• Tidak ada hasil yang ditemukan

Transient Behavior of Microswimmers with Abrupt Variation in Ac-

Chapter II: Active Matter with Spatially Varying Transport Properties

2.5 Transient Behavior of Microswimmers with Abrupt Variation in Ac-

speed. We once again note that the slight discrepancy in the number density at high 𝑃𝑒 = 102 results from the 𝑸=0-closure used to describe the boundary layers not from the singular perturbation analysis. The singular perturbation solution is valid as long as the sizes of the two regions are larger than the boundary-layer thickness:

Δ𝑅 ≫ 𝐷𝑇1/π‘ˆ1and(1βˆ’Ξ”)𝑅 ≫ 𝐷𝑇2/π‘ˆ2. When the activity is high (𝑃𝑒 > 102) the accuracy can be improved by accounting for the nematic field associated with rapid changes of the number density and polar order inside the boundary layers [15].

2.5 Transient Behavior of Microswimmers with Abrupt Variation in Activity

in the properties in section 2.2 (see Fig. 2.1) in order to study the effect of an abrupt change in transport properties. Since the translational diffusivity just smears out spatial gradients, purely active particles (𝐷𝑇 =0) are considered in order to understand the essential physics. The moment equations closed by𝑸=0are

πœ• 𝑛𝑖

πœ• 𝑑

+ βˆ‡ Β· 𝒋𝑛,𝑖 =0, 𝒋𝑛,𝑖 =π‘ˆπ‘–π’Žπ‘– (2.50)

πœ•π’Žπ‘–

πœ• 𝑑

+ βˆ‡ Β· π’‹π‘š,𝑖 + (π‘‘βˆ’1)𝐷𝑅,π‘–π’Žπ‘– =0, π’‹π‘š,𝑖 = 1 𝑑

π‘ˆπ‘–π‘›π‘–π‘°, (2.51) where subscripts𝑖(=1 or 2)represents the index of regions. We discuss the validity of the assumption 𝑸 = 0 later in this section. For mathematical simplicity we consider an instantaneous infinite line source of particles with random orientations.

The particles are initially located at at the interface of the two regions (π‘₯ =0) and released at 𝑑 = 0. The corresponding initial conditions are 𝑛1 = 𝑛2 = 𝛿(π‘₯) and π’Ž1= π’Ž2 =0at𝑑=0. Also at the interface the fluxes are continuous: 𝑛1π‘ˆ1 =𝑛2π‘ˆ2 and π’Ž1π‘ˆ1 = π’Ž2π‘ˆ2 at π‘₯=0. Finally particles swim into an infinite free space so 𝑛𝑖→0 and π’Žπ‘–β†’0as|π‘₯| β†’ ∞. The associated telegraph equation for each region is

πœ•2𝑛𝑖

πœ• 𝑑2

+ (π‘‘βˆ’1)𝐷𝑅,𝑖

πœ• 𝑛𝑖

πœ• 𝑑

= π‘ˆ2

𝑖

𝑑

βˆ‡2𝑛𝑖 . (2.52)

For the telegraph equation (2.52) the initial and boundary conditions for the polar order should be rewritten in terms of the number density. From eq. (2.50) the initial condition for the polar order can be expressed as an initial condition for the number densityπœ• 𝑛𝑖/πœ• 𝑑=0 at𝑑=0. Also by integrating eq. (2.50) over each region and using the boundary condition for the polar order, we obtain an integral condition for the particle conservation 𝑁1+𝑁2 =1, where 𝑁1 =∫0

βˆ’βˆžπ‘›1 𝑑π‘₯ and 𝑁2 = ∫∞

0 𝑛2 𝑑π‘₯ are the fractions of particles in regions 1 (π‘₯ <0) and 2 (π‘₯ β‰₯ 0).

Laplace transforming the telegraph equation (2.52) in time we obtain 𝑠2𝑛ˆ𝑖 + (π‘‘βˆ’1)𝐷𝑅,𝑖𝑠𝑛ˆ𝑖 =

π‘ˆ2

𝑖

𝑑

πœ•2𝑛ˆ𝑖

πœ• π‘₯2

, (2.53)

where ˆ𝑛𝑖(π‘₯ , 𝑠) is the transformed number density. The equation is easily solved to give

Λ†

𝑛𝑖(π‘₯ , 𝑠) =𝑛ˆ𝑖(0, 𝑠)exp 1

π‘ˆπ‘–

βˆšοΈƒ

𝑑(𝑠2+ (π‘‘βˆ’1)𝐷𝑅,𝑖𝑠)

. (2.54)

In order to check the partitioning of particles we integrate the number density in each region and use the convolution theorem to obtain

𝑁𝑖(𝑑) = 1

√ 𝑑

∫ 𝑑

0

π‘ˆπ‘–π‘›π‘–(0, 𝑑′)exp

βˆ’π‘‘βˆ’1

2 𝐷𝑅,𝑖(π‘‘βˆ’π‘‘β€²))

𝐼0

π‘‘βˆ’1

2 𝐷𝑅,𝑖(π‘‘βˆ’π‘‘β€²)

𝑑 𝑑′. (2.55)

