Chapter II: Active Matter with Spatially Varying Transport Properties
2.5 Transient Behavior of Microswimmers with Abrupt Variation in Ac-
speed. We once again note that the slight discrepancy in the number density at high ππ = 102 results from the πΈ=0-closure used to describe the boundary layers not from the singular perturbation analysis. The singular perturbation solution is valid as long as the sizes of the two regions are larger than the boundary-layer thickness:
Ξπ β« π·π1/π1and(1βΞ)π β« π·π2/π2. When the activity is high (ππ > 102) the accuracy can be improved by accounting for the nematic field associated with rapid changes of the number density and polar order inside the boundary layers [15].
2.5 Transient Behavior of Microswimmers with Abrupt Variation in Activity
in the properties in section 2.2 (see Fig. 2.1) in order to study the effect of an abrupt change in transport properties. Since the translational diffusivity just smears out spatial gradients, purely active particles (π·π =0) are considered in order to understand the essential physics. The moment equations closed byπΈ=0are
π ππ
π π‘
+ β Β· ππ,π =0, ππ,π =ππππ (2.50)
πππ
π π‘
+ β Β· ππ,π + (πβ1)π·π ,πππ =0, ππ,π = 1 π
πππππ°, (2.51) where subscriptsπ(=1 or 2)represents the index of regions. We discuss the validity of the assumption πΈ = 0 later in this section. For mathematical simplicity we consider an instantaneous infinite line source of particles with random orientations.
The particles are initially located at at the interface of the two regions (π₯ =0) and released at π‘ = 0. The corresponding initial conditions are π1 = π2 = πΏ(π₯) and π1= π2 =0atπ‘=0. Also at the interface the fluxes are continuous: π1π1 =π2π2 and π1π1 = π2π2 at π₯=0. Finally particles swim into an infinite free space so ππβ0 and ππβ0as|π₯| β β. The associated telegraph equation for each region is
π2ππ
π π‘2
+ (πβ1)π·π ,π
π ππ
π π‘
= π2
π
π
β2ππ . (2.52)
For the telegraph equation (2.52) the initial and boundary conditions for the polar order should be rewritten in terms of the number density. From eq. (2.50) the initial condition for the polar order can be expressed as an initial condition for the number densityπ ππ/π π‘=0 atπ‘=0. Also by integrating eq. (2.50) over each region and using the boundary condition for the polar order, we obtain an integral condition for the particle conservation π1+π2 =1, where π1 =β«0
ββπ1 ππ₯ and π2 = β«β
0 π2 ππ₯ are the fractions of particles in regions 1 (π₯ <0) and 2 (π₯ β₯ 0).
Laplace transforming the telegraph equation (2.52) in time we obtain π 2πΛπ + (πβ1)π·π ,ππ πΛπ =
π2
π
π
π2πΛπ
π π₯2
, (2.53)
where Λππ(π₯ , π ) is the transformed number density. The equation is easily solved to give
Λ
ππ(π₯ , π ) =πΛπ(0, π )exp 1
ππ
βοΈ
π(π 2+ (πβ1)π·π ,ππ )
. (2.54)
In order to check the partitioning of particles we integrate the number density in each region and use the convolution theorem to obtain
