Chapter IV: Mechanical Theory of Phase Coexistence
4.1 Phase Equilibrium Conditions
Thermodynamics provides a powerful framework to study systems at equilibrium.
At the heart of thermodynamics is the thermodynamic extremum principles which is rooted in the second law of thermodynamics. The extremum principles state that the system possesses a minimum free energy at equilibrium. In some cases, the
minimum free energy state is achieved by having multiple phases in a system: phase equilibrium.
At phase equilibrium, the temperatureπ, pressure π, and chemical potential π of each species are uniform in all phases β the thermal, mechanical, and chemical equilibria. To see this, let us consider an isolated πΆ-component system with ππ particles of speciesπ (β {1,2, . . . , πΆ}), volumeπ, and energy of the system πΈ and suppose the system has two phases πΌ and π½ at contact. We denote variables for each phase with superscripts e.g. ππΌ is the volume occupied byπΌphase. Since the interface of the two phases is diathermal, movable, and permeable to the chemical species, the energy, volume, and number of particles of each phase are unconstrained.
Using the additivity of the entropyπ =ππΌ+ππ½and the fundamental thermodynamic relation, the variation in the system entropy to the first orders is given by
πΏ π = 1
ππΌ
β 1 ππ½
πΏ πΈπΌ+
ππΌ ππΌ
β ππ½ ππ½
πΏππΌβ
πΆ
βοΈ
π=1
ππΌ
π
ππΌ
β π
π½ π
ππ½
! πΏ ππΌ
π . (4.1)
From the second law of thermodynamics, the entropy of an isolated system reaches a maximum at equilibrium and thus the first differential of the system entropy π with respect to any macrostate variableπvanishes at an equilibrium state: πΏ π/πΏ π = 0. Consequently πΏ π = 0 for any small variations in unconstrained variables at equilibrium and therefore from eq. (4.1)
ππΌ =ππ½, ππΌ = ππ½, ππΌ
π = π
π½
π βπ β {1,2, . . . , πΆ}. (4.2) When more than two phases are present, the phase equilibrium condition (4.4) is satisfied by every pair of phases by the zeroth law of thermodynamics. Hence,π, π, and π are the same in all coexisting phases at equilibrium. We note that the Gibbs phase rule is an immediate consequence of a degree of freedom analysis on the phase equilibrium condition.