<latexit sha1_base64="urueFNGhL0ara8SCkZQLJTdpLjs=">AAAGe3icbdRbT9swFABgw0bH2A22hz3sJaxMmiaEGnZ9mYQol3ETBVaoRKrKcdw0NE5C7BaKlV+z1+0H7cdMWnKanpRCpKrnO/aR41vsyPekqlT+Tk0/eDhTejT7eO7J02fPX8wvvDyVYS9mvM5CP4wbNpXc9wJeV57yeSOKORW2z8/sbjVrP+vzWHph8FMNIt4U1A28tseoSlOt+deWor2WPl42E+O7McJq0povV1Yq8Bh3AzMPyiR/aq2FmX3LCVlP8EAxn0p5blYi1dQ0Vh7zeTJn9SSPKOtSl5+nYUAFl00NM0iMd2nGMdphnP4CZUB2vEJTIeVA2GlPQVVHTrZlyXvbbHFrZJ31UGHoy4kXUu1vTe0FUU/xgA3fp93zDRUa2aoZjhdzpvxBGlAWe+mUDNahMWUqXds5K+BXLBSCBo62FE/Ozaa2hB1ea8sOfScb01gyyqaxlCSTneX9vbXlqawiuVNC++5YyZLl08D1edY3hggKHN62vCDgsbYWLeaEylrMszaPpOeHQTa2tnKMSux+ul0druiwdSRsTo/HsCUNMCkuIHcxSjDq17TO/ozaWK6a56pYuAF1G+g6uI7eBG+it8Bb6BoYx7Ab4AZ6H7yP3gHvoCfe274GX6OHq1DM3gbb6HXwOnoAHqC74G5RzyHBi9UG99HDxS1W9gp8hQa2kdJzRb5TEGLD5Dgn4BN0DI7Rw8NQnAIBFmg4qNpBH4OP0QfgA/QR+Ah9A75B74J30XvgvWJiYIl2wS46AkdoE2yit8Hb6EvwJboKLg4i9aNOvpAQFi+OV+Fm/BqEgrt5HsJioYsdObm1I4dFxeF4xTYV6eWE74C2smuaJqAs/f6ak1/bu8Hp6or5ZeXj0afy2nr+JZ4lb8hb8p6Y5CtZIz9IjdQJIwn5RX6TPzP/SuXSh9LysOv0VF7zitx6Sp//AyETTnk=</latexit>

⌧R,1=⌧R,2

<latexit sha1_base64="XUHwMqyyOxG67Q0O2SyG17G8k/M=">AAAGbXicbdTdbtMwFABgb7Ayxt8G4gqEMjYEV1MzEHCDNK37YX9at1FWqakqx3HTrHacxW63LupjcAvPxVPwCiSn2UnXLVLV8x37yI4d241EoE25/Hdq+t79mdKD2Ydzjx4/efpsfuH5T616MeM1poSK6y7VXAQhr5nACF6PYk6lK/ip261k7ad9HutAhT/MIOJNSf0waAeMmjTVqLVs65u1atVaq635pfJKGR7rdmDnwRLJn2prYWbf8RTrSR4aJqjWDbscmWZCYxMwwYdzTk/ziLIu9XkjDUMquW4mMOeh9S7NeFZbxekvNBZkxysSKrUeSDftKanp6Mm2LHlnmytvjJxkPYxSQk9MyLS/NpMgjHqGh2w0n3ZPWEZZ2TpZXhBzZsQgDSiLg/SVLNahMWUmXc05J+QXTElJQy9xDB827GbiSFddJo6rhJeNaS1bS7a1PBxOdtZ3906cwGQVw1sltO+PlSw7goa+4FnfGCIo8HjbCcKQx4mz6DBPGWcxz7o80oFQYTZ24uS4LnH76XZ1uKGj1mths6G9UUsaYFKeQe7sOsGoqCZJ9mdVx3KVPFfBwg2o20DXwDX0JngTvQXeQlfBOIZbB9fR++B99A54Bz0xb/cSfIkerULx9i7YRa+D19ED8ADdBXeLeg4JXqw2uI8eLW6xshfgCzSwjdSBL/OdghAbJsc5AZ+gY3CMHn0MxVcgwRINH2rioY/Bx+gD8AH6CHyEvgJfoXfBu+g98F7xYmCN9sE+OgJHaBtso7fB2+hz8Dm6Ai4+RCqiTr6QEBYTx6NwNX4MlOR+noewWOhiR05u7MhhUXE4XrFNZXo44R5InOyYpgkoS+9fe/K2vR38XF2xP698PPq0tLae38Sz5BV5Sz4Qm3wha+Q7qZIaYUSRX+Q3+TPzr/Sy9Lr0ZtR1eiqveUFuPKX3/wF77kiU</latexit>

U1= 2U2

<latexit sha1_base64="OZNkhLpjvozWzSEQBOMBqHRbXqY=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6hh07abSYjyM/5EgRWYSFU5jpuG2kmI3UKx+hS73R5sD7F3WHIaTkohUtXzHfvIjh3bjUWgdKXyd2Ly0eOp0pPppzPPnr94+Wp27vWJiroJ43UWiSg5c6niIgh5XQda8LM44VS6gp+6nWrWftrjiQqi8Ifux7whqR8GrYBRnaZ+1pu29c2qN1eas+XKcgUe635g50GZ5E+tOTe153gR60oeaiaoUud2JdYNQxMdMMEHM05X8ZiyDvX5eRqGVHLVMDDjgbWUZjyrFSXpL9QWZEcrDJVK9aWb9pRUt9V4W5Z8sM2Vd0Y2WQ8dRUKNTUi3vjZMEMZdzUM2nE+rKywdWdkqWV6QcKZFPw0oS4L0lSzWpgllOl3LGSfkVyySkoaecTQfnNsN40g3ujaOGwkvG9NatMq2tTgYjHdWD/c2TqCzisG9EtrzR0oWHUFDX/CsbwIRFHi85QRhyBPjLDjMi7SzkGddHqtARGE2tnFy3Ja4vXS72lzTYeutsFnT7rAlDTApLyB3cZtgVNSMyf6s2kiumueqWLgOdevoOriO3gBvoDfBm+gaGMdwz8Bn6D3wHnobvI0em7d7Db5GD1eheHsX7KLXwGvoPriP7oA7RT2HBC9WG9xDDxe3WNkr8BUa2EKqwJf5TkGIDePjHIOP0Qk4QQ8/huIrkGCJhg/VeOgj8BF6H7yPPgQfom/AN+gd8A56F7xbvBhYoX2wj47BMdoG2+gt8Bb6EnyJroKLD5GKuJ0vJITFxPEo3Iweg0hyP89DWCx0sSPHd3bkoKg4GK3YojI9nHAPGCc7pmkCytL71x6/be8HJyvL9uflj4efyqtr+U08Td6S9+QDsckXskq+kxqpE0Yk+UV+kz9T/0rzpTeld8OukxN5zTy585SW/gM5Vkgu</latexit>

