑧gives

Π2𝑐

Π1𝑐

Π𝑎 𝑐𝑡−Π𝑐𝑜 𝑒𝑥𝑎 𝑐𝑡

𝑑Π𝑐 = 𝜐 2(𝑑−1)𝜁 𝐷𝑅

Π2𝑐

Π1𝑐

𝑛 Π𝑐

𝑑 𝑑Π𝑐

"

Π𝑐 𝑛

𝑑Π𝑐 𝑑 𝑧

2# 𝑑Π𝑐

=− 𝜐 2(𝑑−1)𝜁 𝐷𝑅

Π𝑐

2

Π𝑐1

𝑑 𝑑Π𝑐

𝑛 Π𝑐

Π𝑐

𝑛 𝑑Π𝑐

𝑑 𝑧 2

𝑑Π𝑐

= 𝜐

2(𝑑−1)𝜁 𝐷𝑅

Π2𝑐

Π𝑐

1

𝑑 𝑑Π𝑐

Π𝑐 𝑛

𝑑Π𝑐 𝑑 𝑧

2

𝑑Π𝑐,

(4.102) where Π𝑐

1,2 are collisional pressures at the two points inside bulk phases and the second equation is obtained by performing the integration by parts. SinceΠ𝑐 and Π𝑐/𝑛 are both monotonic increasing functions of the number density, the whole integrand inside the last integral is positive. The sign of the integral indicates the predicted coexistence active pressure should be lower with the collisional-stress- orientation correlation than without it as described in fig. 4.7. It follows that collisional pressures (or corresponding number densities) of the coexisting phases are also predicted to be smaller. Because the compressibility increases with the density, the effect of change in the collisional pressure on the corresponding density is larger for large density. Therefore, the decrease in the coexisting density is more prominent in the gas-like region while it is almost negligible for the dense region.

91

0.1 0.2 0.3 0.4 0.5 0.6 20

40 60 80

100 120 140 160 180 200

300 320 340 360 380 400

100 120 140 160 180 200

300 320 340 360 380 400

100 120 140 160 180 200

300 320 340 360 380 400

100 120 140 160 180 200

300 320 340 360 380

<latexit sha1_base64="MJ5H9dZ22dcsIs9fPHccU6a0X7I=">AAAGbnicbdTdTtswFABgw0bH2B9s0m6maWEwiSvUbNO2m0mI8jP+RIEVKuEKOY6bhtpJiN1Cifoau91ea2+xR1hyEk5KIVLV8x37yI4d24mkr021+ndi8sHDqcqj6cczT54+e/5idu7lsQ57MRcNHsowbjpMC+kHomF8I0UzigVTjhQnTreWtZ/0Raz9MPhpBpFoKeYFftvnzKQpSnuR9mUYWN+t6tnsQnW5Co91N7CLYIEUT/1sbmqXuiHvKREYLpnWp3Y1Mq2ExcbnUgxnaE+LiPEu88RpGgZMCd1KYNJD60Oaca12GKe/wFiQHa1ImNJ6oJy0p2Kmo8fbsuS9bY66NXKS9TBhKPXYhEz7Wyvxg6hnRMDz+bR70jKhlS2U5fqx4EYO0oDx2E9fyeIdFjNu0uWcoYG45KFSLHATasTw1G4lVDnhVUKdULrZmNaitWBbi8PheGd9f++E+iarGN4pYX1vpGSRShZ4UmR9Y4igwBVt6geBiBM6T7kbGjpfZB2Rb3I2dkIL3JQ4/XS7OsKwvPVG2GxYL29JA0yqc8id3yQ4k/Ukyf6s+kiuVuRqWLgGdWvoBriBXgevozfAG+g6GMdwmuAmehe8i94Cb6HH5u1cga/Q+SqUb++AHfQqeBU9AA/QXXC3rBeQEOVqg/vofHHLlb0EX6KBbaT2PVXsFITYMD7OEfgIHYNjdP4xlF+BAis0fKiJiz4EH6L3wHvoA/AB+hp8jd4Gb6N3wDvli4E12gN76AgcoW2wjd4Eb6IvwBfoGrj8EJmMOsVCQlhOHI/C9egxCJXwijyE5UKXO3J0a0f2y4r90YpNptLDCfdAQrNjmiagLL1/7fHb9m5w/HHZ/rL86eDzwspqcRNPkzfkPVkiNvlKVsgPUicNwklEfpHf5M/Uv8rrytvKu7zr5ERR84rceipL/wGHcUoX</latexit>

