The Per Unit System (Examples) The Per Unit System (Examples) Example 1
Example 1
A three-phase, wye-connected system is rated at 50MVA and 120kV.
A three-phase, wye-connected system is rated at 50MVA and 120kV.
Express 40MVA of three-phase apparent power as a per unit
Express 40MVA of three-phase apparent power as a per unit valuevalue referred to:
referred to:
a)
a) The t The threehree-phas-phase syse system tem as Mas MVA VA basebase, and, and b)
b) The p The per-per-phase hase systesystem MVm MVA as A as base.base.
Solution Solution
a)
a) For the three-phase system MVA as For the three-phase system MVA as base,base,
pu S pu
S S S S
S
kV kV V
V MVA
MVA S
S
B B actual actual pu
pu
line line B B B
B
8 8 ..
0 50 0 50 40 40
120 120 50
50
3 3 3
3
)) ((
3 3
==
==
==
==
==
φ φ φ
φ φ φ
b)
b) FoFor thr the pee per phr phase ase basbasee
pu pu S
S
kV k kV
V k V V
V
MVA M MVA
M S
S S S
pu pu
line line B B phase
phase B B
B B B
B
8 8 ..
0 67 0 67 ..
16 16
40 40 3
3 1 1
28 28 ..
69 3 69 3 120 120 3
3
67 67 ..
16 3 16
3 50 50 3
3
1 1
)) ((
)) ((
3 3 1
1
=
=
×
×
=
=
=
=
=
=
=
=
=
=
=
=
=
=
φ φ
φ φ φ
φ
Example 2 Example 2
Find the per unit value for X
Find the per unit value for X T1 T1, X, X T2 T2 and Xand X T T if the base values are 11kV andif the base values are 11kV and 60MVA.
60MVA.
G G
T2 T2 X
XTT=20=20ΩΩ T1
T1
60 MVA 60 MVA 12/132kV 12/132kV
X
XT1T1=10%=10%
30 MVA 30 MVA 132/33kV 132/33kV
X
XT2T2=10%=10%
60 MVA 60 MVA 11kV 11kV X XGG=0.5=0.5 E
EGG=1.5pu=1.5pu
Solution Solution
Step 1: Draw the section of
Step 1: Draw the section of the network.the network.
1 1
G G
T2 T2 X
XTT=20=20ΩΩ T1
T1
60 MVA 60 MVA 12/132kV 12/132kV
X
XT1T1=10%=10%
30 MVA 30 MVA 132/33kV 132/33kV
X
XT2T2=10%=10%
60 MVA 60 MVA 11kV 11kV X XGG=0.5=0.5 E
EGG=1.5pu=1.5pu
Step 2: Find the base value of the voltage for each section.
Step 2: Find the base value of the voltage for each section.
kV kV kV
kV V
V V V V V V
V
kV kV kV
kV V
V V V V V V
V
kV kV V
V
MVA MVA S
S
B B B
B
B B B
B B B B B
25 25 ..
30 30 121
132 121 132 33 33
121 121 11
12 11 12 132 132 11
11 60 60
2 2 2
2 3 3 3 3
1 1 1
1 2 2 2 2 1 1
==
××
==
××
==
==
××
==
××
==
==
==
Step 3: Find the per unit values of each component Step 3: Find the per unit values of each component Tran
Transformsformer T1 er T1 and Tand T22
Since both transformer voltage base are the same as
Since both transformer voltage base are the same as their rated values,their rated values, their p.u reactance on a
their p.u reactance on a 60MVA are:60MVA are:
××
××
==
old oldB B
new new B B new
new B B
old old B old B
old pu pu new
new pu
pu S S
S S V
V V Z V
Z Z
Z
2 2
pu pu X
X T T newnew 00..1212 60
60 60 60 11
11 12 1 12 1 ..
0 0
2 2 1
1
==
××
××
==
:: Looking at the LV side of T1:: Looking at the LV side of T1 OROR
pu pu X
X newnew
T T
12 12 ..