U1=U2

<latexit sha1_base64="aYDreq5la6mSgzmVqxgv9++SKjk=">AAAGfHicbdTtT9NAGADwA2UivoF+MfFLcTMxUcmKBv1iQhgv8hYGOFlCl+V6vXVld21pb8C41L/Gr/r/+M8Y22fd0zFosuz5PXdPrvdWOxRerKrVv1PT9+7PlB7MPpx79PjJ02fzC89/xEE/YrzBAhFETZvGXHg+byhPCd4MI06lLfiJ3atl7ScXPIq9wP+uBiFvSer6XsdjVKWp9vxLS9F+Wx+9NxPjq7E80nLSni9Xl6rwGLcDMw/KJH/q7YWZPcsJWF9yXzFB4/jUrIaqpWmkPCZ4Mmf1Yx5S1qMuP01Dn0oetzRMITHepBnH6ARR+vOVAdnxCk1lHA+knfaUVHXjybYseWebLW+MrLMeKghEPPFCqvOlpT0/7Cvus+H7dPrCUIGRLZvheBFnSgzSgLLIS6dksC6NKFPp4s5ZPr9kgZTUd7SleHJqtrQl7eBKW3YgnGxMo2KUTaOSJJOd47t7a8tTWUVyq4ReuGMlFUtQ3xU86xtBBAUO71ie7/NIW4sWcwJlLeZZm4exJwI/G1tbOUYl9kW6XV2u6LB1JGxOj8ewJQ0wKc8gdzZKMCrqWmd/Rn0sV8tzNSxch7p1dAPcQG+AN9Cb4E10HYxj2E1wE70H3kNvg7fRE+9tX4Gv0MNVKGZvg230GngNPQAP0D1wr6jnkODFaoMv0MPFLVb2EnyJBnaQsefKfKcgxIbJcY7Bx+gIHKGHh6E4BRIs0XBQtYM+Ah+h98H76EPwIfoafI3eAe+gd8G7xcTAMdoFu+gQHKJNsIneAm+hz8Hn6Bq4OIhUhN18ISEsXhyvwvX4NQgkd/M8hMVCFztyfGNHDoqKg/GKLSrTywnfAW1l1zRNQFn6/TUnv7a3gx/LS+bK0sfDT+XVtfxLPEtekdfkLTHJZ7JKvpE6aRBGfpJf5Df5M/OvVCm9K30Ydp2eymtekBtPaeU/fLdOtQ==</latexit>

⌧R,1= 2⌧R,2

<latexit sha1_base64="BlFbKLR4gggStB7FGOiexdNV0CM=">AAAGcHicbdTdTtswFABgw0bH2B9sN5N2sbAyaZoQarZp280kRPkZf6LACpVIhxzHTUPtJMRuoVh9j91ub7XX2BMsOQ0npRCp6vmOfWTHse3GIlC6Uvk7MXnv/lTpwfTDmUePnzx9Njv3/EhF3YTxOotElDRcqrgIQl7XgRa8ESecSlfwY7dTzdqPezxRQRT+0P2YNyX1w6AVMKrT1E9tfbMcTbun5mDRHpzOlitLFXis24GdB2WSP7XTuakdx4tYV/JQM0GVOrErsW4amuiACT6YcbqKx5R1qM9P0jCkkqumgWkPrLdpxrNaUZL+Qm1BdrTCUKlUX7ppT0l1W423Zck721x5Y2ST9dBRJNTYhHTra9MEYdzVPGTD+bS6wtKRlS2V5QUJZ1r004CyJEhfyWJtmlCm0wWdcUJ+wSIpaegZR/PBid00jnSjS+O4kfCyMa0Fq2xbC4PBeGd1d2/jBDqrGNwqoT1/pGTBETT0Bc/6JhBBgcdbThCGPDHOvMO8SDvzedblsQpEFGZjGyfHdYnbSz9Xm2s6bL0WNqfbY9iSBpiUZ5A7u04wKmrGZH9WbSRXzXNVLFyFulV0HVxHr4HX0OvgdXQNjGO4DXADvQPeQW+CN9Fj83YvwZfo4SoUb++CXfQKeAXdB/fRHXCnqOeQ4MVqg3vo4eIWK3sBvkADW0gV+DL/UhBiw/g4h+BDdAJO0MPNUOwCCZZo2KjGQx+AD9C74F30PngffQW+Qm+Bt9Db4O3ixcAK7YN9dAyO0TbYRm+AN9Dn4HN0FVxsRCridr6QEBYTx6NwNXoMIsn9PA9hsdDFFzm88UX2ioq90YoNKtPDCfeAcbJjmiagLL1/7fHb9nZw9GHJ/rz0cf9TeXklv4mnySvyhrwjNvlClsl3UiN1wkhCfpHf5M/Uv9LL0uvS/LDr5ERe84LceErv/wMYh0q1</latexit> t=⌧R,1

<latexit sha1_base64="kOoPf1A9TFiJQ6LTutVV1pIBMuY=">AAAGc3icbdRbT9swFABgw0bH2AXYHnkJtJP2sKGGTdteJiHKZdxEgRUqkapyHLcNtZMQu4Vi9ZfsdftR+yF7X3IaTkohUtXzHfvIjmPbjYSvdLn8d2r6ydOZwrPZ53MvXr56Pb+w+OZMhb2Y8RoLRRjXXaq48ANe074WvB7FnEpX8HO3W0nbz/s8Vn4Y/NSDiDckbQd+y2dUJ6nmwry2vltrjqa9pjn5YA+bC8Xyahke62FgZ0GRZE+1uThz4Hgh60keaCaoUhd2OdINQ2PtM8GHc05P8YiyLm3ziyQMqOSqYWDmQ+tdkvGsVhgnv0BbkB2vMFQqNZBu0lNS3VGTbWny0TZX3hvZpD10GAo1MSHd+tYwfhD1NA/YaD6tnrB0aKWrZXl+zJkWgySgLPaTV7JYh8aU6WRN55yAX7NQShp4xtF8eGE3jCPd8MY4bii8dEyrZBVtqzQcTnZWj/c2jq/TiuGDEtpvj5WUHEGDtuBp3xgiKPB4y/GDgMfGWXaYF2pnOcu6PFK+CIN0bONkuCtx+8nn6nBNR613wuZke4xakgCT8hJyl3cJRkXVmPTPqo7lKlmugoWbULeJroFr6C3wFnobvI2ugnEMtw6uow/AB+hd8C56Yt7uDfgGPVqF/O1dsIveAG+gB+ABugvu5vUcEjxfbXAfPVrcfGWvwddoYAup/LbMvhSE2DA5zin4FB2DY/RoM+S7QIIlGjaq8dAn4BP0IfgQfQw+Rt+Cb9F74D30Png/fzGwQrfBbXQEjtA22EbvgHfQV+ArdAWcb0Qqok62kBDmE8ejcDt+DELJ21kewnyh8y9yeu+LHOUVR+MVO1QmhxPuAeOkxzRJQFly/9qTt+3D4Gxt1f6y+un4c3F9I7uJZ8kSWSHviU2+knXyg1RJjTDSI7/Ib/Jn5l9hqbBSKI26Tk9lNW/Jvafw8T9za0si</latexit> t=2⌧R,1