= 0

<latexit sha1_base64="TP+v53bSgRRsTCwTUFwHoDh3oaE=">AAAGbnicbdTdTtswFABgw0bH2B9s0m6maWEwiSvUbNO2m0mI8jP+RIEVKuEKOY6bhtpJiN1Cifoau91ea2+xR1hyEk5KIVLV8x37yI4d24mkr021+ndi8sHDqcqj6cczT54+e/5idu7lsQ57MRcNHsowbjpMC+kHomF8I0UzigVTjhQnTreWtZ/0Raz9MPhpBpFoKeYFftvnzKQpSnuR9mUYWN8t+2x2obpchce6G9hFsECKp342N7VL3ZD3lAgMl0zrU7samVbCYuNzKYYztKdFxHiXeeI0DQOmhG4lMOmh9SHNuFY7jNNfYCzIjlYkTGk9UE7aUzHT0eNtWfLeNkfdGjnJepgwlHpsQqb9rZX4QdQzIuD5fNo9aZnQyhbKcv1YcCMHacB47KevZPEOixk36XLO0EBc8lApFrgJNWJ4arcSqpzwKqFOKN1sTGvRWrCtxeFwvLO+v3dCfZNVDO+UsL43UrJIJQs8KbK+MURQ4Io29YNAxAmdp9wNDZ0vso7INzkbO6EFbkqcfrpdHWFY3nojbDasl7ekASbVOeTObxKcyXqSZH9WfSRXK3I1LFyDujV0A9xAr4PX0RvgDXQdjGM4TXATvQveRW+Bt9Bj83auwFfofBXKt3fADnoVvIoegAfoLrhb1gtIiHK1wX10vrjlyl6CL9HANlL7nip2CkJsGB/nCHyEjsExOv8Yyq9AgRUaPtTERR+CD9F74D30AfgAfQ2+Rm+Dt9E74J3yxcAa7YE9dASO0DbYRm+CN9EX4At0DVx+iExGnWIhISwnjkfhevQYhEp4RR7CcqHLHTm6tSP7ZcX+aMUmU+nhhHsgodkxTRNQlt6/9vhtezc4/rhsf1n+dPB5YWW1uImnyRvyniwRm3wlK+QHqZMG4SQiv8hv8mfqX+V15W3lXd51cqKoeUVuPZWl/41wShg=</latexit>

= 1

<latexit sha1_base64="T55LoFcgPWlxqK2qIWP685m/yrI=">AAAGb3icbdTdTtswFABgw0bH2B9sF7uYNIWVSdsNarZp280kRPkZf6LAyirhCjmOm4baSYjdQon6HLvdHmuPsTdYchJOSiFS1fMd+8iOHduJpK9NrfZ3avre/ZnKg9mHc48eP3n6bH7h+bEO+zEXTR7KMG45TAvpB6JpfCNFK4oFU44UP51ePWv/ORCx9sPghxlGoq2YF/gdnzOTptq0H2lfhoH1zbJrp/PV2nINHut2YBdBlRRP43RhZpe6Ie8rERgumdYndi0y7YTFxudSjOZoX4uI8R7zxEkaBkwJ3U5g1iPrbZpxrU4Yp7/AWJAdr0iY0nqonLSnYqarJ9uy5J1tjroxcpL1MGEo9cSETOdrO/GDqG9EwPP5dPrSMqGVrZTl+rHgRg7TgPHYT1/J4l0WM27S9ZyjgbjgoVIscBNqxOjEbidUOeFlQp1QutmY1pJVta2l0Wiys767d0J9k1WMbpWwgTdWskQlCzwpsr4xRFDgig71g0DECV2k3A0NXSyyjsh3ORs7oQWuS5xBul1dYVjeei1sNqyft6QBJtUZ5M6uE5zJRpJkf1ZjLFcvcnUsXIO6NXQT3ESvg9fRG+ANdAOMYzgtcAu9C95Fb4G30BPzdi7Bl+h8Fcq3d8AOehW8ih6Ch+geuFfWC0iIcrXBA3S+uOXKXoAv0MAOUvueKnYKQmyYHOcIfISOwTE6/xjKr0CBFRo+1MRFH4IP0XvgPfQB+AB9Bb5Cb4O30TvgnfLFwBrtgT10BI7QNthGb4I30efgc3QdXH6ITEbdYiEhLCeOR+Fq/BiESnhFHsJyocsdObqxI/tlxf54xSZT6eGEeyCh2TFNE1CW3r/25G17Ozj+sGx/Xv548Km6slrcxLPkFXlD3hGbfCEr5DtpkCbh5Jz8Ir/Jn5l/lZeV1xUr7zo9VdS8IDeeyvv/2thKUg==</latexit>

