CHAPTER 5 : MULTIPLE INTEGRALS
1. If R
0,6 
 0,4
, use a Riemann sum with m3, n2to estimate the value of xydA
R . Take the sample points to be the (a) lower left corners,(b) upper right corners of the rectangles.
2. Evaluate the double integral by first identifying it as the volume of a solid.
(a) 5 xdA,
R  R 
x,y
|0x5 ,0 y3
. (b) 4 2ydA,
R  R
0,1 
 0,1
. 3. Calculate the iterated integral.(a) 4
 
.2 1
1
2
2 y dydx
 
x
 (f) .
2 ln
0 5 ln
0
2 dxdy
e x y
 
(b) 2 sin .
0 2 0
dydx y
 
x
(g) .
1
1
0 1
0 2 2 dydx
y x
 
xy (c) 2  .
2
0 1
0
8 dxdy y
 
x (h) ln2 .0 1 0
2 dydx xyey x
 
(d) .
1
0 2
1
y dydx xex
 
(i) sin sin  .
2 0
3 0
dydx x y-y
 
x 
(e)  1  .
2
1 1
0
2 dxdy y
 
x4. Calculate the double integral.
(a) cosx 2ydA,
R  
    
 x,y |0 x  ,0 y 2
R .
(b) 2 1 ,
2
x dA xy
R  R 
x,y
|0x1 ,3y3
.(c) 11 2 ,
2
y dA x
R  R 
x,y
|0x1 ,0y1
.(d) xsinx ydA,
R    ,3 6 0
,
0  
R .
(e) 1 xxy dA,
R  R
0,1 
 0,1
.(f) x2 x y2 dA,
R  R 
1,2 
 0,1
.5. Sketch the solid whose volume is given by the iterated integral.
(a) 4 2  .
1
0 1
0
dxdy y
 
x (b) 1
2
.0 1
0
2
2 y dydx
 
x 6. Find the volume of the solid that lies under the hyperbolic paraboloid
2
4 x2 y
z   and above the square R
1,1 
 0,2
.7. Find the volume of the solid enclosed by the surface z1x2yeyand the planes z0, x 1, y0 and y 1.
8. Find the volume of the solid bounded by the surface zx x2 yand the planes x0, x 1, y0, y1 and z0.
9. Find the volume of the solid in the first octant bounded by the cylinder
9 y2
z  and the plane x2.
10. Find the volume of the solid enclosed by the paraboloid and the planes z 1,
1
x ,x1, y0 and y4. 11. Evaluate the double integral.
(a) 2 1dA,
x y
D  D
x,y|0x4 ,0y x
. (b) x y dA,
D  D is bounded by y x and y x2. (c) xcosy dA,
D D is bounded byy0, yx2 and x1.(d) y2 dA,
D D is the triangular region with vertices0,1,1,2 and4,1 .
(e) 2x y dA,
D  D is bounded by the circle with center the origin and radius 2.12. Find the volume of the given solid.
(a) Under the plane 3x2yz0and above the region enclosed by the parabolas y x2 and x y2.
(b) Under the surfacezxy and above the triangle with vertices 1,1 ,
4,1 and 1,2 .
(c) Enclosed by the cylinders zx2, y x2 and the planes z0, y4 .
(d) Bounded by the cylinder x2y2 1 and the planes yz,x0,
0
z in the first octant.
13. Find the volume of the solid by subtracting two volumes.
(a) The solid enclosed by the parabolic cylindersy1x2, yx2 1 and the planes2x2yz100.
(b) The solid under the plane z 3, above the plane z y, and between the parabolic cylinders y x2 and y1x2.
(c) The solid enclosed by the parabolic cylinder y x2and the planes
y
z3 , z2y.
14. Express D as a union of regions of type I or type II and evaluate the integral.
(a) x dA
D 2 (b) xy dA
D15. Use Property 11 to estimate the value of the integral.
(a) x y dA
S 4 2 2 , S x,y|x2y2 1,x0.
(b) x y dA
S 3 3 ,S 
0,1 
 0,1
.(c) e dA
S
y
x2 2 , S is the disk with center the origin and radius 2 1 .16. A region is shown. Decide whether to use polar coordinates or rectangular coordinates and write fx ydA
R , as an iterated integral, where is an arbitrary continuous function on.(a) (c)
(b) (d)
17. Sketch the region whose area is given by the integral and evaluate the integral.
(a)
 
2 7
4
rdrd . (b) 
 