One can also find thermodynamic stability conditions by considering the second order variation of the entropy. For example, we consider variations in the energy:
πΏ2π= 1 2
"
π
π πΈπΌ 1
ππΌ
ππΌ, ππΌ
+ π
π πΈπ½ 1
ππ½
ππ½, ππ½
#
(πΏ πΈπΌ)2. (4.3) Now we let the two phases to be identical β the system is homogeneous β and treat the interface as an imaginary surface dividing the system into two regions πΌ
<latexit sha1_base64="QuMjYorzbg2hh7J507IiYGusBLo=">AAAGenicbdRbT9swFABgs42OdTfYHvcSKJM2TULNhrY9Ispl3ESBFSqRCjmOk4baSYjd0hL1H+x1+2/7L3tYchJOSiFS1fMd+8iOHduOhK90vf535tHjJ7OVp3PPqs9fvHz1en7hzakK+zHjLRaKMG7bVHHhB7ylfS14O4o5lbbgZ3avkbWfDXis/DD4qUcR70jqBb7rM6rT1HF1cDFfq6/U4THuB2YR1EjxNC8WZm3LCVlf8kAzQZU6N+uR7iQ01j4TfFy1+opHlPWox8/TMKCSq04CUx0b79OMY7hhnP4CbUB2siKhUqmRtNOekuqumm7Lkg+22fLOyEnWQ4ehUFMT0u73TuIHUV/zgOXzcfvC0KGRLY/h+DFnWozSgLLYT1/JYF0aU6bTRaxaAb9moZQ0cBJL8/G52UksaYfDxLJD4WRjGstGzTSWx+Ppzurh3onl66xifK+EDryJkmVL0MATPOsbQwQFDnctPwh4nFiLFnNCbS0WWZtHyhdhkI2dWAVuS+xBul1drmneeits1rSft6QBJuUl5C5vE4yKZpJkf0ZzItcocg0s3IC6DXQL3EJvgjfRW+AtdBOMY9htcBu9D95H74B30FPztofgITpfhfLtbbCNXgevo0fgEboH7pX1HBK8XG3wAJ0vbrmy1+BrNNBFKt+TxU5BiA3T45yAT9AxOEbnH0P5FUiwRMOHmjjoY/Ax+gB8gD4CH6FvwDfoXfAueg+8V74YWKE9sIeOwBHaBJvobfA2+gp8hW6Ayw+RiqhbLCSE5cTxKNxMHoNQcq/IQ1gudLkjJ3d25LCsOJys2KYyPZxwDyRWdkzTRF42dWdFWg7H1fRWNqfv4PvB6ecV8+vKl6PV2tp6cT/PkXdkiXwgJvlG1sgP0iQtwohLfpHf5M/sv8pS5WPlU9710UxR85bceSqr/wFqwk+O</latexit>
v
<latexit sha1_base64="QuMjYorzbg2hh7J507IiYGusBLo=">AAAGenicbdRbT9swFABgs42OdTfYHvcSKJM2TULNhrY9Ispl3ESBFSqRCjmOk4baSYjd0hL1H+x1+2/7L3tYchJOSiFS1fMd+8iOHduOhK90vf535tHjJ7OVp3PPqs9fvHz1en7hzakK+zHjLRaKMG7bVHHhB7ylfS14O4o5lbbgZ3avkbWfDXis/DD4qUcR70jqBb7rM6rT1HF1cDFfq6/U4THuB2YR1EjxNC8WZm3LCVlf8kAzQZU6N+uR7iQ01j4TfFy1+opHlPWox8/TMKCSq04CUx0b79OMY7hhnP4CbUB2siKhUqmRtNOekuqumm7Lkg+22fLOyEnWQ4ehUFMT0u73TuIHUV/zgOXzcfvC0KGRLY/h+DFnWozSgLLYT1/JYF0aU6bTRaxaAb9moZQ0cBJL8/G52UksaYfDxLJD4WRjGstGzTSWx+Ppzurh3onl66xifK+EDryJkmVL0MATPOsbQwQFDnctPwh4nFiLFnNCbS0WWZtHyhdhkI2dWAVuS+xBul1drmneeits1rSft6QBJuUl5C5vE4yKZpJkf0ZzItcocg0s3IC6DXQL3EJvgjfRW+AtdBOMY9htcBu9D95H74B30FPztofgITpfhfLtbbCNXgevo0fgEboH7pX1HBK8XG3wAJ0vbrmy1+BrNNBFKt+TxU5BiA3T45yAT9AxOEbnH0P5FUiwRMOHmjjoY/Ax+gB8gD4CH6FvwDfoXfAueg+8V74YWKE9sIeOwBHaBJvobfA2+gp8hW6Ayw+RiqhbLCSE5cTxKNxMHoNQcq/IQ1gudLkjJ3d25LCsOJys2KYyPZxwDyRWdkzTRF42dWdFWg7H1fRWNqfv4PvB6ecV8+vKl6PV2tp6cT/PkXdkiXwgJvlG1sgP0iQtwohLfpHf5M/sv8pS5WPlU9710UxR85bceSqr/wFqwk+O</latexit>v