<latexit sha1_base64="ZtD4zDZECCTUUT5YXks5V+DEhvw=">AAAGc3icbdRbT9swFABgw0bH2AXYHnkJtJP2sKFmQ9teJiHKZdxEgRUqkapyHLcNtZMQu4Vi9ZfsdftR+yF7X3IaTkohUtXzHfvIjmPbjYSvdLn8d2r6ydOZwrPZ53MvXr56Pb+w+OZMhb2Y8RoLRRjXXaq48ANe074WvB7FnEpX8HO3W0nbz/s8Vn4Y/NSDiDckbQd+y2dUJ6nmwry2vltrjqa9pjn5YA+bC8Xyahke62FgZ0GRZE+1uThz4Hgh60keaCaoUhd2OdINQ2PtM8GHc05P8YiyLm3ziyQMqOSqYWDmQ+tdkvGsVhgnv0BbkB2vMFQqNZBu0lNS3VGTbWny0TZX3hvZpD10GAo1MSHd+tYwfhD1NA/YaD6tnrB0aKWrZXl+zJkWgySgLPaTV7JYh8aU6WRN55yAX7NQShp4xtF8eGE3jCPd8MY4bii8dEyrZBVtqzQcTnZWj/c2jq/TiuGDEtpvj5WUHEGDtuBp3xgiKPB4y/GDgMfGWXaYF2pnOcu6PFK+CIN0bONkuCtx+8nn6nBNR613wuZke4xakgCT8hJyl3cJRkXVmPTPqo7lKlmugoWbULeJroFr6C3wFnobvI2ugnEMtw6uow/AB+hd8C56Yt7uDfgGPVqF/O1dsIveAG+gB+ABugvu5vUcEjxfbXAfPVrcfGWvwddoYAup/LbMvhSE2DA5zin4FB2DY/RoM+S7QIIlGjaq8dAn4BP0IfgQfQw+Rt+Cb9F74D30Png/fzGwQrfBbXQEjtA22EbvgHfQV+ArdAWcb0Qqok62kBDmE8ejcDt+DELJ21kewnyh8y9yeu+LHOUVR+MVO1QmhxPuAeOkxzRJQFly/9qTt+3D4OzTqv1l9fPxWnF9I7uJZ8kSWSHviU2+knXyg1RJjTDSI7/Ib/Jn5l9hqbBSKI26Tk9lNW/Jvafw8T9/fUsk</latexit> t=4⌧R,1 <latexit sha1_base64="xx4xpk/QhdqcwgStkJKxuhiDosM=">AAAGbHicbdTdTtswFABgw0bH2B9su0OTwsqmXaFmm7ZdIsrPgCIKrIBGKuQ4bhpqxyF2W0rUt9jt9l57iT3DktNwUgqRqp7v2Ed2TuK4kQi0qVT+Tk0/eDhTejT7eO7J02fPX8wvvDzWqhsz3mBKqPjUpZqLIOQNExjBT6OYU+kKfuJ2qtn4SY/HOlDhDzOIeFNSPwxaAaMmTf10pKuukprqD8/ny5WVClzW3cDOgzLJr/r5wkzN8RTrSh4aJqjWZ3YlMs2ExiZggg/nnK7mEWUd6vOzNAyp5LqZwJaH1rs041ktFae/0FiQHa9IqNR6IN10pqSmrSfHsuS9Y668tXKSzTBKCT2xIdP61kyCMOoaHrLRflpdYRllZW2yvCDmzIhBGlAWB+ktWaxNY8pM2sw5J+R9pqSkoZc4hg/P7GYyaqXjKuFla1rLVtm2lofDycn6/tmJE5isYninhPb8sZJlR9DQFzybG0MEBR5vOUEY8jhxlhzmKeMs5VmXRzoQKszWTpwcNyVuL31cbW7oaPRGOGxodzSSBpiUF5C7uEkwKupJkv1Z9bFcNc9VsXAd6tbRDXADvQHeQG+CN9F1MK7hnoJP0TVwDb0N3kZP7Nu9Al+hR10o7t4Fu+g18Bp6AB6gO+BOUc8hwYtug3voUXOLzvbBfTSwhdSBL/MnBSEOTK5zBD5Cx+AYPXoZirdAgiUaXtTEQx+CD9F74D30AfgAfQ2+Ru+Ad9C74N3ixsAa7YN9dASO0DbYRm+Bt9CX4Et0FVy8iFRE7byREBYbx6NwPX4MlOR+noewaHTxRI5uPZH9omJ/vGKLyvRwwncgcbJjmiagLP3+2pNf27vB8ccV+8vKp4PP5dW1/Es8SxbJW/KB2OQrWSXfSZ00CCMh+UV+kz8z/0qvS4ulN6Op01N5zSty6yq9/w8iikos</latexit>