 
2 rdrd0 cos 4
0
18. Evaluate the given integral by changing to polar coordinates.
(a) xy dA
D , where D is the disk with center the origin and radius 3.(b)
x y
dA
R cos 2  2 , where R is the region that lies above the x-axis within the circle x2y2 9.(c) x y dA
R 4 2 2 , where R x,y|x2y2 4,x0.
(d) ye dA
R
x , where R is the region in the first quadrant enclosed by the circle x2 y225.(e) xy dA
R tan1  , where R x,y|1 x2y24 ,0 y x.
(f) x dA
D , where D is the region in the first quadrant that lies between the circles x2y24and x2 y22x.19. Use a double integral to find the area of the region.
(a) The region enclosed by the curve r43cos .
(b) The region within both of the circlesrcosandrsin.
(c) The region inside the circle r 4sin and outside the circle r 2. 20. Use polar coordinates to find the volume of the given solid.
(a) Under the paraboloid zx2 y2and above the diskx2y29. (b) Inside the spherex2y2z2 16 and outside the cylinder x2y24. (c) Bounded by the paraboloids z3x23y2and z4x2y2
21. Evaluate the iterated integral.
(a)
  
 1
0 1
1 0
4
x
x xy
dzdydx
z (c)
  
2 0 1
0 1 2
0
cos
dydxdz z
x
x .
(b)
  
3 0 1
0 1 2
0
dxdzdy zey
z
. (d)
  
 
2
1 2
1 y e2
e
dzdxdy z
y x
22. Evaluate the triple integral.
(a) yz
 
x dVE
cos 5
, whereE 
x,y,z
|0x1 ,0yx,xz2x
.(b) xydV
E
6 , where E lies under the plane z1xy and above the region in the xy-plane bounded by the curvesy x,y0 and x1.(c) xydV
E , where E is the solid tetrahedron with vertices 0 ,0 ,0,1,0,0, 0,2,0 and 0,0,3 .
(d) x e dV
E y
2 , where E is s bounded by the parabolic cylinder z1 y2and the planesz0, x1 and x 1.
(e) xydV
T , where T is the first-octant solid bounded by the coordinate planes and the upper half of the sphere x2y2z2 4.23. Express the integral as an iterated integral fx y zdV
E
,
, in six different ways, where E is the solid bounded by the given surfaces.(a) x2z2 4, y0 and y6. (b) 9x24y2z21
24. The figure shows the region of integration for the integral  , ,  .
1
0 1 1
  
0 xy
dzdydx z
y x
f
Rewrite this integral as an equivalent iterated integral in the five other orders.
25. Sketch the solid whose volume is given by the integral and evaluate the integral.
(a) 2 .
0 2
0 9 2
  
0
 rdzdrd
r (b) sin .
2
0 2
2 2
  
  1
 d d d
26. Evaluate using cylindrical coordinates
(a)
,T
dxdydz  , , |0 1,0 1 2,0 4 2 2 .
         
 x y z x y x z x y
T
(b)
21 2 , Tdxdydz y
x
 , , |0 9 2,0 3,0 9 2 2 .
         
 x y z x y y z x y
T
(c)
sin
2 2
,T
dxdydz y
x  , , |0 1,0 1 2,0 2 .
       
 x y z x y x z
T
(d)
2 ,E
dV
x where E is the solid that lies within the cylinderx2y21
above the planez0and below the cone z2 4x24y2.
(e)
,E
xdV where E is enclosed by the planesz0and zx y3and by the cylinder x2y24and x2y29.
27. Find the volume of the solid bounded above by the plane 2z4x, below by the xy-plane, and on the sides by the cylinder x2y22x.
28. Find the volume of the solid bounded above by x2y2z225and below by
2 1
2 
 x y
z .
29. Evaluate the integral by changing to spherical coordinates.
(a) .
3
3 9 2
9 2
2 2 2 2 9 2
  
0
x
x
y x
dzdydx z
y x z
(b)
,T
dxdydz
 , , |0 1,0 1 2, 2 2 2  2 2 .
          
 x y z x y x x y z x y
T
(c)
 
2 12 2
,T
dxdydz z
y x
 , , |0 1,0 1 2,0 1 2 2 .
         
 x y z x y x z x y
T
(d)
,E
zdV where E lies between the spheres x2y2z2 1 and
2 4
2 2y z 
x in the first octant.
(e)
2 ,E
dV
x where E is bounded by the xy-plane and the hemispheres
2
9 x2 z
y   and y 16x2z2.
(f)
,E
xyzdV where E lies between the spheres 2and  4and above the cone
3
  .
30. Find the volume of the solid common to the spherea and the cone  .
Take 
 
 
 2
,1
0 .
31. Find the volume of the solid enclosed by the surface 1cos.
32. Find the volume of the solid that lies within the sphere x2y2z2 4, above the xy-plane, and below the conez x2 y2.