<latexit sha1_base64="gEvacySIHOPtzlUzGsVs8RejIX0=">AAAGeXicbdRbT9swFABgw0bHuhtsj3sJK5PQHlAzpm2PqOUybqKFFSqRCjmOm4baSYjd0hL1F+x1+3H7LXtZchJOSiFS1fMd+8iOHdsOhad0tfp3bv7J04XSs8Xn5RcvX71+s7T89kwFg4jxFgtEELVtqrjwfN7Snha8HUacSlvwc7tfT9vPhzxSXuD/1OOQdyR1fa/rMaqTVDO8XKpU16vwGA8DMw8qJH8al8sLtuUEbCC5r5mgSl2Y1VB3Yhppjwk+KVsDxUPK+tTlF0noU8lVJ4aZToyPScYxukGU/HxtQHa6IqZSqbG0k56S6p6abUuTj7bZ8t7IcdpDB4FQMxPS3e+d2PPDgeY+y+bTHQhDB0a6OobjRZxpMU4CyiIveSWD9WhEmU7WsGz5/IYFUlLfiS3NJxdmJ7akHYxiyw6Ek45prBoV01idTGY7q8d7x5an04rJgxI6dKdKVi1BfVfwtG8EERQ4vGt5vs+j2FqxmBNoayXP2jxUngj8dOzYynFXYg+T7epxTbPWO2GzpoOsJQkwKa8gd3WXYFQ04jj9MxpTuXqeq2PhFtRtoVvgFnobvI3eAe+gG2Acw26D2+hD8CF6D7yHnpm3PQKP0NkqFG9vg210DVxDj8FjdB/cL+o5JHix2uAhOlvcYmVvwDdoYBepPFfmOwUhNsyOcwo+RUfgCJ19DMVXIMESDR9q7KBPwCfoI/ARugluom/Bt+h98D76AHxQvBhYoV2wiw7BIdoEm+hd8C76GnyNroOLD5GKsJcvJITFxPEo3E4fg0ByN89DWCx0sSOn93bkuKg4nq7YpTI5nHAPxFZ6TJNEVjZzZ4Vajibl5FY2Z+/gh8HZ53Xz6/pG80tls5bfz4vkPflA1ohJvpFN8oM0SIswwskv8pv8WfhXWimtlT5lXefn8pp35N5T2vgP3+RPdA==</latexit>
p
<latexit sha1_base64="BzTPwNrCZuqIb6BSZJrh5cK86ok=">AAAGgnicbdRbT9swFADgwKBj3Q22x72ElUnTHlAzpm0Pe0CUy7iJAiugkQ45jpuG2kmI3dJi5V/sdftf+zdLTsJJKUSqer5jH9mxYzsR96Wq1/9NTT+ama08nntSffrs+YuX8wuvTmTYjylr0ZCH8ZlDJON+wFrKV5ydRTEjwuHs1Ok1svbTAYulHwY/1ChibUG8wO/4lKg09XPwS9uER12SXMzX6st1eMz7gVUENaN4mhcLs47thrQvWKAoJ1KeW/VItTWJlU85S6p2X7KI0B7x2HkaBkQw2dYw5cR8l2ZcsxPG6S9QJmTHKzQRUo6Ek/YURHXlZFuWfLDNEXdG1lkPFYZcTkxIdb62tR9EfcUCms+n0+emCs1smUzXjxlVfJQGhMZ++kom7ZKYUJUuZtUO2DUNhSCBq23FknOrrW3hhENtOyF3szHNJbNmmUtJMtlZPtxb277KKpJ7JWTgjZUs2ZwEHmdZ3xgiKHBZx/aDgMXaXrSpGyp7scg6LJI+D4NsbG0XuC1xBul2dZkieeutsFmRft6SBpgUl5C7vE1QwptaZ39mcyzXKHINLFyHunV0C9xCb4A30JvgTXQTjGM4Z+Az9B54D70N3kZPzNsZgofofBXKt3fADnoNvIYegUfoHrhX1jNIsHK1wQN0vrjlyl6Dr9HADlL6nih2CkJsmBznGHyMjsExOv8Yyq9AgAUaPlTtoo/AR+h98D76EHyIvgHfoHfAO+hd8G75YmCJ9sAeOgJHaAtsobfAW+gr8BW6AS4/RLjy8oXMbz+cOB6Fm/FjEArmFXkIy4Uud+T4zo4clBUH4xVbRKSHE+4BbWfHNE3kZRN3VqTEMKmmt7I1eQffD04+Llufl1cOP9VW14r7ec54Y7w13huW8cVYNb4bTaNlUCMwfht/jL+VmcqHilVZybtOTxU1r407T+XbfwUvUo0=</latexit>
v a