Low <latexit sha1_base64="JwcFbS5zQAGGaWUYQhMwMfhrQvU=">AAAGbXicbdTdTtswFABgw0bH2B9s2tWmKaxM2xVqtmnbJaL8/4gCK1RqKuS4bhpqxyF2CyXqY+x2e649xV5hyUk4KYVIVc937CM7J3HcUPjaVCp/p6YfPJwpPZp9PPfk6bPnL+YXXp5o1Y8YrzMlVNRwqebCD3jd+EbwRhhxKl3BT91eNR0/HfBI+yr4aYYhb0nqBX7HZ9QkqaYjXXUVb/led3Q2X64sV+Cy7gZ2HpRJftXOFmb2nLZifckDwwTVumlXQtOKaWR8JvhozulrHlLWox5vJmFAJdetGPY8sj4kmbbVUVHyC4wF2fGKmEqth9JNZkpqunpyLE3eO+bKWyvH6QyjlNATGzKdH63YD8K+4QHL9tPpC8soK+2T1fYjzowYJgFlkZ/cksW6NKLMJN2ccwJ+yZSUNGjHjuGjpt2Ks146rhLtdE1rySrb1tJoNDlZ3z87dnyTVozulNCBN1ay5AgaeIKncyOIoKDNO44fBDyKnUWHtZVxFvOsy0PtCxWka8dOjpsSd5A8ri43NBu9EQ4b2s9GkgCT8hxy5zcJRkUtjtM/qzaWq+a5KhauQd0aug6uo9fB6+gN8Aa6BsY13Aa4gd4D76G3wdvoiX27V+ArdNaF4u5dsIteBa+ih+AhugfuFfUcErzoNniAzppbdPYSfIkGdpDa92T+pCDEgcl1jsHH6AgcobOXoXgLJFii4UWN2+gj8BF6H7yPPgQfoq/B1+gd8A56F7xb3BhYoz2whw7BIdoG2+hN8Cb6AnyBroKLF5GKsJs3EsJi43gUrsePgZLcy/MQFo0unsjxrSdyUFQcjFdsUpkcTvgOxE56TJMElCXfX3vya3s3OPm8bH9b/nL4tbyymn+JZ8kb8p58Ijb5TlbIFqmROmFEkV/kN/kz86/0uvS29C6bOj2V17wit67Sx/8jsEqE</latexit>

High

<latexit sha1_base64="urueFNGhL0ara8SCkZQLJTdpLjs=">AAAGe3icbdRbT9swFABgw0bH2A22hz3sJaxMmiaEGnZ9mYQol3ETBVaoRKrKcdw0NE5C7BaKlV+z1+0H7cdMWnKanpRCpKrnO/aR41vsyPekqlT+Tk0/eDhTejT7eO7J02fPX8wvvDyVYS9mvM5CP4wbNpXc9wJeV57yeSOKORW2z8/sbjVrP+vzWHph8FMNIt4U1A28tseoSlOt+deWor2WPl42E+O7McJq0povV1Yq8Bh3AzMPyiR/aq2FmX3LCVlP8EAxn0p5blYi1dQ0Vh7zeTJn9SSPKOtSl5+nYUAFl00NM0iMd2nGMdphnP4CZUB2vEJTIeVA2GlPQVVHTrZlyXvbbHFrZJ31UGHoy4kXUu1vTe0FUU/xgA3fp93zDRUa2aoZjhdzpvxBGlAWe+mUDNahMWUqXds5K+BXLBSCBo62FE/Ozaa2hB1ea8sOfScb01gyyqaxlCSTneX9vbXlqawiuVNC++5YyZLl08D1edY3hggKHN62vCDgsbYWLeaEylrMszaPpOeHQTa2tnKMSux+ul0druiwdSRsTo/HsCUNMCkuIHcxSjDq17TO/ozaWK6a56pYuAF1G+g6uI7eBG+it8Bb6BoYx7Ab4AZ6H7yP3gHvoCfe274GX6OHq1DM3gbb6HXwOnoAHqC74G5RzyHBi9UG99HDxS1W9gp8hQa2kdJzRb5TEGLD5Dgn4BN0DI7Rw8NQnAIBFmg4qNpBH4OP0QfgA/QR+Ah9A75B74J30XvgvWJiYIl2wS46AkdoE2yit8Hb6EvwJboKLg4i9aNOvpAQFi+OV+Fm/BqEgrt5HsJioYsdObm1I4dFxeF4xTYV6eWE74C2smuaJqAs/f6ak1/bu8Hp6or5ZeXj0afy2nr+JZ4lb8hb8p6Y5CtZIz9IjdQJIwn5RX6TPzP/SuXSh9LysOv0VF7zitx6Sp//AyETTnk=</latexit>

⌧R,1=⌧R,2

<latexit sha1_base64="XUHwMqyyOxG67Q0O2SyG17G8k/M=">AAAGbXicbdTdbtMwFABgb7Ayxt8G4gqEMjYEV1MzEHCDNK37YX9at1FWqakqx3HTrHacxW63LupjcAvPxVPwCiSn2UnXLVLV8x37yI4d241EoE25/Hdq+t79mdKD2Ydzjx4/efpsfuH5T616MeM1poSK6y7VXAQhr5nACF6PYk6lK/ip261k7ad9HutAhT/MIOJNSf0waAeMmjTVqLVs65u1atVaq635pfJKGR7rdmDnwRLJn2prYWbf8RTrSR4aJqjWDbscmWZCYxMwwYdzTk/ziLIu9XkjDUMquW4mMOeh9S7NeFZbxekvNBZkxysSKrUeSDftKanp6Mm2LHlnmytvjJxkPYxSQk9MyLS/NpMgjHqGh2w0n3ZPWEZZ2TpZXhBzZsQgDSiLg/SVLNahMWUmXc05J+QXTElJQy9xDB827GbiSFddJo6rhJeNaS1bS7a1PBxOdtZ3906cwGQVw1sltO+PlSw7goa+4FnfGCIo8HjbCcKQx4mz6DBPGWcxz7o80oFQYTZ24uS4LnH76XZ1uKGj1mths6G9UUsaYFKeQe7sOsGoqCZJ9mdVx3KVPFfBwg2o20DXwDX0JngTvQXeQlfBOIZbB9fR++B99A54Bz0xb/cSfIkerULx9i7YRa+D19ED8ADdBXeLeg4JXqw2uI8eLW6xshfgCzSwjdSBL/OdghAbJsc5AZ+gY3CMHn0MxVcgwRINH2rioY/Bx+gD8AH6CHyEvgJfoXfBu+g98F7xYmCN9sE+OgJHaBtso7fB2+hz8Dm6Ai4+RCqiTr6QEBYTx6NwNX4MlOR+noewWOhiR05u7MhhUXE4XrFNZXo44R5InOyYpgkoS+9fe/K2vR38XF2xP698PPq0tLae38Sz5BV5Sz4Qm3wha+Q7qZIaYUSRX+Q3+TPzr/Sy9Lr0ZtR1eiqveUFuPKX3/wF77kiU</latexit>