= 10

<latexit sha1_base64="kp/uUSpqrl0vuZXuc3fRwU71raM=">AAAGdXicbdRbT9swFABgw0bH2A22x2lSWNm0J9awadvLJES5jJsosLJKpEOO46ahdhJit6VY/Sl73X7Tfslel5yGk1KIVPV8xz6yY8d2YxEoXan8nZq+d3+m9GD24dyjx0+ePptfeH6iom7CeJ1FIkoaLlVcBCGv60AL3ogTTqUr+A+3U83af/R4ooIo/K4HMW9K6odBK2BUp6mz+QWnG6tARKH11bIrP83K8Gy+XFmuwGPdDuw8KJP8qZ0tzOw5XsS6koeaCarUqV2JddPQRAdM8OGc01U8pqxDfX6ahiGVXDUNzH1ovUkzntWKkvQXaguy4xWGSqUG0k17SqrbarItS97Z5sobI5ush44ioSYmpFtfmiYI467mIRvNp9UVlo6sbL0sL0g402KQBpQlQfpKFmvThDKdruqcE/I+i6SkoWcczYendtM40o0ujeNGwsvGtJassm0tDYeTndXdvY0T6KxieKuE9vyxkiVH0NAXPOubQAQFHm85QRjyxDiLDvMi7SzmWZePdjob2zg5rkvcXrpdba7pqPVa2Kxpd9SSBpiU55A7v04wKmrGZH9WbSxXzXNVLFyHunV0HVxHb4A30JvgTXQNjGO4DXADvQfeQ2+Dt9ET83YvwZfo0SoUb++CXfQaeA09AA/QHXCnqOeQ4MVqg3vo0eIWK9sH99HAFlIFvsx3CkJsmBznGHyMTsAJevQxFF+BBEs0fKjGQx+Bj9D74H30IfgQfQW+Qu+Ad9C74N3ixcAK7YN9dAyO0TbYRm+Bt9AX4At0FVx8iFTE7XwhISwmjkfhavwYRJL7eR7CYqGLHTm+sSMHRcXBeMUWlenhhHvAONkxTRNQlt6/9uRtezs4WVm2Py1/OPxYXl3Lb+JZ8pK8Ju+ITT6TVfKN1EidMNInv8hv8mfmX+lVaan0dtR1eiqveUFuPKX3/wHGB0wz</latexit>

= 102

Figure 4.8: Binodals obtained by the mechanical theory for MIPS in 3D with the stress-orientation correlation𝜐∇ · (𝝈𝑐𝒎/𝑛)included in the polar order flux. Here, 𝜐 is a parameter used to systematically control the weight of the correlation term in the in the flux. The correlation between the stress and orientation increases the width of the binodal as predicted. However, the widening effect saturates rapidly even at𝜐 =1.

Consequently, the predicted binodal on the activity-density plane has a broader binodal region due to the stretched gas-like branch in the presence of the collisional- stress-orientation correlation. Figure 4.8 shows that the correlation term broadens the binodal and confirms our prediction. The effect of the correlation between the stress and orientation saturates rapidly even at𝜐 ≈ 1 and does not significantly alter the binodal.

References

[1] H. B. Callen,Thermodynamics and an introduction to thermostatistics, 1998.

[2] T. L. Hill,Statistical mechanics: principles and selected applications. Courier Corporation, 2013.

[3] M. Kardar,Statistical physics of fields. Cambridge University Press, 2007.

[4] J. Tailleur and M. Cates, “Statistical mechanics of interacting run-and-tumble bacteria,”Physical review letters, vol. 100, no. 21, p. 218 103, 2008.

[5] M. E. Cates and J. Tailleur, “Motility-induced phase separation,”Annu. Rev.