ππ(π‘) = 1
β π
β« π‘
0
ππππ(0, π‘β²)exp
βπβ1
2 π·π ,π(π‘βπ‘β²))
πΌ0
πβ1
2 π·π ,π(π‘βπ‘β²)
π π‘β². (2.55)
<latexit sha1_base64="urueFNGhL0ara8SCkZQLJTdpLjs=">AAAGe3icbdRbT9swFABgw0bH2A22hz3sJaxMmiaEGnZ9mYQol3ETBVaoRKrKcdw0NE5C7BaKlV+z1+0H7cdMWnKanpRCpKrnO/aR41vsyPekqlT+Tk0/eDhTejT7eO7J02fPX8wvvDyVYS9mvM5CP4wbNpXc9wJeV57yeSOKORW2z8/sbjVrP+vzWHph8FMNIt4U1A28tseoSlOt+deWor2WPl42E+O7McJq0povV1Yq8Bh3AzMPyiR/aq2FmX3LCVlP8EAxn0p5blYi1dQ0Vh7zeTJn9SSPKOtSl5+nYUAFl00NM0iMd2nGMdphnP4CZUB2vEJTIeVA2GlPQVVHTrZlyXvbbHFrZJ31UGHoy4kXUu1vTe0FUU/xgA3fp93zDRUa2aoZjhdzpvxBGlAWe+mUDNahMWUqXds5K+BXLBSCBo62FE/Ozaa2hB1ea8sOfScb01gyyqaxlCSTneX9vbXlqawiuVNC++5YyZLl08D1edY3hggKHN62vCDgsbYWLeaEylrMszaPpOeHQTa2tnKMSux+ul0druiwdSRsTo/HsCUNMCkuIHcxSjDq17TO/ozaWK6a56pYuAF1G+g6uI7eBG+it8Bb6BoYx7Ab4AZ6H7yP3gHvoCfe274GX6OHq1DM3gbb6HXwOnoAHqC74G5RzyHBi9UG99HDxS1W9gp8hQa2kdJzRb5TEGLD5Dgn4BN0DI7Rw8NQnAIBFmg4qNpBH4OP0QfgA/QR+Ah9A75B74J30XvgvWJiYIl2wS46AkdoE2yit8Hb6EvwJboKLg4i9aNOvpAQFi+OV+Fm/BqEgrt5HsJioYsdObm1I4dFxeF4xTYV6eWE74C2smuaJqAs/f6ak1/bu8Hp6or5ZeXj0afy2nr+JZ4lb8hb8p6Y5CtZIz9IjdQJIwn5RX6TPzP/SuXSh9LysOv0VF7zitx6Sp//AyETTnk=</latexit>
β§R,1=β§R,2
<latexit sha1_base64="XUHwMqyyOxG67Q0O2SyG17G8k/M=">AAAGbXicbdTdbtMwFABgb7Ayxt8G4gqEMjYEV1MzEHCDNK37YX9at1FWqakqx3HTrHacxW63LupjcAvPxVPwCiSn2UnXLVLV8x37yI4d241EoE25/Hdq+t79mdKD2Ydzjx4/efpsfuH5T616MeM1poSK6y7VXAQhr5nACF6PYk6lK/ip261k7ad9HutAhT/MIOJNSf0waAeMmjTVqLVs65u1atVaq635pfJKGR7rdmDnwRLJn2prYWbf8RTrSR4aJqjWDbscmWZCYxMwwYdzTk/ziLIu9XkjDUMquW4mMOeh9S7NeFZbxekvNBZkxysSKrUeSDftKanp6Mm2LHlnmytvjJxkPYxSQk9MyLS/NpMgjHqGh2w0n3ZPWEZZ2TpZXhBzZsQgDSiLg/SVLNahMWUmXc05J+QXTElJQy9xDB827GbiSFddJo6rhJeNaS1bS7a1PBxOdtZ3906cwGQVw1sltO+PlSw7goa+4FnfGCIo8HjbCcKQx4mz6DBPGWcxz7o80oFQYTZ24uS4LnH76XZ1uKGj1mths6G9UUsaYFKeQe7sOsGoqCZJ9mdVx3KVPFfBwg2o20DXwDX0JngTvQXeQlfBOIZbB9fR++B99A54Bz0xb/cSfIkerULx9i7YRa+D19ED8ADdBXeLeg4JXqw2uI8eLW6xshfgCzSwjdSBL/OdghAbJsc5AZ+gY3CMHn0MxVcgwRINH2rioY/Bx+gD8AH6CHyEvgJfoXfBu+g98F7xYmCN9sE+OgJHaBtso7fB2+hz8Dm6Ai4+RCqiTr6QEBYTx6NwNX4MlOR+noewWOhiR05u7MhhUXE4XrFNZXo44R5InOyYpgkoS+9fe/K2vR38XF2xP698PPq0tLae38Sz5BV5Sz4Qm3wha+Q7qZIaYUSRX+Q3+TPzr/Sy9Lr0ZtR1eiqveUFuPKX3/wF77kiU</latexit>
U1= 2U2
<latexit sha1_base64="OZNkhLpjvozWzSEQBOMBqHRbXqY=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6hh07abSYjyM/5EgRWYSFU5jpuG2kmI3UKx+hS73R5sD7F3WHIaTkohUtXzHfvIjh3bjUWgdKXyd2Ly0eOp0pPppzPPnr94+Wp27vWJiroJ43UWiSg5c6niIgh5XQda8LM44VS6gp+6nWrWftrjiQqi8Ifux7whqR8GrYBRnaZ+1pu29c2qN1eas+XKcgUe635g50GZ5E+tOTe153gR60oeaiaoUud2JdYNQxMdMMEHM05X8ZiyDvX5eRqGVHLVMDDjgbWUZjyrFSXpL9QWZEcrDJVK9aWb9pRUt9V4W5Z8sM2Vd0Y2WQ8dRUKNTUi3vjZMEMZdzUM2nE+rKywdWdkqWV6QcKZFPw0oS4L0lSzWpgllOl3LGSfkVyySkoaecTQfnNsN40g3ujaOGwkvG9NatMq2tTgYjHdWD/c2TqCzisG9EtrzR0oWHUFDX/CsbwIRFHi85QRhyBPjLDjMi7SzkGddHqtARGE2tnFy3Ja4vXS72lzTYeutsFnT7rAlDTApLyB3cZtgVNSMyf6s2kiumueqWLgOdevoOriO3gBvoDfBm+gaGMdwz8Bn6D3wHnobvI0em7d7Db5GD1eheHsX7KLXwGvoPriP7oA7RT2HBC9WG9xDDxe3WNkr8BUa2EKqwJf5TkGIDePjHIOP0Qk4QQ8/huIrkGCJhg/VeOgj8BF6H7yPPgQfom/AN+gd8A56F7xbvBhYoX2wj47BMdoG2+gt8Bb6EnyJroKLD5GKuJ0vJITFxPEo3Iweg0hyP89DWCx0sSPHd3bkoKg4GK3YojI9nHAPGCc7pmkCytL71x6/be8HJyvL9uflj4efyqtr+U08Td6S9+QDsckXskq+kxqpE0Yk+UV+kz9T/0rzpTeld8OukxN5zTy585SW/gM5Vkgu</latexit>