U1= 2U2

<latexit sha1_base64="OZNkhLpjvozWzSEQBOMBqHRbXqY=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6hh07abSYjyM/5EgRWYSFU5jpuG2kmI3UKx+hS73R5sD7F3WHIaTkohUtXzHfvIjh3bjUWgdKXyd2Ly0eOp0pPppzPPnr94+Wp27vWJiroJ43UWiSg5c6niIgh5XQda8LM44VS6gp+6nWrWftrjiQqi8Ifux7whqR8GrYBRnaZ+1pu29c2qN1eas+XKcgUe635g50GZ5E+tOTe153gR60oeaiaoUud2JdYNQxMdMMEHM05X8ZiyDvX5eRqGVHLVMDDjgbWUZjyrFSXpL9QWZEcrDJVK9aWb9pRUt9V4W5Z8sM2Vd0Y2WQ8dRUKNTUi3vjZMEMZdzUM2nE+rKywdWdkqWV6QcKZFPw0oS4L0lSzWpgllOl3LGSfkVyySkoaecTQfnNsN40g3ujaOGwkvG9NatMq2tTgYjHdWD/c2TqCzisG9EtrzR0oWHUFDX/CsbwIRFHi85QRhyBPjLDjMi7SzkGddHqtARGE2tnFy3Ja4vXS72lzTYeutsFnT7rAlDTApLyB3cZtgVNSMyf6s2kiumueqWLgOdevoOriO3gBvoDfBm+gaGMdwz8Bn6D3wHnobvI0em7d7Db5GD1eheHsX7KLXwGvoPriP7oA7RT2HBC9WG9xDDxe3WNkr8BUa2EKqwJf5TkGIDePjHIOP0Qk4QQ8/huIrkGCJhg/VeOgj8BF6H7yPPgQfom/AN+gd8A56F7xbvBhYoX2wj47BMdoG2+gt8Bb6EnyJroKLD5GKuJ0vJITFxPEo3Iweg0hyP89DWCx0sSPHd3bkoKg4GK3YojI9nHAPGCc7pmkCytL71x6/be8HJyvL9uflj4efyqtr+U08Td6S9+QDsckXskq+kxqpE0Yk+UV+kz9T/0rzpTeld8OukxN5zTy585SW/gM5Vkgu</latexit>

U1=U2

<latexit sha1_base64="aYDreq5la6mSgzmVqxgv9++SKjk=">AAAGfHicbdTtT9NAGADwA2UivoF+MfFLcTMxUcmKBv1iQhgv8hYGOFlCl+V6vXVld21pb8C41L/Gr/r/+M8Y22fd0zFosuz5PXdPrvdWOxRerKrVv1PT9+7PlB7MPpx79PjJ02fzC89/xEE/YrzBAhFETZvGXHg+byhPCd4MI06lLfiJ3atl7ScXPIq9wP+uBiFvSer6XsdjVKWp9vxLS9F+Wx+9NxPjq7E80nLSni9Xl6rwGLcDMw/KJH/q7YWZPcsJWF9yXzFB4/jUrIaqpWmkPCZ4Mmf1Yx5S1qMuP01Dn0oetzRMITHepBnH6ARR+vOVAdnxCk1lHA+knfaUVHXjybYseWebLW+MrLMeKghEPPFCqvOlpT0/7Cvus+H7dPrCUIGRLZvheBFnSgzSgLLIS6dksC6NKFPp4s5ZPr9kgZTUd7SleHJqtrQl7eBKW3YgnGxMo2KUTaOSJJOd47t7a8tTWUVyq4ReuGMlFUtQ3xU86xtBBAUO71ie7/NIW4sWcwJlLeZZm4exJwI/G1tbOUYl9kW6XV2u6LB1JGxOj8ewJQ0wKc8gdzZKMCrqWmd/Rn0sV8tzNSxch7p1dAPcQG+AN9Cb4E10HYxj2E1wE70H3kNvg7fRE+9tX4Gv0MNVKGZvg230GngNPQAP0D1wr6jnkODFaoMv0MPFLVb2EnyJBnaQsefKfKcgxIbJcY7Bx+gIHKGHh6E4BRIs0XBQtYM+Ah+h98H76EPwIfoafI3eAe+gd8G7xcTAMdoFu+gQHKJNsIneAm+hz8Hn6Bq4OIhUhN18ISEsXhyvwvX4NQgkd/M8hMVCFztyfGNHDoqKg/GKLSrTywnfAW1l1zRNQFn6/TUnv7a3gx/LS+bK0sfDT+XVtfxLPEtekdfkLTHJZ7JKvpE6aRBGfpJf5Df5M/OvVCm9K30Ydp2eymtekBtPaeU/fLdOtQ==</latexit>

⌧R,1= 2⌧R,2

Figure 2.12: (Left) Snapshots from BD simulations of purely active particles re- leased at 𝑑 = 0 from the center (white dashed line) where the reorientation time or swim speed abruptly changes. The colormap shows the local number density of particles. The length of the simulation box is 5 times longer than the run length in re- gion 1 (π‘₯ <0). (Right) Transient number densities, polar orders, and nematic orders multiplied by the run length in region 1β„“1obtained by BD simulations when purely active particles released at𝑑 = 0 fromπ‘₯ =0 where the reorientation time or swim speed abruptly changes. The probability density is normalized so that∫∞

βˆ’βˆžπ‘› 𝑑π‘₯=1 and the position is scaled with β„“1 as well. The shape of number densities shows transition from wave-like (𝑑 ≀ πœπ‘…) to diffusion-like (𝑑 > πœπ‘…) dynamics. When a step change in the swim speed occurs the even-ordered orientational moments (e.g. 𝑛, 𝑸, etc.) are discontinuous at the jump for the continuity of the translational flux

𝒋𝑇 =π‘ˆ 𝑃𝒒.