Condens. Matter Phys., vol. 6, no. 1, pp. 219–244, 2015.

[6] Y. Fily and M. C. Marchetti, “Athermal phase separation of self-propelled par- ticles with no alignment,”Physical review letters, vol. 108, no. 23, p. 235 702, 2012.

[7] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, “Living crystals of light-activated colloidal surfers,” Science, vol. 339, no. 6122, pp. 936–940, 2013.

[8] S. A. Mallory, A. K. Omar, and J. F. Brady, “Dynamic overlap concentration scale of active colloids,”Physical Review E, vol. 104, no. 4, p. 044 612, 2021.

[9] S. C. Takatori and J. F. Brady, “Towards a thermodynamics of active matter,”

Physical Review E, vol. 91, no. 3, p. 032 117, 2015.

[10] H. Row and J. F. Brady, “Reverse osmotic effect in active matter,” Physical Review E, vol. 101, no. 6, p. 062 604, 2020.

[11] F. Schweitzer, W. Ebeling, and B. Tilch, “Complex motion of brownian particles with energy depots,”Physical Review Letters, vol. 80, no. 23, p. 5044, 1998.

[12] W. Ebeling, F. Schweitzer, and B. Tilch, “Active brownian particles with energy depots modeling animal mobility,”BioSystems, vol. 49, no. 1, pp. 17–

29, 1999.

[13] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier,

“Active brownian particles-from individual to collective stochastic dynamics p,”The European Physical Journal Special Topics, vol. 202, 2012.

[14] S. C. Takatori and J. F. Brady, “Forces, stresses and the (thermo?) dynamics of active matter,”Curr. Opin. Colloid Interface Sci., vol. 21, pp. 24–33, Feb.

2016.

[15] S. C. Takatori and J. F. Brady, “Towards a thermodynamics of active matter,”

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 91, no. 3, p. 32 117, 2015.

[16] A. P. Solon, J. Stenhammar, M. E. Cates, Y. Kafri, and J. Tailleur, “General- ized thermodynamics of motility-induced phase separation: Phase equilibria, laplace pressure, and change of ensembles,”New Journal of Physics, vol. 20, no. 7, p. 075 001, 2018.

[17] S. Paliwal, J. Rodenburg, R. van Roij, and M. Dijkstra, “Chemical potential in active systems: Predicting phase equilibrium from bulk equations of state?”

New Journal of Physics, vol. 20, no. 1, p. 015 003, 2018.

[18] S. Hermann, P. Krinninger, D. de Las Heras, and M. Schmidt, “Phase co- existence of active brownian particles,” Physical Review E, vol. 100, no. 5, p. 052 604, 2019.

[19] J. Guioth and E. Bertin, “Lack of an equation of state for the nonequilibrium chemical potential of gases of active particles in contact,” The Journal of Chemical Physics, vol. 150, no. 9, p. 094 108, 2019.

[20] T. F. Farage, P. Krinninger, and J. M. Brader, “Effective interactions in active brownian suspensions,”Physical Review E, vol. 91, no. 4, p. 042 310, 2015.

[21] A. P. Solon, M. E. Cates, and J. Tailleur, “Active brownian particles and run- and-tumble particles: A comparative study,”The European Physical Journal Special Topics, vol. 224, no. 7, pp. 1231–1262, 2015.

[22] J. Tailleur and M. E. Cates, “Statistical mechanics of interacting run-and- tumble bacteria,”Phys. Rev. Lett., vol. 100, no. 21, p. 218 103, 2008.

[23] J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo, and M. E. Cates,

“Continuum theory of phase separation kinetics for active brownian particles,”

Physical review letters, vol. 111, no. 14, p. 145 702, 2013.

[24] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D. Marenduzzo, and M. E. Cates, “Scalar𝜑4 field theory for active-particle phase separation,”

Nature communications, vol. 5, no. 1, pp. 1–9, 2014.

[25] T. Speck, J. Bialké, A. M. Menzel, and H. Löwen, “Effective cahn-hilliard equation for the phase separation of active brownian particles,” Physical Review Letters, vol. 112, no. 21, p. 218 304, 2014.

[26] J. W. Gibbs, “On the equilibrium of heterogeneous substances,” 1879.