U1=U2
<latexit sha1_base64="aYDreq5la6mSgzmVqxgv9++SKjk=">AAAGfHicbdTtT9NAGADwA2UivoF+MfFLcTMxUcmKBv1iQhgv8hYGOFlCl+V6vXVld21pb8C41L/Gr/r/+M8Y22fd0zFosuz5PXdPrvdWOxRerKrVv1PT9+7PlB7MPpx79PjJ02fzC89/xEE/YrzBAhFETZvGXHg+byhPCd4MI06lLfiJ3atl7ScXPIq9wP+uBiFvSer6XsdjVKWp9vxLS9F+Wx+9NxPjq7E80nLSni9Xl6rwGLcDMw/KJH/q7YWZPcsJWF9yXzFB4/jUrIaqpWmkPCZ4Mmf1Yx5S1qMuP01Dn0oetzRMITHepBnH6ARR+vOVAdnxCk1lHA+knfaUVHXjybYseWebLW+MrLMeKghEPPFCqvOlpT0/7Cvus+H7dPrCUIGRLZvheBFnSgzSgLLIS6dksC6NKFPp4s5ZPr9kgZTUd7SleHJqtrQl7eBKW3YgnGxMo2KUTaOSJJOd47t7a8tTWUVyq4ReuGMlFUtQ3xU86xtBBAUO71ie7/NIW4sWcwJlLeZZm4exJwI/G1tbOUYl9kW6XV2u6LB1JGxOj8ewJQ0wKc8gdzZKMCrqWmd/Rn0sV8tzNSxch7p1dAPcQG+AN9Cb4E10HYxj2E1wE70H3kNvg7fRE+9tX4Gv0MNVKGZvg230GngNPQAP0D1wr6jnkODFaoMv0MPFLVb2EnyJBnaQsefKfKcgxIbJcY7Bx+gIHKGHh6E4BRIs0XBQtYM+Ah+h98H76EPwIfoafI3eAe+gd8G7xcTAMdoFu+gQHKJNsIneAm+hz8Hn6Bq4OIhUhN18ISEsXhyvwvX4NQgkd/M8hMVCFztyfGNHDoqKg/GKLSrTywnfAW1l1zRNQFn6/TUnv7a3gx/LS+bK0sfDT+XVtfxLPEtekdfkLTHJZ7JKvpE6aRBGfpJf5Df5M/OvVCm9K30Ydp2eymtekBtPaeU/fLdOtQ==</latexit>
β§R,1= 2β§R,2
<latexit sha1_base64="BlFbKLR4gggStB7FGOiexdNV0CM=">AAAGcHicbdTdTtswFABgw0bH2B9sN5N2sbAyaZoQarZp280kRPkZf6LACpVIhxzHTUPtJMRuoVh9j91ub7XX2BMsOQ0npRCp6vmOfWTHse3GIlC6Uvk7MXnv/lTpwfTDmUePnzx9Njv3/EhF3YTxOotElDRcqrgIQl7XgRa8ESecSlfwY7dTzdqPezxRQRT+0P2YNyX1w6AVMKrT1E9tfbMcTbun5mDRHpzOlitLFXis24GdB2WSP7XTuakdx4tYV/JQM0GVOrErsW4amuiACT6YcbqKx5R1qM9P0jCkkqumgWkPrLdpxrNaUZL+Qm1BdrTCUKlUX7ppT0l1W423Zck721x5Y2ST9dBRJNTYhHTra9MEYdzVPGTD+bS6wtKRlS2V5QUJZ1r004CyJEhfyWJtmlCm0wWdcUJ+wSIpaegZR/PBid00jnSjS+O4kfCyMa0Fq2xbC4PBeGd1d2/jBDqrGNwqoT1/pGTBETT0Bc/6JhBBgcdbThCGPDHOvMO8SDvzedblsQpEFGZjGyfHdYnbSz9Xm2s6bL0WNqfbY9iSBpiUZ5A7u04wKmrGZH9WbSRXzXNVLFyFulV0HVxHr4HX0OvgdXQNjGO4DXADvQPeQW+CN9Fj83YvwZfo4SoUb++CXfQKeAXdB/fRHXCnqOeQ4MVqg3vo4eIWK3sBvkADW0gV+DL/UhBiw/g4h+BDdAJO0MPNUOwCCZZo2KjGQx+AD9C74F30PngffQW+Qm+Bt9Db4O3ixcAK7YN9dAyO0TbYRm+AN9Dn4HN0FVxsRCridr6QEBYTx6NwNXoMIsn9PA9hsdDFFzm88UX2ioq90YoNKtPDCfeAcbJjmiagLL1/7fHb9nZw9GHJ/rz0cf9TeXklv4mnySvyhrwjNvlClsl3UiN1wkhCfpHf5M/Uv9LL0uvS/LDr5ERe84LceErv/wMYh0q1</latexit> t=β§R,1
<latexit sha1_base64="kOoPf1A9TFiJQ6LTutVV1pIBMuY=">AAAGc3icbdRbT9swFABgw0bH2AXYHnkJtJP2sKGGTdteJiHKZdxEgRUqkapyHLcNtZMQu4Vi9ZfsdftR+yF7X3IaTkohUtXzHfvIjmPbjYSvdLn8d2r6ydOZwrPZ53MvXr56Pb+w+OZMhb2Y8RoLRRjXXaq48ANe074WvB7FnEpX8HO3W0nbz/s8Vn4Y/NSDiDckbQd+y2dUJ6nmwry2vltrjqa9pjn5YA+bC8Xyahke62FgZ0GRZE+1uThz4Hgh60keaCaoUhd2OdINQ2PtM8GHc05P8YiyLm3ziyQMqOSqYWDmQ+tdkvGsVhgnv0BbkB2vMFQqNZBu0lNS3VGTbWny0TZX3hvZpD10GAo1MSHd+tYwfhD1NA/YaD6tnrB0aKWrZXl+zJkWgySgLPaTV7JYh8aU6WRN55yAX7NQShp4xtF8eGE3jCPd8MY4bii8dEyrZBVtqzQcTnZWj/c2jq/TiuGDEtpvj5WUHEGDtuBp3xgiKPB4y/GDgMfGWXaYF2pnOcu6PFK+CIN0bONkuCtx+8nn6nBNR613wuZke4xakgCT8hJyl3cJRkXVmPTPqo7lKlmugoWbULeJroFr6C3wFnobvI2ugnEMtw6uow/AB+hd8C56Yt7uDfgGPVqF/O1dsIveAG+gB+ABugvu5vUcEjxfbXAfPVrcfGWvwddoYAup/LbMvhSE2DA5zin4FB2DY/RoM+S7QIIlGjaq8dAn4BP0IfgQfQw+Rt+Cb9F74D30Png/fzGwQrfBbXQEjtA22EbvgHfQV+ArdAWcb0Qqok62kBDmE8ejcDt+DELJ21kewnyh8y9yeu+LHOUVR+MVO1QmhxPuAeOkxzRJQFly/9qTt+3D4Gxt1f6y+un4c3F9I7uJZ8kSWSHviU2+knXyg1RJjTDSI7/Ib/Jn5l9hqbBSKI26Tk9lNW/Jvafw8T9za0si</latexit> t=2β§R,1
<latexit sha1_base64="ZtD4zDZECCTUUT5YXks5V+DEhvw=">AAAGc3icbdRbT9swFABgw0bH2AXYHnkJtJP2sKFmQ9teJiHKZdxEgRUqkapyHLcNtZMQu4Vi9ZfsdftR+yF7X3IaTkohUtXzHfvIjmPbjYSvdLn8d2r6ydOZwrPZ53MvXr56Pb+w+OZMhb2Y8RoLRRjXXaq48ANe074WvB7FnEpX8HO3W0nbz/s8Vn4Y/NSDiDckbQd+y2dUJ6nmwry2vltrjqa9pjn5YA+bC8Xyahke62FgZ0GRZE+1uThz4Hgh60keaCaoUhd2OdINQ2PtM8GHc05P8YiyLm3ziyQMqOSqYWDmQ+tdkvGsVhgnv0BbkB2vMFQqNZBu0lNS3VGTbWny0TZX3hvZpD10GAo1MSHd+tYwfhD1NA/YaD6tnrB0aKWrZXl+zJkWgySgLPaTV7JYh8aU6WRN55yAX7NQShp4xtF8eGE3jCPd8MY4bii8dEyrZBVtqzQcTnZWj/c2jq/TiuGDEtpvj5WUHEGDtuBp3xgiKPB4y/GDgMfGWXaYF2pnOcu6PFK+CIN0bONkuCtx+8nn6nBNR613wuZke4xakgCT8hJyl3cJRkXVmPTPqo7lKlmugoWbULeJroFr6C3wFnobvI2ugnEMtw6uow/AB+hd8C56Yt7uDfgGPVqF/O1dsIveAG+gB+ABugvu5vUcEjxfbXAfPVrcfGWvwddoYAup/LbMvhSE2DA5zin4FB2DY/RoM+S7QIIlGjaq8dAn4BP0IfgQfQw+Rt+Cb9F74D30Png/fzGwQrfBbXQEjtA22EbvgHfQV+ArdAWcb0Qqok62kBDmE8ejcDt+DELJ21kewnyh8y9yeu+LHOUVR+MVO1QmhxPuAeOkxzRJQFly/9qTt+3D4OzTqv1l9fPxWnF9I7uJZ8kSWSHviU2+knXyg1RJjTDSI7/Ib/Jn5l9hqbBSKI26Tk9lNW/Jvafw8T9/fUsk</latexit> t=4β§R,1 <latexit sha1_base64="xx4xpk/QhdqcwgStkJKxuhiDosM=">AAAGbHicbdTdTtswFABgw0bH2B9su0OTwsqmXaFmm7ZdIsrPgCIKrIBGKuQ4bhpqxyF2W0rUt9jt9l57iT3DktNwUgqRqp7v2Ed2TuK4kQi0qVT+Tk0/eDhTejT7eO7J02fPX8wvvDzWqhsz3mBKqPjUpZqLIOQNExjBT6OYU+kKfuJ2qtn4SY/HOlDhDzOIeFNSPwxaAaMmTf10pKuukprqD8/ny5WVClzW3cDOgzLJr/r5wkzN8RTrSh4aJqjWZ3YlMs2ExiZggg/nnK7mEWUd6vOzNAyp5LqZwJaH1rs041ktFae/0FiQHa9IqNR6IN10pqSmrSfHsuS9Y668tXKSzTBKCT2xIdP61kyCMOoaHrLRflpdYRllZW2yvCDmzIhBGlAWB+ktWaxNY8pM2sw5J+R9pqSkoZc4hg/P7GYyaqXjKuFla1rLVtm2lofDycn6/tmJE5isYninhPb8sZJlR9DQFzybG0MEBR5vOUEY8jhxlhzmKeMs5VmXRzoQKszWTpwcNyVuL31cbW7oaPRGOGxodzSSBpiUF5C7uEkwKupJkv1Z9bFcNc9VsXAd6tbRDXADvQHeQG+CN9F1MK7hnoJP0TVwDb0N3kZP7Nu9Al+hR10o7t4Fu+g18Bp6AB6gO+BOUc8hwYtug3voUXOLzvbBfTSwhdSBL/MnBSEOTK5zBD5Cx+AYPXoZirdAgiUaXtTEQx+CD9F74D30AfgAfQ2+Ru+Ad9C74N3ixsAa7YN9dASO0DbYRm+Bt9CX4Et0FVy8iFRE7byREBYbx6NwPX4MlOR+noewaHTxRI5uPZH9omJ/vGKLyvRwwncgcbJjmiagLP3+2pNf27vB8ccV+8vKp4PP5dW1/Es8SxbJW/KB2OQrWSXfSZ00CCMh+UV+kz8z/0qvS4ulN6Op01N5zSty6yq9/w8iikos</latexit>