Here, 𝐼0 is a modified Bessel function of the first kind. Sinceπ‘ˆ1𝑛1=π‘ˆ2𝑛2 at the interface (π‘₯=0) for the continuity of the polar order flux, eq. (2.55) implies that the particles are partitioned evenly in each region (𝑁1=𝑁2) at all time regardless of the swim speeds when the rotational diffusivities in the two regions are the same. The fraction of particles in each region at (≫ πœπ‘…) times is approximated as

𝑁𝑖(𝑑) β‰ˆ 1

√︁

𝑑(π‘‘βˆ’1)πœ‹ 𝐷𝑅,𝑖

∫ 𝑑

0

π‘ˆπ‘–π‘›π‘–(0, 𝑑′)

√ π‘‘βˆ’π‘‘β€²

𝑑 𝑑′, (2.56)

35

100 101 102

100 101

100 120 140 160 180 200

300 320 340 360 380

100 120 140 160 180 200

300 320 340 360 380 400

<latexit sha1_base64="GeoKHT8ytpnq+UB0qkoLKt99neY=">AAAGdXicbdRbU9NAFADgBaUi3kAfHWeCrY5P2KijPiLlIrehgMXOkA6zSbZp6G4SstuWkslP8VV/k7/EVzcn4aQUMsNwvrN7upuTTeyI+1LV639nZu/dn6s8mH+48Ojxk6fPFpeen8hwEDus5YQ8jNs2lYz7AWspX3HWjmJGhc3ZT7vfyMZ/Dlks/TD4ocYR6wjqBX7Xd6jSqbPFJUvY4WXyLaB8rHSWp2eL1fpKHS7jdmAWQZUUV/NsaW7PckNnIFigHE6lPDXrkeokNNY/yFm6YA0ki6jTpx471WFABZOdBPaeGm90xjW6Yaz/AmVAdrIioULKsbD1TEFVT06PZck7x2xxY+Ukm6HCkMupDanu107iB9FAscDJ99MdcEOFRtYvw/Vj5ig+1gF1Yl/fkuH0aEwdpbu6YAVs5IRC0MBNLMXSU7OT5B217JC72ZpGzaiaRi1NpyfLu2cnlq+yivRWCR16EyU1i9PA4yybG0MEBS7rWn4QsDixli3HDZW1XGRtFkmfh0G2dmIVuC6xh/px9Zii+ei1cFjRQT6iA0yKc8idXyf08WkmSfbPaE7kGkWugYXrULeOboFb6A3wBnoTvIlugnENuw1uo/fAe+ht8DZ6at/2JfgSnXehvHsbbKPXwGvoMXiM7oP7ZT2DBCu7DR6i8+aWnR2BR2hgFyl9TxRPCkIcmF7nGHyMjsExOj8M5SkQYIGGg5q46CPwEXofvI8+BB+ir8BX6B3wDnoXvFveGFiiPbCHjsAR2gSb6C3wFvoCfIFugMuDSHnUKxoJYblxfBWuJl+DUDCvyENYNrp8Isc3nshBWXEwWbFFhX454TuQWNlrqhNQpr+/5vTX9nZw8mHF/Lzy8fBTdXWt+BLPk5fkNXlHTPKFrJLvpElaxCEj8ov8Jn/m/lVeVWqVt/nU2Zmi5gW5cVXe/wdLC01z</latexit>

Analytical <latexit sha1_base64="aJ330Jh0cPFiyudhgFJnsik1ZmM=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6jZpm2XqOVn/IkCK3QiFXIcNw21kxC7hRLlKXa7PdgeYu+w5CSclEKkquc79pGdkzh2KDyla7W/U9OPHs9Unsw+nXv2/MXLV/MLr09UMIgYb7FABFHbpooLz+ct7WnB22HEqbQFP7X7jWz8dMgj5QX+Dz0KeUdS1/e6HqM6Tf20pB1cx/X15Hy+WlutwWXcD8wiqJLiap4vzOxZTsAGkvuaCarUmVkLdSemkfaY4MmcNVA8pKxPXX6Whj6VXHVi2HFirKQZx+gGUfrztQHZ8YqYSqVG0k5nSqp7anIsSz44Zss7K8fZDB0EQk1sSHe/dWLPDwea+yzfT3cgDB0YWZcMx4s402KUBpRFXnpLBuvRiDKd9nLO8vkVC6SkvhNbmidnZifOO2nZgXCyNY1lo2oay0kyOVk9PDu2PJ1VJPdK6NAdK1m2BPVdwbO5EURQ4PCu5fk+j2JryWJOoK2lImvzUHki8LO1Y6vAbYk9TB9Xj2uaj94KhzUd5CNpgEl5AbmL2wSjohnH2Z/RHMs1ilwDC9ehbh3dArfQG+AN9CZ4E90E4xp2G9xG74H30NvgbfTEvu1r8DU670J59zbYRtfBdfQIPEL3wf2ynkOCl90GD9F5c8vOXoGv0MAuUnmuLJ4UhDgwuc4x+BgdgSN0/jKUb4EESzS8qLGDPgIfoffB++hD8CH6BnyD3gHvoHfBu+WNgRXaBbvoEByiTbCJ3gJvoS/Bl+gGuHwRqQh7RSMhLDeOR+Fm/BgEkrtFHsKy0eUTOb7zRA7KioPxii0q08MJ34HYyo5pmoCy9PtrTn5t7wcnH1fNL6ufDj9X1+rFl3iWvCXvyQdikq9kjXwnTdIijEjyi/wmf2b+VRYrbyrv8qnTU0XNIrlzVVb+A+1+SXY=</latexit>