<latexit sha1_base64="HWMN9n4FSia0IaUlOHOKKDXp9B4=">AAAGgXicbdRbT9swFABgA6Nj3Q22x72ElUnbC2rYtE3aC6Jcxk0UWIGJdMhx3DTUTkLslpYov2Kv2w/bv1lyEk5KIVLV8x37yI4d2w6Fp3S9/m9qeubRbOXx3JPq02fPX7ycX3h1ooJ+xHiLBSKIzmyquPB83tKeFvwsjDiVtuCndq+RtZ8OeKS8wP+hRyFvS+r6XsdjVKepn4NfsWVzTZOL+Vp9uQ6PcT8wi6BGiqd5sTBrW07A+pL7mgmq1LlZD3U7ppH2mOBJ1eorHlLWoy4/T0OfSq7aMcw4Md6lGcfoBFH687UB2fGKmEqlRtJOe0qqu2qyLUs+2GbLOyPHWQ8dBEJNTEh3vrZjzw/7mvssn0+nLwwdGNkqGY4XcabFKA0oi7z0lQzWpRFlOl3LquXzaxZISX0ntjRPzs12bEk7GKaLGQgnG9NYMmqmsZQkk53Vw71jy9NZRXKvhA7csZIlS1DfFTzrG0EEBQ7vWJ7v8yi2Fi3mBNpaLLI2D5UnAj8bO7YK3JbYg3S7uun+5623wmZN+3lLGmBSXkLu8jbBqGjGcfZnNMdyjSLXwMJ1qFtHt8At9AZ4A70J3kQ3wTiGfQY+Q++B99Db4G30xLztIXiIzlehfHsbbKPXwGvoEXiE7oF7ZT2HBC9XGzxA54tbruw1+BoN7CCV58pipyDEhslxjsHH6AgcofOPofwKJFii4UONHfQR+Ai9D95HH4IP0TfgG/QOeAe9C94tXwys0C7YRYfgEG2CTfQWeAt9Bb5CN8Dlh0hF2C0WEsJy4ngUbsaPQSC5W+QhLBe63JHjOztyUFYcjFdsUZkeTrgHYis7pmkiL5u4s0Ith0k1vZXNyTv4fnCysmx+Xv54+Km2ulbcz3PkDXlL3hOTfCGr5DtpkhZhRJLf5A/5W5mpfKjUKyt51+mpouY1ufNUvv0HUwpSGQ==</latexit>
v b
<latexit sha1_base64="BzTPwNrCZuqIb6BSZJrh5cK86ok=">AAAGgnicbdRbT9swFADgwKBj3Q22x72ElUnTHlAzpm0Pe0CUy7iJAiugkQ45jpuG2kmI3dJi5V/sdftf+zdLTsJJKUSqer5jH9mxYzsR96Wq1/9NTT+ama08nntSffrs+YuX8wuvTmTYjylr0ZCH8ZlDJON+wFrKV5ydRTEjwuHs1Ok1svbTAYulHwY/1ChibUG8wO/4lKg09XPwS9uER12SXMzX6st1eMz7gVUENaN4mhcLs47thrQvWKAoJ1KeW/VItTWJlU85S6p2X7KI0B7x2HkaBkQw2dYw5cR8l2ZcsxPG6S9QJmTHKzQRUo6Ek/YURHXlZFuWfLDNEXdG1lkPFYZcTkxIdb62tR9EfcUCms+n0+emCs1smUzXjxlVfJQGhMZ++kom7ZKYUJUuZtUO2DUNhSCBq23FknOrrW3hhENtOyF3szHNJbNmmUtJMtlZPtxb277KKpJ7JWTgjZUs2ZwEHmdZ3xgiKHBZx/aDgMXaXrSpGyp7scg6LJI+D4NsbG0XuC1xBul2dZkieeutsFmRft6SBpgUl5C7vE1QwptaZ39mcyzXKHINLFyHunV0C9xCb4A30JvgTXQTjGM4Z+Az9B54D70N3kZPzNsZgofofBXKt3fADnoNvIYegUfoHrhX1jNIsHK1wQN0vrjlyl6Dr9HADlL6nih2CkJsmBznGHyMjsExOv8Yyq9AgAUaPlTtoo/AR+h98D76EHyIvgHfoHfAO+hd8G75YmCJ9sAeOgJHaAtsobfAW+gr8BW6AS4/RLjy8oXMbz+cOB6Fm/FjEArmFXkIy4Uud+T4zo4clBUH4xVbRKSHE+4BbWfHNE3kZRN3VqTEMKmmt7I1eQffD04+Llufl1cOP9VW14r7ec54Y7w13huW8cVYNb4bTaNlUCMwfht/jL+VmcqHilVZybtOTxU1r407T+XbfwUvUo0=</latexit>v a
<latexit sha1_base64="HWMN9n4FSia0IaUlOHOKKDXp9B4=">AAAGgXicbdRbT9swFABgA6Nj3Q22x72ElUnbC2rYtE3aC6Jcxk0UWIGJdMhx3DTUTkLslpYov2Kv2w/bv1lyEk5KIVLV8x37yI4d2w6Fp3S9/m9qeubRbOXx3JPq02fPX7ycX3h1ooJ+xHiLBSKIzmyquPB83tKeFvwsjDiVtuCndq+RtZ8OeKS8wP+hRyFvS+r6XsdjVKepn4NfsWVzTZOL+Vp9uQ6PcT8wi6BGiqd5sTBrW07A+pL7mgmq1LlZD3U7ppH2mOBJ1eorHlLWoy4/T0OfSq7aMcw4Md6lGcfoBFH687UB2fGKmEqlRtJOe0qqu2qyLUs+2GbLOyPHWQ8dBEJNTEh3vrZjzw/7mvssn0+nLwwdGNkqGY4XcabFKA0oi7z0lQzWpRFlOl3LquXzaxZISX0