Low <latexit sha1_base64="JwcFbS5zQAGGaWUYQhMwMfhrQvU=">AAAGbXicbdTdTtswFABgw0bH2B9s2tWmKaxM2xVqtmnbJaL8/4gCK1RqKuS4bhpqxyF2CyXqY+x2e649xV5hyUk4KYVIVc937CM7J3HcUPjaVCp/p6YfPJwpPZp9PPfk6bPnL+YXXp5o1Y8YrzMlVNRwqebCD3jd+EbwRhhxKl3BT91eNR0/HfBI+yr4aYYhb0nqBX7HZ9QkqaYjXXUVb/led3Q2X64sV+Cy7gZ2HpRJftXOFmb2nLZifckDwwTVumlXQtOKaWR8JvhozulrHlLWox5vJmFAJdetGPY8sj4kmbbVUVHyC4wF2fGKmEqth9JNZkpqunpyLE3eO+bKWyvH6QyjlNATGzKdH63YD8K+4QHL9tPpC8soK+2T1fYjzowYJgFlkZ/cksW6NKLMJN2ccwJ+yZSUNGjHjuGjpt2Ks146rhLtdE1rySrb1tJoNDlZ3z87dnyTVozulNCBN1ay5AgaeIKncyOIoKDNO44fBDyKnUWHtZVxFvOsy0PtCxWka8dOjpsSd5A8ri43NBu9EQ4b2s9GkgCT8hxy5zcJRkUtjtM/qzaWq+a5KhauQd0aug6uo9fB6+gN8Aa6BsY13Aa4gd4D76G3wdvoiX27V+ArdNaF4u5dsIteBa+ih+AhugfuFfUcErzoNniAzppbdPYSfIkGdpDa92T+pCDEgcl1jsHH6AgcobOXoXgLJFii4UWN2+gj8BF6H7yPPgQfoq/B1+gd8A56F7xb3BhYoz2whw7BIdoG2+hN8Cb6AnyBroKLF5GKsJs3EsJi43gUrsePgZLcy/MQFo0unsjxrSdyUFQcjFdsUpkcTvgOxE56TJMElCXfX3vya3s3OPm8bH9b/nL4tbyymn+JZ8kb8p58Ijb5TlbIFqmROmFEkV/kN/kz86/0uvS29C6bOj2V17wit67Sx/8jsEqE</latexit>
High
<latexit sha1_base64="urueFNGhL0ara8SCkZQLJTdpLjs=">AAAGe3icbdRbT9swFABgw0bH2A22hz3sJaxMmiaEGnZ9mYQol3ETBVaoRKrKcdw0NE5C7BaKlV+z1+0H7cdMWnKanpRCpKrnO/aR41vsyPekqlT+Tk0/eDhTejT7eO7J02fPX8wvvDyVYS9mvM5CP4wbNpXc9wJeV57yeSOKORW2z8/sbjVrP+vzWHph8FMNIt4U1A28tseoSlOt+deWor2WPl42E+O7McJq0povV1Yq8Bh3AzMPyiR/aq2FmX3LCVlP8EAxn0p5blYi1dQ0Vh7zeTJn9SSPKOtSl5+nYUAFl00NM0iMd2nGMdphnP4CZUB2vEJTIeVA2GlPQVVHTrZlyXvbbHFrZJ31UGHoy4kXUu1vTe0FUU/xgA3fp93zDRUa2aoZjhdzpvxBGlAWe+mUDNahMWUqXds5K+BXLBSCBo62FE/Ozaa2hB1ea8sOfScb01gyyqaxlCSTneX9vbXlqawiuVNC++5YyZLl08D1edY3hggKHN62vCDgsbYWLeaEylrMszaPpOeHQTa2tnKMSux+ul0druiwdSRsTo/HsCUNMCkuIHcxSjDq17TO/ozaWK6a56pYuAF1G+g6uI7eBG+it8Bb6BoYx7Ab4AZ6H7yP3gHvoCfe274GX6OHq1DM3gbb6HXwOnoAHqC74G5RzyHBi9UG99HDxS1W9gp8hQa2kdJzRb5TEGLD5Dgn4BN0DI7Rw8NQnAIBFmg4qNpBH4OP0QfgA/QR+Ah9A75B74J30XvgvWJiYIl2wS46AkdoE2yit8Hb6EvwJboKLg4i9aNOvpAQFi+OV+Fm/BqEgrt5HsJioYsdObm1I4dFxeF4xTYV6eWE74C2smuaJqAs/f6ak1/bu8Hp6or5ZeXj0afy2nr+JZ4lb8hb8p6Y5CtZIz9IjdQJIwn5RX6TPzP/SuXSh9LysOv0VF7zitx6Sp//AyETTnk=</latexit>
β§R,1=β§R,2
<latexit sha1_base64="XUHwMqyyOxG67Q0O2SyG17G8k/M=">AAAGbXicbdTdbtMwFABgb7Ayxt8G4gqEMjYEV1MzEHCDNK37YX9at1FWqakqx3HTrHacxW63LupjcAvPxVPwCiSn2UnXLVLV8x37yI4d241EoE25/Hdq+t79mdKD2Ydzjx4/efpsfuH5T616MeM1poSK6y7VXAQhr5nACF6PYk6lK/ip261k7ad9HutAhT/MIOJNSf0waAeMmjTVqLVs65u1atVaq635pfJKGR7rdmDnwRLJn2prYWbf8RTrSR4aJqjWDbscmWZCYxMwwYdzTk/ziLIu9XkjDUMquW4mMOeh9S7NeFZbxekvNBZkxysSKrUeSDftKanp6Mm2LHlnmytvjJxkPYxSQk9MyLS/NpMgjHqGh2w0n3ZPWEZZ2TpZXhBzZsQgDSiLg/SVLNahMWUmXc05J+QXTElJQy9xDB827GbiSFddJo6rhJeNaS1bS7a1PBxOdtZ3906cwGQVw1sltO+PlSw7goa+4FnfGCIo8HjbCcKQx4mz6DBPGWcxz7o80oFQYTZ24uS4LnH76XZ1uKGj1mths6G9UUsaYFKeQe7sOsGoqCZJ9mdVx3KVPFfBwg2o20DXwDX0JngTvQXeQlfBOIZbB9fR++B99A54Bz0xb/cSfIkerULx9i7YRa+D19ED8ADdBXeLeg4JXqw2uI8eLW6xshfgCzSwjdSBL/OdghAbJsc5AZ+gY3CMHn0MxVcgwRINH2rioY/Bx+gD8AH6CHyEvgJfoXfBu+g98F7xYmCN9sE+OgJHaBtso7fB2+hz8Dm6Ai4+RCqiTr6QEBYTx6NwNX4MlOR+noewWOhiR05u7MhhUXE4XrFNZXo44R5InOyYpgkoS+9fe/K2vR38XF2xP698PPq0tLae38Sz5BV5Sz4Qm3wha+Q7qZIaYUSRX+Q3+TPzr/Sy9Lr0ZtR1eiqveUFuPKX3/wF77kiU</latexit>
U1= 2U2