BD

100 120 140 160 180 200

300 320 340 360 380

100 120 140 160 180 200

300 320 340 360 380

<latexit sha1_base64="OZNkhLpjvozWzSEQBOMBqHRbXqY=">AAAGa3icbdTdTtswFABgw0bH2B+Mu20XYQVpV6hh07abSYjyM/5EgRWYSFU5jpuG2kmI3UKx+hS73R5sD7F3WHIaTkohUtXzHfvIjh3bjUWgdKXyd2Ly0eOp0pPppzPPnr94+Wp27vWJiroJ43UWiSg5c6niIgh5XQda8LM44VS6gp+6nWrWftrjiQqi8Ifux7whqR8GrYBRnaZ+1pu29c2qN1eas+XKcgUe635g50GZ5E+tOTe153gR60oeaiaoUud2JdYNQxMdMMEHM05X8ZiyDvX5eRqGVHLVMDDjgbWUZjyrFSXpL9QWZEcrDJVK9aWb9pRUt9V4W5Z8sM2Vd0Y2WQ8dRUKNTUi3vjZMEMZdzUM2nE+rKywdWdkqWV6QcKZFPw0oS4L0lSzWpgllOl3LGSfkVyySkoaecTQfnNsN40g3ujaOGwkvG9NatMq2tTgYjHdWD/c2TqCzisG9EtrzR0oWHUFDX/CsbwIRFHi85QRhyBPjLDjMi7SzkGddHqtARGE2tnFy3Ja4vXS72lzTYeutsFnT7rAlDTApLyB3cZtgVNSMyf6s2kiumueqWLgOdevoOriO3gBvoDfBm+gaGMdwz8Bn6D3wHnobvI0em7d7Db5GD1eheHsX7KLXwGvoPriP7oA7RT2HBC9WG9xDDxe3WNkr8BUa2EKqwJf5TkGIDePjHIOP0Qk4QQ8/huIrkGCJhg/VeOgj8BF6H7yPPgQfom/AN+gd8A56F7xbvBhYoX2wj47BMdoG2+gt8Bb6EnyJroKLD5GKuJ0vJITFxPEo3Iweg0hyP89DWCx0sSPHd3bkoKg4GK3YojI9nHAPGCc7pmkCytL71x6/be8HJyvL9uflj4efyqtr+U08Td6S9+QDsckXskq+kxqpE0Yk+UV+kz9T/0rzpTeld8OukxN5zTy585SW/gM5Vkgu</latexit>

U1=U2

<latexit sha1_base64="fEsyGwMxjR2IFmSgOGGp+OmliUc=">AAAGe3icddRbT9swFADgwEbH2A22hz3sJaxMmiaEkm5j8DAJUS7jJgqsUIlUlZO4aWichNgFipVfs9ftB+3HTJpzmp6UjkWqer5jHzm+xY4DnwvD+D0x+eDhVOnR9OOZJ0+fPX8xO/fylEe9xKF1JwqipGETTgM/pHXhi4A24oQSZgf0zO5Ws/azK5pwPwq/i35Mm4x4od/2HSJUqjX72hKk15LHi2aqf9WHqKSt2bKxZKhneVnPAnPFMFWwurpSqazqJjQZRlnLn1prbmrfciOnx2gonIBwfm4asWhKkgjfCWg6Y/U4jYnTJR49V2FIGOVNCTNI9Xcq4+rtKFG/UOiQHa2QhHHeZ7bqyYjo8PG2LHlvm83ujCyzHiKKAj72QqK90pR+GPcEDZ3B+7R7gS4iPVs13fUT6oigrwLiJL6aku50SEIcodZ2xgrptRMxRkJXWoKm52ZTWsyObqRlR4Gbjakv6GVTX0jT8c78/t7S8kVWkf5TQq68kZIFKyChF9CsbwIRFLi0bflhSBNpzVuOGwlrPs/aNOZ+EIXZ2NLKMSyxr9R2daggg9ahsFkdj0GLCjDJLiB3MUw4JKhJmf3ptZFcNc9VsXAD6jbQdXAdvQneRG+Bt9A1MI5hN8AN9D54H70D3kGPvbd9A75BD1ahmL0NttHr4HV0H9xHd8Hdop5CgharDb5CDxa3WNlr8DUa2EZy32P5TkGIDePjnIBP0Ak4QQ8OQ3EKGJih4aBKF30MPkYfgA/QR+Aj9C34Fr0L3kXvgfeKiYE52gN76Bgco02wid4Gb6MvwZfoKrg4iCSIO/lCQli8OF6F29FrEDHq5XkIi4UuduTkzo4cFhWHoxXbhKnLCd8BaWXXVCWgTH1/hx9Z/f/BaWXJXF76ePSpvLaef4mntTfaW+29ZmpftDXtm1bT6pqjpdoP7af2a+pPqVz6UFocdJ2cyGteaXee0ue/ibZOtg==</latexit>

⌧R,1=⌧R,2

Figure 2.13: The ratio of numbers of purely active particles in the two regions after randomly oriented particles are released at the interface of the two regions with different transport properties. Black and blue represent a step change in the reorientation time (β„“1/β„“2 = πœπ‘…,1/πœπ‘…,2) and the swim speed (β„“1/β„“2 = π‘ˆ1/π‘ˆ2), respectively. Markers are from BD simulations and lines are the analytical prediction 𝑁1/𝑁2=√︁

πœπ‘…,1/πœπ‘…,2. In the BD simulations the numbers of particles are measured

∼3πœπ‘…,1after the release of particles to ensure the values have reached constant.

where we used 𝐼0(π‘₯) βˆΌπ‘’π‘₯/√

2πœ‹π‘₯ as π‘₯ β†’ ∞. Thus, at long times the ratio of the fractions (or total numbers) of particles in each region is 𝑁1/𝑁2 = √︁

πœπ‘…,1/πœπ‘…,2 β€” the partitioning of particles is governed by the reorientation time.

This also can be explained by the long-time diffusive behavior of ABPs and the steady state solutions from previous sections. When𝑑 ≫ πœπ‘…ABPs effectively diffuse with the swim diffusivity 𝐷𝑠𝑀𝑖 π‘š ∼ π‘ˆ2πœπ‘… and the average (root-mean-square) distance reached by the released particles scales as

√

𝐷𝑠𝑀𝑖 π‘šπ‘‘. Since the number density of particles approaches the steady state value specified byπ‘›π‘ˆ=constant, the ratio of the number of particles in each region𝑁1/𝑁2 ∼

βˆšοΈƒ

𝐷𝑠𝑀𝑖 π‘š

1 π‘‘π‘ˆ2/

βˆšοΈƒ

𝐷𝑠𝑀𝑖 π‘š

2 π‘‘π‘ˆ1 =√︁

πœπ‘…,1/πœπ‘…,2. We perform BD simulations to verify this prediction. Figure 2.12 shows general shapes of the Green’s function when the swim speed or reorientation time abruptly changes at the position where particles are released. Even in transient cases, the number density is an order of magnitude larger than the nematic order allwoing the 𝑸=0-closure for simple predictions at a long (> πœπ‘…) time scale. At a short (< πœπ‘…) time scale different closure methods including the effect of the nematic order are known to give better accuracy [20]. The ratio of number of particles obtained by BD simulations is shown Fig. 2.13 and excellently agrees with the prediction that