ntjRPzs12bEk7GKaLGQgnG9NYMmqmsZQkk53Vw71jy9NZRXKvhA7csZIlS1DfFTzrG0EEBQ7vWJ7v8yi2Fi3mBNpaLLI2D5UnAj8bO7YK3JbYg3S7uun+5623wmZN+3lLGmBSXkLu8jbBqGjGcfZnNMdyjSLXwMJ1qFtHt8At9AZ4A70J3kQ3wTiGfQY+Q++B99Db4G30xLztIXiIzlehfHsbbKPXwGvoEXiE7oF7ZT2HBC9XGzxA54tbruw1+BoN7CCV58pipyDEhslxjsHH6AgcofOPofwKJFii4UONHfQR+Ai9D95HH4IP0TfgG/QOeAe9C94tXwys0C7YRYfgEG2CTfQWeAt9Bb5CN8Dlh0hF2C0WEsJy4ngUbsaPQSC5W+QhLBe63JHjOztyUFYcjFdsUZkeTrgHYis7pmkiL5u4s0Ith0k1vZXNyTv4fnCysmx+Xv54+Km2ulbcz3PkDXlL3hOTfCGr5DtpkhZhRJLf5A/5W5mpfKjUKyt51+mpouY1ufNUvv0HUwpSGQ==</latexit>
v b
(a) (b)
<latexit sha1_base64="LMArJqecbmh8n1MF68ZkG3luRtE=">AAAGgHicddRbT9swFADgwEbHuhtsj3sJg0k8sYRNDPaEKJdxEwVWVol0yHHcNNROQuKWFit/Yq/bH9u/WXKSnpSORap6vmMf2bFj2yH3YmkYf6amHz2eqTyZfVp99vzFy1dz868v4qAXUdagAQ+ipk1ixj2fNaQnOWuGESPC5uy73a1l7d/7LIq9wP8mhyFrCeL6XtujRKapZvhD0YANkqu5RWPFSJ+1NT0LzHXDTIONjfXV1Q3dhCbDWNSKp341P2NbTkB7gvmSchLHl6YRypYikfQoZ0nV6sUsJLRLXHaZhj4RLG4pmHCiv08zjt4OovTnSx2y4xWKiDgeCjvtKYjsxJNtWfLBNlvcG1llPWQQ8HhiQrK93lKeH/Yk82k+n3aP6zLQs0XSHS9iVPJhGhAaeekr6bRDIkJlupRVy2e3NBCC+I6yJEsuzZayhB0MlGUH3MnG1Jf0RVNfSpLJzvHDvZXlyawi+aeE9N2xkiWLE9/lLOsbQQQFDmtbnu+zSFkLFnUCaS0UWZuFsccDPxtbWQVGJXY/3a4OkyRvHQmbJenlLWmASXENuetRghJeVyr70+tjuVqRq2HhNtRtoxvgBnoHvIPeBe+i62Acw26Cm+gj8BF6H7yPnpi3PQAP0PkqlG9vg230FngLPQQP0V1wt6xnkGDlaoP76Hxxy5W9Bd+igW1k7Lmi2CkIsWFynHPwOToCR+j8Yyi/AgEWaPhQlYM+A5+hj8HH6FPwKfoOfIc+AB+gD8GH5YuBY7QLdtEhOESbYBO9B95D34Bv0DVw+SESHnaKhYSwnDgehbvxYxAI5hZ5CMuFLnfk/N6OnJQVJ+MVe0SkhxPuAWVlxzRN5GUTd1YoxSCpprfy6OrV/x9crK6YaysfTz8tbm4V9/Os9lZ7py1rpvZZ29S+anWtoVGNaz+1X9rvynRlufKhYuZdp6eKmjfavafy5S+zpVH9</latexit>
p
coex<latexit sha1_base64="SpjbJ56+hdCHPX0ypySXQA18vjE=">AAAGhHicbdRbT9swFADgwEbHuhtsj3sJK5P2MKFm7PY0Icpl3ESBFSrhCjmJm4baSYjd0mLlb+x1+1v7N0tOwkkpRKp6vmMf2bFj2xH3parX/83MPno8V3ky/7T67PmLl68WFl+fynAQO6zlhDyM2zaVjPsBaylfcdaOYkaFzdmZ3W9k7WdDFks/DH6pccQ6gnqB3/UdqtIUIWHamNXqreRioVZfqcNj3g+sIqgZxdO8WJyziRs6A8EC5XAq5blVj1RH01j5DmdJlQwki6jTpx47T8OACiY7GiadmO/TjGt2wzj9BcqE7GSFpkLKsbDTnoKqnpxuy5IPttnizsg666HCkMupCanu9472g2igWODk8+kOuKlCM1so0/Vj5ig+TgPqxH76SqbTozF1VLqcVRKwaycUggauJool51ZHE2GHI03skLvZmOayWbPM5SSZ7iwf7q2Jr7KK5F4JHXoTJcuE08DjLOsbQwQFLusSPwhYrMkScdxQkaUia7NI+jwMsrE1KXBbYg/T7eoxRfPWW2GzooO8JQ0wKS4hd3mbcChvap39mc2JXKPINbBwA+o20C1wC70J3kRvgbfQTTCOYbfBbfQ+eB+9A95BT83bHoFH6HwVyre3wTZ6HbyOHoPH6D64X9YzSLBytcFDdL645cpeg6/RwC5S+p4odgpCbJge5wR8go7BMTr/GMqvQIAFGj5U7aKPwcfoA/AB+gh8hL4B36B3wbvoPfBe+WJgifbAHjoCR2gLbKG3wdvoK/AVugEuP0TKo16xkBCWE8ejcDN5DELBvCIPYbnQ5Y6c3NmRw7LicLJim4r0cMI9oEl2TNNEXjZ1Z0VKjJJqeitb03fw/eD004r1dWX16HNtbb24n+eNt8Y744NhGd+MNeOn0TRahmNExm/jj/G3Uql8rKxWvuRdZ2eKmjfGnafy4z9SV1Nx</latexit>
