64
DAFTAR PUSTAKA
[1] A. Anggraeni, “INDEKS REPRODUKSI SEBAGAI FAKTOR PENENTU EFISIENSI REPRODUKSI SAPI PERAH : FOKUS KAJIAN PADA SAPI PERAH BOS TAURUS ( Reproduction Indices as Determined Factors of Reproductive Efficiency in Dairy Cattle : Focusing Discussion in Bos taurus ),”
Semiloka Nas. Prospek Ind. Sapi Perah Menuju Perdagang. Bebas – 2020, pp. 61–74, 2014.
[2] R. Scott Mitchell, R. A. Sherlock, and L. A. Smith,
“An investigation into the use of machine learning for determining oestrus in cows,” Comput. Electron.
Agric., vol. 15, no. 3, pp. 195–213, 1996.
[3] S. Shahinfar, H. Mehrabani-Yeganeh, C. Lucas, A.
Kalhor, M. Kazemian, and K. A. Weigel, “Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems,” Comput.
Math. Methods Med., vol. 2012, 2012.
[4] K. Maatje, S. H. Loeffler, and B. Engel, “Predicting Optimal Time of Insemination in Cows that Show Visual Signs of Estrus by Estimating Onset of Estrus with Pedometers,” J. Dairy Sci., vol. 80, no. 6, pp.
1098–1105, 1997.
[5] L. dos A. Brunassi et al., “Improving detection of dairy cow estrus using fuzzy logic,” Sci. Agric., vol.
67, no. 5, pp. 503–509, 2010.
[6] L. Yin, T. Hong, and C. Liu, “Estrus detection in
65
dairy cows from acceleration data using self-learning classification models,” J. Comput., vol. 8, no. 10, pp.
2590–2597, 2013.
[7] C. J. Rutten, W. Steeneveld, J. C. M. Vernooij, K.
Huijps, M. Nielen, and H. Hogeveen, “A prognostic model to predict the success of artificial insemination in dairy cows based on readily available data,” J.
Dairy Sci., vol. 99, no. 8, pp. 6764–6779, 2016.
[8] K. Suharto, “PENAMPILAN POTENSI REPRODUKSI SAPI PERAH FRIESIAN
HOLSTEIN AKIBAT PEMBERIAN KUALITAS RANSUM BERBEDA DAN INFUSI LARUTAN IODIUM POVIDON 1% INTRA UTERIN,”
Universitas Diponegoro Semarang, 2003.
[9] H. L. Whitmore, W. J. Tyler, and L. E. Casida,
“EFFECTS OF EARLY POSTPARTUM
BREEDING IN DAIRY CATTLE,” no. 2, 1974.
[10] R. Schlittgen, “CHRIS CHATFIELD: The Analysis of Time Series. An Introduction. 5th edition, VII + 283 pp. Chapman & Hall 1996, £ 18.99
(paperback),” Biometrical Journal, vol. 39, no. 4. pp.
508–508, 1997.
[11] S. Sanarasinghe, “Neural Networks for Applied Sciences and Engineering from Fundamentals to Complex Pattern Recognition,” vol. 2010, no. July, pp. 80–86, 2006.
[12] J. Brownlee, Clever Algorithms. 2011.
66
[13] “KNIME - Open for Innovation.” [Online].
Available: https://www.knime.com/. [Accessed: 27- Jun-2019].
[14] “1.1. Generalized Linear Models — scikit-learn 0.21.2 documentation.” [Online]. Available:
https://scikit-
learn.org/stable/modules/linear_model.html#logistic- regression. [Accessed: 27-Jun-2019].