• Tidak ada hasil yang ditemukan

Kelompok 9 Sistem Persamaan Linear

N/A
N/A
Muhammad Naufal Najib

Academic year: 2024

Membagikan "Kelompok 9 Sistem Persamaan Linear"

Copied!
11
0
0

Teks penuh

(1)

Sistem

Persamaan Linear

Kelompok 9

Aljabar Linear

Solusi SPL

(2)

Anggota

Kelompok 9

Yudha Frisna Mukarrom 21060121130081

Muhammad Naufal Najib 21060121140147

Abdul Ghofar Ichsani 21060121140166

Hurin Nadhirah Yasyfa 21060121140174

Ferdinand Quinn Hutajulu 21060121140198

Irfansyah Ramadhan Ritonga 21060121140187

Dosen Pembimbing:

Dr. Eng. Wahyul Amien Syafei

(3)

Materi

Solusi SPL menggunakan Matriks

Solusi:

penyelesaian; pemecahan (masalah dan sebagainya); jalan keluar(KBBI).

Sistem Persamaan Linear:

sekumpulan persamaan linear yang terdiri dari beberapa variabel.

 

(4)

Materi

Solusi SPL menggunakan Matriks

Solusi Matriks:

 

 

(5)

1. Cramer

2. Invers Matriks 3. Eliminasi Gauss

4. Eliminasi Gauss – Jordan 5. Bareiss/ Montante

Metode Matriks:

Soal Matriks 1:

 

(6)

Metode Cramer

   

 

 

(7)

Metode Invers

     

(8)

Metode Gauss

 

   

     

   

 

(9)

Metode Gauss - Jordan

 

 

(10)

Metode Montante

   

 

     

(11)

Akhir

Presentasi

Terimakasih ! Atas

Perhatiannya

Referensi

Dokumen terkait

Penyelesaian matriks dengan menggunakan sistem persamaan linear dua sisi dengan metode tersebut adalah salah satu langkah untuk menyelesaikan suatu persoalan matematika yang tidak

Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan linear, matriks diperbesar adalah salah satu cara untuk meringkas suatu sistem

Untuk memudahkan mencari solusi dari sistem persamaan linear fuzzy perlu dibangun algoritma solusi sistem persamaan linear fuzzy dan implementasinya menggunakan Matlab.. Kata

Penyelesaian Sistem Persamaan Linear Tiga Variabel dengan menggunakan metode subsitusi dilakukan dengan cara menggantikan salah satu variabel dari dua persamaan lain

Kemampuan Pemecahan Masalah Soal Cerita Materi Sistem Persamaan Linear Dua Variabel Kelas VIII Berdasarkan Tahapan Polya Di SMP Negeri 8 Parepare (dibimbing

Dalam mencari solusi sistem persamaan linear fuzzy A𝑈̃ = 𝑉̃, sistem tersebut harus ditransformasikan dalam bentuk 𝐵𝑈∗= 𝑉∗ dengan B adalah matriks koefisien berukuran 2n x 2n, 𝑈∗

Hal ini karena : 1 pada tahap memahami masalah siswa belum sepenuhnya memahami masalah materi sistem persamaan linear tiga variabel; 2 pada tahap merencanakan penyelesaian siswa

3.5 Menjelaskan sistem persamaan linear dua variabel dan penyelesaiannya yang dihubungkan dengan masalah kontekstual 4.5 Menyelesaikan masalah yang berkaitan dengan sistem persamaan