<latexit sha1_base64="OZNkhLpjvozWzSEQBOMBqHRbXqY=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6hh07abSYjyM/5EgRWYSFU5jpuG2kmI3UKx+hS73R5sD7F3WHIaTkohUtXzHfvIjh3bjUWgdKXyd2Ly0eOp0pPppzPPnr94+Wp27vWJiroJ43UWiSg5c6niIgh5XQda8LM44VS6gp+6nWrWftrjiQqi8Ifux7whqR8GrYBRnaZ+1pu29c2qN1eas+XKcgUe635g50GZ5E+tOTe153gR60oeaiaoUud2JdYNQxMdMMEHM05X8ZiyDvX5eRqGVHLVMDDjgbWUZjyrFSXpL9QWZEcrDJVK9aWb9pRUt9V4W5Z8sM2Vd0Y2WQ8dRUKNTUi3vjZMEMZdzUM2nE+rKywdWdkqWV6QcKZFPw0oS4L0lSzWpgllOl3LGSfkVyySkoaecTQfnNsN40g3ujaOGwkvG9NatMq2tTgYjHdWD/c2TqCzisG9EtrzR0oWHUFDX/CsbwIRFHi85QRhyBPjLDjMi7SzkGddHqtARGE2tnFy3Ja4vXS72lzTYeutsFnT7rAlDTApLyB3cZtgVNSMyf6s2kiumueqWLgOdevoOriO3gBvoDfBm+gaGMdwz8Bn6D3wHnobvI0em7d7Db5GD1eheHsX7KLXwGvoPriP7oA7RT2HBC9WG9xDDxe3WNkr8BUa2EKqwJf5TkGIDePjHIOP0Qk4QQ8/huIrkGCJhg/VeOgj8BF6H7yPPgQfom/AN+gd8A56F7xbvBhYoX2wj47BMdoG2+gt8Bb6EnyJroKLD5GKuJ0vJITFxPEo3Iweg0hyP89DWCx0sSPHd3bkoKg4GK3YojI9nHAPGCc7pmkCytL71x6/be8HJyvL9uflj4efyqtr+U08Td6S9+QDsckXskq+kxqpE0Yk+UV+kz9T/0rzpTeld8OukxN5zTy585SW/gM5Vkgu</latexit>
U1=U2
<latexit sha1_base64="aYDreq5la6mSgzmVqxgv9++SKjk=">AAAGfHicbdTtT9NAGADwA2UivoF+MfFLcTMxUcmKBv1iQhgv8hYGOFlCl+V6vXVld21pb8C41L/Gr/r/+M8Y22fd0zFosuz5PXdPrvdWOxRerKrVv1PT9+7PlB7MPpx79PjJ02fzC89/xEE/YrzBAhFETZvGXHg+byhPCd4MI06lLfiJ3atl7ScXPIq9wP+uBiFvSer6XsdjVKWp9vxLS9F+Wx+9NxPjq7E80nLSni9Xl6rwGLcDMw/KJH/q7YWZPcsJWF9yXzFB4/jUrIaqpWmkPCZ4Mmf1Yx5S1qMuP01Dn0oetzRMITHepBnH6ARR+vOVAdnxCk1lHA+knfaUVHXjybYseWebLW+MrLMeKghEPPFCqvOlpT0/7Cvus+H7dPrCUIGRLZvheBFnSgzSgLLIS6dksC6NKFPp4s5ZPr9kgZTUd7SleHJqtrQl7eBKW3YgnGxMo2KUTaOSJJOd47t7a8tTWUVyq4ReuGMlFUtQ3xU86xtBBAUO71ie7/NIW4sWcwJlLeZZm4exJwI/G1tbOUYl9kW6XV2u6LB1JGxOj8ewJQ0wKc8gdzZKMCrqWmd/Rn0sV8tzNSxch7p1dAPcQG+AN9Cb4E10HYxj2E1wE70H3kNvg7fRE+9tX4Gv0MNVKGZvg230GngNPQAP0D1wr6jnkODFaoMv0MPFLVb2EnyJBnaQsefKfKcgxIbJcY7Bx+gIHKGHh6E4BRIs0XBQtYM+Ah+h98H76EPwIfoafI3eAe+gd8G7xcTAMdoFu+gQHKJNsIneAm+hz8Hn6Bq4OIhUhN18ISEsXhyvwvX4NQgkd/M8hMVCFztyfGNHDoqKg/GKLSrTywnfAW1l1zRNQFn6/TUnv7a3gx/LS+bK0sfDT+XVtfxLPEtekdfkLTHJZ7JKvpE6aRBGfpJf5Df5M/OvVCm9K30Ydp2eymtekBtPaeU/fLdOtQ==</latexit>
β§R,1= 2β§R,2
Figure 2.12: (Left) Snapshots from BD simulations of purely active particles re- leased at π‘ = 0 from the center (white dashed line) where the reorientation time or swim speed abruptly changes. The colormap shows the local number density of particles. The length of the simulation box is 5 times longer than the run length in re- gion 1 (π₯ <0). (Right) Transient number densities, polar orders, and nematic orders multiplied by the run length in region 1β1obtained by BD simulations when purely active particles released atπ‘ = 0 fromπ₯ =0 where the reorientation time or swim speed abruptly changes. The probability density is normalized so thatβ«β
ββπ ππ₯=1 and the position is scaled with β1 as well. The shape of number densities shows transition from wave-like (π‘ β€ ππ ) to diffusion-like (π‘ > ππ ) dynamics. When a step change in the swim speed occurs the even-ordered orientational moments (e.g. π, πΈ, etc.) are discontinuous at the jump for the continuity of the translational flux
ππ =π ππ.