0 0 60 60 60 60 121
121 132 1 132 1 ..
0 0
2 2
1
1
==
××
××
==
:: Looking at the HV side of T1 :: Looking at the HV side of T1
pu pu X
X T T newnew 00..2424 30
30 60 60 121
121 132 1 132 1 ..
0 0
2 2 2
2
==
××
××
==
:: Looking at the HV side of T2:: Looking at the HV side of T2 OROR
pu pu X
X T T newnew 00..2424 30
30 60 60 25
25 ..
30 30
33 1 33
1 ..
0 0
2 2 1
1
==
××
××
==
:: Looking at the LV side of T2:: Looking at the LV side of T2NOTE: The per unit value for the transformer impedance is the same whether it is seen NOTE: The per unit value for the transformer impedance is the same whether it is seen
in the HV or LV side of the transformer- one of the advantages of per unit system.
in the HV or LV side of the transformer- one of the advantages of per unit system.
Line Impedance Line Impedance
Since the impedance given in actual value, we have to find the base value Since the impedance given in actual value, we have to find the base value for the i
for the impedance.mpedance.
( ( )) ( ( ))
pu X pu
X X X X
X
M M k k S
S V X V
X
base base T T
actual actual T T pu
pu T T
B B B B base
base T T
082 082 ..
0 244 0 244 20 20
244 60 244
60 121 121
*
*
)) ((
)) ((
)) ((
2 2 2
2 2 2 ))
((
=
=
=
=
=
=
Ω Ω
=
=
=
=
=
=
Example 3 Example 3 The on
The one-line diae-line diagram ogram of three-pf three-phase pohase power syswer system is shtem is shown beown below. Selelow. Selectct a
a common base of common base of 100 MVA and 22 kV on the generator side100 MVA and 22 kV on the generator side. Draw. Draw an
an imimpepedadancnce e didiagagraramm wwitith h alall l imimpepeddanance ce ininclclududining g ththe e loloadad impedance marked in per-unit.
impedance marked in per-unit.
Solution Solution
Step 1: Draw the zone in the circuit diagram Step 1: Draw the zone in the circuit diagram
3 3
G
G M M
1
1 22
3 3
4 4 T
T11 TT22
T
T33 TT44
Line 1 Line 1 220 kV 220 kV
Line 2 Line 2 110 kV
110 kV LoadLoad
90 MVA 90 MVA 22 kV 22 kV X = 18%
X = 18%
50 MVA 50 MVA 22/220 kV 22/220 kV X = 10%
X = 10%
40 MVA 40 MVA 22/110 kV 22/110 kV X = 6.4%
X = 6.4%
40 MVA 40 MVA 110/11 kV 110/11 kV X = 8.0%
X = 8.0%
40 MVA 40 MVA 220/11 kV 220/11 kV X = 6.0%
X = 6.0%
66.5 MVA 66.5 MVA 10.45 kV 10.45 kV X = 18.5%
X = 18.5%
57 MVA 57 MVA 0.6 pf lag 0.6 pf lag 10.45 kV 10.45 kV X = 48.4
X = 48.4ΩΩ
X = 64.43 X = 64.43ΩΩ
Note that the line impedance has only the resistive value.
Note that the line impedance has only the resistive value.
Therefore the complex power conjugate value is the same since
Therefore the complex power conjugate value is the same since θθ is equal to 0.is equal to 0.