[27] J. v. Waals, “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,”Journal of Statistical Physics, vol. 20, no. 2, pp. 200–244, 1979.

[28] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. i. interfa- cial free energy,”The Journal of chemical physics, vol. 28, no. 2, pp. 258–267, 1958.

[29] A. J. Yang, P. D. Fleming III, and J. H. Gibbs, “Molecular theory of surface tension,” The Journal of Chemical Physics, vol. 64, no. 9, pp. 3732–3747, 1976.

[30] D. Korteweg, “Archives neerl,”Sci. Exacts. Nat, vol. 6, no. 1, 1904.

[31] E. C. Aifantis and J. B. Serrin, “The mechanical theory of fluid interfaces and maxwell’s rule,”Journal of colloid and interface science, vol. 96, no. 2, pp. 517–529, 1983.

[32] J.-P. Hansen and I. R. McDonald,Theory of simple liquids: with applications to soft matter. Academic press, 2013.

[33] J. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics,” The Journal of chemical physics, vol. 18, no. 6, pp. 817–829, 1950.

[34] H. Davis and L. Scriven, “Stress and structure in fluid interfaces,”Advances in Chemical Physics, vol. 49, pp. 357–454, 1982.

[35] J. G. Kirkwood and F. P. Buff, “The statistical mechanical theory of surface tension,”The Journal of Chemical Physics, vol. 17, no. 3, pp. 338–343, 1949.

[36] A. K. Omar, Z.-G. Wang, and J. F. Brady, “Microscopic origins of the swim pressure and the anomalous surface tension of active matter,” Phys. Rev. E, vol. 101, no. 1, p. 012 604, 2020.

[37] W. Noll, “The derivation of the fundamental equations of the thermomechan- ics of continua from statistical mechanics,” Journal of Rational Mechanics and Analysis, vol. 4, pp. 627–646, 1955.

[38] R. B. Lehoucq and A. Von Lilienfeld-Toal, “Translation of walter noll’s

“derivation of the fundamental equations of continuum thermodynamics from statistical mechanics”,”Journal of Elasticity, vol. 100, no. 1-2, pp. 5–24, 2010.

[39] W. Yan and J. F. Brady, “The force on a boundary in active matter,”Journal of Fluid Mechanics, vol. 785, 2015.

[40] D. Saintillan and M. J. Shelley, “Theory of active suspensions,” inComplex Fluids in biological systems, Springer, 2015, pp. 319–355.

[41] S. C. Takatori, W. Yan, and J. F. Brady, “Swim pressure: Stress generation in active matter,”Physical review letters, vol. 113, no. 2, p. 028 103, 2014.

[42] J. M. Epstein, K. Klymko, and K. K. Mandadapu, “Statistical mechanics of transport processes in active fluids. ii. equations of hydrodynamics for active brownian particles,”The Journal of chemical physics, vol. 150, no. 16, p. 164 111, 2019.

[43] H. H. Woodson and J. Melcher,Electromechanical dynamics.(part2), 1968.

[44] A. Patch, D. M. Sussman, D. Yllanes, and M. C. Marchetti, “Curvature- dependent tension and tangential flows at the interface of motility-induced phases,”Soft matter, vol. 14, no. 36, pp. 7435–7445, 2018.

[45] J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, “Negative interfacial ten- sion in phase-separated active brownian particles,” Physical review letters, vol. 115, no. 9, p. 098 301, 2015.

[46] R. van Damme, J. Rodenburg, R. van Roij, and M. Dijkstra, “Interparticle torques suppress motility-induced phase separation for rodlike particles,”

The Journal of Chemical Physics, vol. 150, no. 16, p. 164 501, 2019. doi:

10.1063/1.5086733.

[47] A. Wysocki, A. K. Dasanna, and H. Rieger,Interacting particles in an activity landscape, 2022. doi:10.48550/ARXIV.2204.01029.

[48] A. K. Omar, Y. Wu, Z.-G. Wang, and J. F. Brady, “Swimming to stability:

Structural and dynamical control via active doping,”ACS nano, vol. 13, no. 1, pp. 560–572, 2018.

[49] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E. Cates, “Activity- induced phase separation and self-assembly in mixtures of active and passive particles,”Physical review letters, vol. 114, no. 1, p. 018 301, 2015.

Dalam dokumen Effect and Motility-Induced Phase Separation (Halaman 104-110)