Here, πΌ0 is a modified Bessel function of the first kind. Sinceπ1π1=π2π2 at the interface (π₯=0) for the continuity of the polar order flux, eq. (2.55) implies that the particles are partitioned evenly in each region (π1=π2) at all time regardless of the swim speeds when the rotational diffusivities in the two regions are the same. The fraction of particles in each region at (β« ππ ) times is approximated as
ππ(π‘) β 1
βοΈ
π(πβ1)π π·π ,π
β« π‘
0
ππππ(0, π‘β²)
β π‘βπ‘β²
π π‘β², (2.56)
35
100 101 102
100 101
100 120 140 160 180 200
300 320 340 360 380
100 120 140 160 180 200
300 320 340 360 380 400
<latexit sha1_base64="GeoKHT8ytpnq+UB0qkoLKt99neY=">AAAGdXicbdRbU9NAFADgBaUi3kAfHWeCrY5P2KijPiLlIrehgMXOkA6zSbZp6G4SstuWkslP8VV/k7/EVzcn4aQUMsNwvrN7upuTTeyI+1LV639nZu/dn6s8mH+48Ojxk6fPFpeen8hwEDus5YQ8jNs2lYz7AWspX3HWjmJGhc3ZT7vfyMZ/Dlks/TD4ocYR6wjqBX7Xd6jSqbPFJUvY4WXyLaB8rHSWp2eL1fpKHS7jdmAWQZUUV/NsaW7PckNnIFigHE6lPDXrkeokNNY/yFm6YA0ki6jTpx471WFABZOdBPaeGm90xjW6Yaz/AmVAdrIioULKsbD1TEFVT06PZck7x2xxY+Ukm6HCkMupDanu107iB9FAscDJ99MdcEOFRtYvw/Vj5ig+1gF1Yl/fkuH0aEwdpbu6YAVs5IRC0MBNLMXSU7OT5B217JC72ZpGzaiaRi1NpyfLu2cnlq+yivRWCR16EyU1i9PA4yybG0MEBS7rWn4QsDixli3HDZW1XGRtFkmfh0G2dmIVuC6xh/px9Zii+ei1cFjRQT6iA0yKc8idXyf08WkmSfbPaE7kGkWugYXrULeOboFb6A3wBnoTvIlugnENuw1uo/fAe+ht8DZ6at/2JfgSnXehvHsbbKPXwGvoMXiM7oP7ZT2DBCu7DR6i8+aWnR2BR2hgFyl9TxRPCkIcmF7nGHyMjsExOj8M5SkQYIGGg5q46CPwEXofvI8+BB+ir8BX6B3wDnoXvFveGFiiPbCHjsAR2gSb6C3wFvoCfIFugMuDSHnUKxoJYblxfBWuJl+DUDCvyENYNrp8Isc3nshBWXEwWbFFhX454TuQWNlrqhNQpr+/5vTX9nZw8mHF/Lzy8fBTdXWt+BLPk5fkNXlHTPKFrJLvpElaxCEj8ov8Jn/m/lVeVWqVt/nU2Zmi5gW5cVXe/wdLC01z</latexit>
Analytical <latexit sha1_base64="aJ330Jh0cPFiyudhgFJnsik1ZmM=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6jZpm2XqOVn/IkCK3QiFXIcNw21kxC7hRLlKXa7PdgeYu+w5CSclEKkquc79pGdkzh2KDyla7W/U9OPHs9Unsw+nXv2/MXLV/MLr09UMIgYb7FABFHbpooLz+ct7WnB22HEqbQFP7X7jWz8dMgj5QX+Dz0KeUdS1/e6HqM6Tf20pB1cx/X15Hy+WlutwWXcD8wiqJLiap4vzOxZTsAGkvuaCarUmVkLdSemkfaY4MmcNVA8pKxPXX6Whj6VXHVi2HFirKQZx+gGUfrztQHZ8YqYSqVG0k5nSqp7anIsSz44Zss7K8fZDB0EQk1sSHe/dWLPDwea+yzfT3cgDB0YWZcMx4s402KUBpRFXnpLBuvRiDKd9nLO8vkVC6SkvhNbmidnZifOO2nZgXCyNY1lo2oay0kyOVk9PDu2PJ1VJPdK6NAdK1m2BPVdwbO5EURQ4PCu5fk+j2JryWJOoK2lImvzUHki8LO1Y6vAbYk9TB9Xj2uaj94KhzUd5CNpgEl5AbmL2wSjohnH2Z/RHMs1ilwDC9ehbh3dArfQG+AN9CZ4E90E4xp2G9xG74H30NvgbfTEvu1r8DU670J59zbYRtfBdfQIPEL3wf2ynkOCl90GD9F5c8vOXoGv0MAuUnmuLJ4UhDgwuc4x+BgdgSN0/jKUb4EESzS8qLGDPgIfoffB++hD8CH6BnyD3gHvoHfBu+WNgRXaBbvoEByiTbCJ3gJvoS/Bl+gGuHwRqQh7RSMhLDeOR+Fm/BgEkrtFHsKy0eUTOb7zRA7KioPxii0q08MJ34HYyo5pmoCy9PtrTn5t7wcnH1fNL6ufDj9X1+rFl3iWvCXvyQdikq9kjXwnTdIijEjyi/wmf2b+VRYrbyrv8qnTU0XNIrlzVVb+A+1+SXY=</latexit>
BD
100 120 140 160 180 200
300 320 340 360 380
100 120 140 160 180 200
300 320 340 360 380
<latexit sha1_base64="OZNkhLpjvozWzSEQBOMBqHRbXqY=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6hh07abSYjyM/5EgRWYSFU5jpuG2kmI3UKx+hS73R5sD7F3WHIaTkohUtXzHfvIjh3bjUWgdKXyd2Ly0eOp0pPppzPPnr94+Wp27vWJiroJ43UWiSg5c6niIgh5XQda8LM44VS6gp+6nWrWftrjiQqi8Ifux7whqR8GrYBRnaZ+1pu29c2qN1eas+XKcgUe635g50GZ5E+tOTe153gR60oeaiaoUud2JdYNQxMdMMEHM05X8ZiyDvX5eRqGVHLVMDDjgbWUZjyrFSXpL9QWZEcrDJVK9aWb9pRUt9V4W5Z8sM2Vd0Y2WQ8dRUKNTUi3vjZMEMZdzUM2nE+rKywdWdkqWV6QcKZFPw0oS4L0lSzWpgllOl3LGSfkVyySkoaecTQfnNsN40g3ujaOGwkvG9NatMq2tTgYjHdWD/c2TqCzisG9EtrzR0oWHUFDX/CsbwIRFHi85QRhyBPjLDjMi7SzkGddHqtARGE2tnFy3Ja4vXS72lzTYeutsFnT7rAlDTApLyB3cZtgVNSMyf6s2kiumueqWLgOdevoOriO3gBvoDfBm+gaGMdwz8Bn6D3wHnobvI0em7d7Db5GD1eheHsX7KLXwGvoPriP7oA7RT2HBC9WG9xDDxe3WNkr8BUa2EKqwJf5TkGIDePjHIOP0Qk4QQ8/huIrkGCJhg/VeOgj8BF6H7yPPgQfom/AN+gd8A56F7xbvBhYoX2wj47BMdoG2+gt8Bb6EnyJroKLD5GKuJ0vJITFxPEo3Iweg0hyP89DWCx0sSPHd3bkoKg4GK3YojI9nHAPGCc7pmkCytL71x6/be8HJyvL9uflj4efyqtr+U08Td6S9+QDsckXskq+kxqpE0Yk+UV+kz9T/0rzpTeld8OukxN5zTy585SW/gM5Vkgu</latexit>