F
<latexit sha1_base64="r4SZFCO+vFwtmUDoHpAn+4XjGww=">AAAGk3icddRbT9swFADgwEbHuhtsmjRpL2EFaU+oKQyY9oJaLuMmyqVQiVTISdw01E5C7JaWKPs1e93+z/7NkpP0pHQsUtXzHfvIyYljw2eOkOXyn6npJ09nCs9mnxdfvHz1+s3c/NsL4fUCkzZMj3lB0yCCMselDelIRpt+QAk3GL00urVk/LJPA+F47rkc+rTFie06bcckMk5dz33QueENwvMODbhnDYnL4yHGhtH1XKm8/HVjrfKlopaXy+X1yspaElTWVysrqhZnkqukZFf9en7G1C3P7HHqSpMRIa60si9bIQmkYzIaFfWeoD4xu8SmV3HoEk5FK4RHiNSlOGOpbS+If65UITteERIuxJAb8UxOZEdMjiXJR8cM/mDlMJkhPY+JiRuS7Y1W6Lh+T1LXTO+n3WOq9NSkbarlBNSUbBgHxAyc+JFUs0MCYsq4uUXdpXemxzlxrVCXNLrSWmHaWN3wmJWsqS6qJU1djKLJyeLx2aHuyKQi+qeE9O2xkkWdEddmNJkbQAQFFm3rjuvSINQXdNPypL6QZQ3qC4d5brJ2qGcYlRj9+HV1qCTp6Eg4LEkvHYkDTPIbyN2MEvEGqodh8qfWx3K1LFfDwi2o20I3wA30NngbvQPeQdfBuIbRBDfRh+BD9B54Dz1x38YAPECnXcif3gAb6Cq4ih6Ch+guuJvXU0jQvNvgPjptbt7ZO/AdGthGCsfm2ZuCEAcm1zkDn6EDcIBON0O+CziYo2Gjhhb6FHyKPgIfoU/AJ+h78D16H7yPPgAf5A8GFmgbbKN9sI/WwBp6F7yLvgXfomvgfCMS5neyRkKY3zh+Cvfjn4HHqZ3lIcwbnb+Rswdv5DivOB6v2CU8/jjhHAj15DONE1C2NHlo+ZIPomJ8LI/OXvX/wUVlWVtbXjlZLW1WswN6VvmofFI+K5qyrmwq35W60lBM5YfyU/ml/C68L3wrVAtb6dTpqazmnfLgKhz9BXE9WZs=</latexit>
Thermodyanmically
<latexit sha1_base64="mXsTQDaI/cRt3LERVleGHhSKKwE=">AAAGinicddRbT9swFABgw0bHOjZge9xLWEHaU9UWxkV7QZTLuIkCK0MiFXIcNw2NkxA7pSXqL9nr9qP2b5acpCelY5EQ5zv2qZ2TxIbv2FJVKn+mpl+8nCm8mn1dfDP39t38wuL7K+mFAeNN5jlecG1QyR3b5U1lK4df+wGnwnD4D6NbT8Z/9Hggbc/9rgY+bwlquXbbZlTFqduFeV0YXj8KXaloXDO8XShVylub67UvNa1SrlQ2aqvrSVDbWKutatU4k1wlkl2N28UZppseCwV3FXOolDfViq9aEQ2UzeIfLOqh5D5lXWrxmzh0qeCyFcHOh9pKnDG1thfEf67SIDteEVEh5UAY8UxBVUdOjiXJZ8cM8WTlKJmhPM+RExtS7c1WZLt+qLjL0v20Q0dTnpZ0SzPtgDPlDOKAssCOb0ljHRpQpuKeFnWXPzBPCOqaka748KbaitJ+6obnmMma2rJWqmrLw+HkZPn87Ei3VVIx/KeE9qyxkmXdoa7l8GRuABEUmLyt267Lg0hf0pnpKX0pyxrcl7bjucnakZ5hVGL04sfV4YqmoyPhsKJhOhIHmBR3kLsbJRh1GlGU/NMaY7l6lqtj4S7U7aKb4CZ6D7yH3gfvoxtgXMO4Bl+jT8An6EPwIXpi30Yf3EenXcjv3gAb6B3wDnoAHqC74G5ezyHB826De+i0uXlnH8APaGAbKW1LZE8KQhyYXOcSfIkOwAE6fRnyt0CABRpe1MhEX4Av0KfgU/Q5+Bz9CH5EH4GP0Mfg4/zGwBJtgS20D/bRVXAVfQA+QN+D79F1cP4iUsfvZI2EMN84fgqP45+BJ7iV5SHMG50/kcsnT+QsrzgbrzigIv444RyI9OQzjRNQtjJ5aPlK9IfF+Fgenb3a/4OrWrm6Xl49Xytt72QH9Cz5SD6Rz6RKNsg2+UYapEkYCclP8ov8LswVaoWtwtd06vRUVvOBPLkKu38BciZVmQ==</latexit>