G
G MM
1
1 22
3 3
4 4 T
T11 TT22
T
T33 TT44
Line 1 Line 1 220 kV 220 kV
Line 2 Line 2 110 kV
110 kV LoadLoad
90 MVA 90 MVA22 kV22 kV X = 18%
X = 18%
50 MVA 50 MVA 22/220 kV 22/220 kV X = 10%
X = 10%
40 MVA 40 MVA 22/110 kV 22/110 kV X = 6.4%
X = 6.4%
40 MVA 40 MVA 110/11 kV 110/11 kV X = 8.0%
X = 8.0%
40 MVA 40 MVA 220/11 kV 220/11 kV X = 6.0%
X = 6.0%
66.5 MVA 66.5 MVA 10.45 kV 10.45 kV X = 18.5%
X = 18.5%
57 MVA 57 MVA 0.6 pf lag 0.6 pf lag 10.45 kV 10.45 kV X = 48.4
X = 48.4ΩΩ
X = 64.43 X = 64.43ΩΩ
Step 2: Find the base voltage for each zone.
Step 2: Find the base voltage for each zone.
kV kV k
k V
V V V V V V
V
kV kV k
k V
V V V V V V
V
kV kV k
k V
V V V V V V
V
kV kV V
V
b b b
b
b b b
b
b b b
b b b
11 11 220
220 220 220 11 11
110 110 22
22 22 22 110 110
220 220 22
22 22 22 220 220 22
22
2 2 2 2 4 4 4 4
1 1 1 1 3 3 3 3
1 1 1 1 2 2 2 2 1 1
==
××
==
××
==
==
××
==
××
==
==
××
==
××
==
==
Step 3: Find the per unit value Step 3: Find the per unit value Generator and T
Generator and Transformransformerer
Since generator & transformer voltage base are the same as their
Since generator & transformer voltage base are the same as their ratedrated values, their p.u reactance on a 100 MVA
values, their p.u reactance on a 100 MVA
Motor Motor
pu pu Z
Z
pu pu Z
Z
pu pu Z
Z
pu pu Z
Z
pu pu Z
Z
S S S Z S Z Z
Z
S S S S V
V V Z V
Z Z
Z
new new new new T T
new new T T
new new T T
new new G G
old old B B
new new B old B old pu pu new
new pu pu
old old B B
new new B B new
new B B
old old B old B old pu pu new
new pu pu
2 2 ..
0 100 0 08 100 08 ..
0 0
16 16 ..
0 40 0
40 100 064 100 064 ..
0 0
15 15 ..
0 40 0
40 100 06 100 06 ..
0 0
2 2 ..
0 50 0
50 100 10 100 10 ..
0 0
2 2 ..
0 90 0
90 100 18 100 18 ..
0 0
3 3 2 2 1 1
2 2
==
==
==
==
==
==
==
==
==
==
==
==
pu pu
S S S S V
V V Z V
Z Z
Z Z Z
kV kV V
V kV
kV V
V
MVA MVA S
S MVA
MVA S
S
old old B B
new new B B new
new B B
old old B old B
old motor motor new
new motor motor old old motor motor
old old B B new
new B B
old old B B new
new B B
25 25 ..
0 0
5 5 ..
66 66 100 100 11
11 45 45 ..
10 10 18
18 ..
0 0
18 18 ..
0 0
45 45 ..
10 10 11
11
5 5 ..
66 66 100
100
2 2 2 2
==
××
××
==
××
××
==
==
==
==
==
==
Line Impedance Line Impedance Line 1
Line 1
( ( )) ( ( ))
pu Z pu
Z Z Z Z
Z
M M k k S
S V Z V
Z
MVA MVA S
S
kV kV V
V
line line B B
actual actual pu
pu line line
B B B B line
line B B B B B B
1 1 ..
0 484 0 484 4 4 ..
48 48
484 100 484
100 220 220 100
100 220 220
1 1 ))
((
1 1
2 2 2
2 2 2 1
1 2 2
=
=
=
=
=
=
Ω Ω
=
=
=
=
=
=
=
=
=
= Line 2Line 2
( ( )) ( ( ))
pu Z pu
Z Z Z Z
Z
M M k k S
S V Z V
Z
MVA MVA S
S
kV kV V
V
line line B B
actual actual pu
pu line line
B B B B line
line B B B B B B
54 54 ..
0 121 0 121 43 43 ..