U1=U2
<latexit sha1_base64="fEsyGwMxjR2IFmSgOGGp+OmliUc=">AAAGe3icddRbT9swFADgwEbH2A22hz3sJaxMmiaEkm5j8DAJUS7jJgqsUIlUlZO4aWichNgFipVfs9ftB+3HTJpzmp6UjkWqer5jHzm+xY4DnwvD+D0x+eDhVOnR9OOZJ0+fPX8xO/fylEe9xKF1JwqipGETTgM/pHXhi4A24oQSZgf0zO5Ws/azK5pwPwq/i35Mm4x4od/2HSJUqjX72hKk15LHi2aqf9WHqKSt2bKxZKhneVnPAnPFMFWwurpSqazqJjQZRlnLn1prbmrfciOnx2gonIBwfm4asWhKkgjfCWg6Y/U4jYnTJR49V2FIGOVNCTNI9Xcq4+rtKFG/UOiQHa2QhHHeZ7bqyYjo8PG2LHlvm83ujCyzHiKKAj72QqK90pR+GPcEDZ3B+7R7gS4iPVs13fUT6oigrwLiJL6aku50SEIcodZ2xgrptRMxRkJXWoKm52ZTWsyObqRlR4Gbjakv6GVTX0jT8c78/t7S8kVWkf5TQq68kZIFKyChF9CsbwIRFLi0bflhSBNpzVuOGwlrPs/aNOZ+EIXZ2NLKMSyxr9R2daggg9ahsFkdj0GLCjDJLiB3MUw4JKhJmf3ptZFcNc9VsXAD6jbQdXAdvQneRG+Bt9A1MI5hN8AN9D54H70D3kGPvbd9A75BD1ahmL0NttHr4HV0H9xHd8Hdop5CgharDb5CDxa3WNlr8DUa2EZy32P5TkGIDePjnIBP0Ak4QQ8OQ3EKGJih4aBKF30MPkYfgA/QR+Aj9C34Fr0L3kXvgfeKiYE52gN76Bgco02wid4Gb6MvwZfoKrg4iCSIO/lCQli8OF6F29FrEDHq5XkIi4UuduTkzo4cFhWHoxXbhKnLCd8BaWXXVCWgTH1/hx9Z/f/BaWXJXF76ePSpvLaef4mntTfaW+29ZmpftDXtm1bT6pqjpdoP7af2a+pPqVz6UFocdJ2cyGteaXee0ue/ibZOtg==</latexit>
β§R,1=β§R,2
Figure 2.13: The ratio of numbers of purely active particles in the two regions after randomly oriented particles are released at the interface of the two regions with different transport properties. Black and blue represent a step change in the reorientation time (β1/β2 = ππ ,1/ππ ,2) and the swim speed (β1/β2 = π1/π2), respectively. Markers are from BD simulations and lines are the analytical prediction π1/π2=βοΈ
ππ ,1/ππ ,2. In the BD simulations the numbers of particles are measured
βΌ3ππ ,1after the release of particles to ensure the values have reached constant.
where we used πΌ0(π₯) βΌππ₯/β
2ππ₯ as π₯ β β. Thus, at long times the ratio of the fractions (or total numbers) of particles in each region is π1/π2 = βοΈ
ππ ,1/ππ ,2 β the partitioning of particles is governed by the reorientation time.
This also can be explained by the long-time diffusive behavior of ABPs and the steady state solutions from previous sections. Whenπ‘ β« ππ ABPs effectively diffuse with the swim diffusivity π·π π€π π βΌ π2ππ and the average (root-mean-square) distance reached by the released particles scales as
β
π·π π€π ππ‘. Since the number density of particles approaches the steady state value specified byππ=constant, the ratio of the number of particles in each regionπ1/π2 βΌ
βοΈ
π·π π€π π
1 π‘π2/
βοΈ
π·π π€π π
2 π‘π1 =βοΈ
ππ ,1/ππ ,2. We perform BD simulations to verify this prediction. Figure 2.12 shows general shapes of the Greenβs function when the swim speed or reorientation time abruptly changes at the position where particles are released. Even in transient cases, the number density is an order of magnitude larger than the nematic order allwoing the πΈ=0-closure for simple predictions at a long (> ππ ) time scale. At a short (< ππ ) time scale different closure methods including the effect of the nematic order are known to give better accuracy [20]. The ratio of number of particles obtained by BD simulations is shown Fig. 2.13 and excellently agrees with the prediction that