unstable
Figure 4.1: (a) A schematic description of the double-tangent construction on an isotherm in the diagram of the molar Helmholtz free energy πΉ versus the molar volumeπ£ at a fixed temperatureπ. The points at contact with the common tangent line (blue) correspond to the coexisting phases. The slope and π¦-intercept of the common tangent represents the the coexistence pressure (π πΉ/π π£)π = βπ and the coexistence chemical potential πΉβ π£(π πΉ/π π£)π = π. The red region of the curve indicates unstable region from the stability condition (4.5). (b) A schematic descrip- tion of the Maxwell construction on an isotherm in theπβπ£diagram. A horizontal line that cuts equal areas from the isotherm above (shaded blue) and below (shaded red) gives the coexistence pressure. The intersections of the horizontal line and isotherm correspond to the coexisting phases. The red region of the curve indicates unstable region from the stability condition (4.5).
and π½. By the second law, the entropy of the system holds its maximum value at equilibrium. Thus,πΏ2π β€0 and from eq. (4.3) we should have
ππ = 1 π
π πΈ
ππ
π , π
β₯0, (4.4)
where ππΌ
π is the molar heat capacity at constant volume andπ = ππΌ = ππ½ from the equilibrium condition (4.4). Using the thermodynamic extremum principles, similar variational analyses can be performed on systems with different conditions.
One of the most useful stability conditions is obtained by the Helmholtz energy minimization principle for the system at fixedπ , π ,andπ:
π π =β1 π
ππ
π π
π , π
β₯ 0, (4.5)
where π π is the isothermal impressibility and π = ππΌ = ππ½ from the equilibrium condition (4.4).
A phase diagram can be constructed by directly finding states that satisfy the phase equilibrium condition. When a pressure-explicit equation of state that is valid for multiple phases (e.g. van der Waals equations state for liquid and gas) is known for a single component system, alternative graphical representations of the equilibrium condition provide more convenient and instructive methods to obtain a phase diagram: the double-tangent and Maxwell (equal-area) constructions.
In the double-tangent construction, the molar Helmholtz free energy πΉ curve is drawn as a function of the molar volumeπ£at a constant temperatureπ as shown in Fig. 4.1(a). A tangent line of the free energy curve has the slope (π πΉ/π π£)π = βπ andπ¦-interceptπΉβπ£(π πΉ/π π£)π =π. Therefore if multiple points, say(π£πΌ, πΉ(π£πΌ, π)) and(π£π½, πΉ(π£π½, π)), on the curve share a common tangent, the corresponding states (π£πΌ, π)and(π£π½, π)satisfy the phase equilibrium condition and are called the binodal.
When the overall molar volume of the system π£ β (π£πΌ, π£π½), the total Helmholtz free energy is minimized by having the two separated phases with (π£πΌ, π) and (π£π½, π): the Helmholtz free energy minimization principle for fixed π , π, andπ. The phase separation always occurs when the free energy curve is convex upward, i.e. (π2πΉ/π π£2)π = β(π π/π π£)π < 0 β the red segment in Fig. 4.1(a) β to meet the mechanical stability condition (4.5). The points at the onset the instability, i.e. (π2πΉ/π π£2)π = 0 are called the spinodal. The states between the binodal and spinodal is called metastable. In the metastable region, the system is allowed to exist as a homogeneous state without a phase separation since the stability condition (4.5) is satisfied. However, a phase separation would occur whenever possible in order to minimize the total Helmholtz free energy of the system.
The Maxwell construction is obtained by considering the first derivatives with respect to the molar volumeπ£in the double-tangent construction. We now consider the pressure π = β(π πΉ/π π£)π instead of πΉ and draw a πβπ£ isotherm as shown in Fig. 4.1(b). Then one seeks the coexistence pressure π = πππ ππ₯(π) such that
π(π£πΌ, π) = π(π£π½, π) = πππ ππ₯(π),
β« π£π½
π£πΌ
[π(π£ , π) β πππ ππ₯(π)] π π£ =0, (4.6) then the intersections of the horizontal line and the isotherm gives the coexisting states. The first condition in (4.6) is trivially required to have the same pressure in the two states (π£πΌ, π) and (π£π½, π). The integral in (4.6) is required for the same chemical potential in the coexsiting phases. To see this, we integrate by parts to
obtain
[π£(πβπππ ππ₯)]π£π£π½πΌβ
β« π£π½
π£πΌ
π£ π π
π π£
π
π π£ =0. (4.7)
Due to the first condition in (4.6), the bracketed term in (4.7) vanishes. The integral in (4.7) represents the difference in the chemical potentials at π£πΌ and π£π½ since ππ = π£ π π = π£(π π/π π£)π π π£ at constant temperature. Thus, the second integral condition enforces chemical potentials of the two coexisting states to be identical.
From the Maxwell construction, it is clearly seen that the coexistence pressureπππ ππ₯ depends on the temperature since the isotherms depends on the temperature of the system. The relationship between πππ ππ₯ and π β the Clausius equation β can be directly derived from the equilibrium condition (4.1). Suppose that a single- component system at the temperature π has two phases πΌ and π½ at equilibrium:
π =ππΌ =ππ½, πππ ππ₯(π) = ππΌ = ππ½, and ππΌ(π , πππ ππ₯(π)) = ππ½(π , πππ ππ₯(π)). Then we imagine that the temperature varies slightly byπΏπand a new phase equilibrium is achieved. At the new temperatureπ+πΏπ, the equilibrium condition (4.1) is satisfied again: π+πΏπ =ππΌ=ππ½, πππ ππ₯(π+πΏπ) = ππΌ = ππ½, andππΌ(π+πΏπ , πππ ππ₯(π+πΏπ))= ππ½(π+πΏπ , πππ ππ₯(π+πΏπ)). Taylor expanding the new chemical equilibrium condition about the original temperature, we obtain
πΏπ
βΞπ + π π ππ
ππ ππ₯
Ξπ£
+π(πΏπ2) =0, (4.8)
whereπ is the molar entropy andΞrepresents the difference between the two phases e.g. Ξπ£ = π£πΌβπ£π½. Now by taking a limitπΏπ β 0 the temperature dependence of the coexistence pressure is obtained as
π π ππ
ππ ππ₯
= Ξπ Ξπ£
. (4.9)
The entropy change due to the phase transition at constant temperature and pressure can be written as Ξπ = ΞβπΏ/π, where ΞβπΏ is the molar latent heat involved in transition from phase π½toπΌ. Replacing theΞπ in eq. (4.9), we obtain the Clausius equation:
π π ππ
ππ ππ₯
= ΞβπΏ πΞπ£
. (4.10)