65 65
121 100 121
100 110 110 100
100 110 110
2 2 ))
((
2 2
2 2 2
2 3 3 2
2 3 3
==
==
==
Ω Ω
==
==
==
==
==
Load Load
Step 4: Draw the per unit
Step 4: Draw the per unit impedance diagram.impedance diagram.
5 5
( ( )) (
( ) ) ( ) ( )
pu pu j
j j j Z
Z Z Z Z
Z
M M k k S
S V Z V
Z
j M j
M k k S
S V Z V
Z
MVA MVA S
S
lagging lagging pf
pf kV kV V
V MVA MVA S
S
base base load load
act act load load pu
pu load load
B B B B base
base load load
load load L L act
act load load
load load
L L
267 267 ..
1 1 95 95 ..
0 21 0
21 ..
1 1
5327 5327 ..
1 1 1495 1495 ..
1 1
21 21 ..
1 100 1
100 11 11
5327 5327 ..
1 1 1495 1495 ..
1 13 1 13 ..
53 53 57
57
45 45 ..
10 10
*
* 13 13 ..
53 53 57 57
13 13 ..
53 53 6 6 ..
0 0 cos cos
6 6 ..
0 0 45
45 ..
10 10 57
57
)) ((
)) ((
)) ((
2 2 2
2 4 4 ))
((
2 2
3 3
2 2 ))
((
3 3
1 1 3
3
+ +
= Ω =
Ω
Ω Ω +
= +
=
=
=
Ω Ω
=
=
=
=
=
=
Ω Ω +
+
=
°° =
∠
= ∠
=
=
=
°°
∠
∠
=
=
°°
=
=
=
=
=
=
=
=
=
=
−
−
φ φ φ
φ φ φ
θ θ
G
G MM
X
XGG= j0.2p.u= j0.2p.u
X
XT1T1==jj00..22pp..uu XXT2T2= j0.15p.u= j0.15p.u
X
XT3T3= j0.16p.u= j0.16p.u XXT4T4= j0.20p.u= j0.20p.u Z
ZL1L1= j0.10p.u= j0.10p.u
Z
ZL1L1= j0.54p.u= j0.54p.u
Z
Zmotor motor = j0.25p.u= j0.25p.u
Z
ZLoadLoad= 0.95+j1.267= 0.95+j1.267
Example 4 Example 4
Using base values of 30kVA and 240V in the generator side, draw the per Using base values of 30kVA and 240V in the generator side, draw the per uni
unit t circcircuit, and uit, and detdetermermine ine the per the per uniunit t imimpedpedancances es and the and the per unitper unit source voltage. Then calculate the load current both in per unit and in source voltage. Then calculate the load current both in per unit and in amperes. Transformer winding resistance and shunt admittance branches amperes. Transformer winding resistance and shunt admittance branches are neglected.
are neglected.
G G
T2 T2 X
Xlineline=2=2ΩΩ T1
T1
30 kVA 30 kVA 240/480V 240/480V X
XT1T1=0.1pu=0.1pu
20 kVA 20 kVA 460/115V 460/115V X
XT2T2=0.1pu=0.1pu 30 kVA
30 kVA V
VGG=220=220∟0∟0ºVºV
Z
Zloadload=0.9+j0.2=0.9+j0.2ΩΩ
Solution Solution
Step 1: Draw the zone in
Step 1: Draw the zone in the network.the network.
G G
T2 T2 X
Xlineline=2=2ΩΩ T1
T1
30 kVA 30 kVA 240/480V 240/480V X
XT1T1=0.1pu=0.1pu
20 kVA 20 kVA 460/115V 460/115V X
XT2T2=0.1pu=0.1pu 30 kVA
30 kVA V
VGG=220=220∟0∟0ºVºV
Z
Zloadload=0.9+j0.2=0.9+j0.2ΩΩ
Step 2: Draw the per unit circuit Step 2: Draw the per unit circuit
G G
V VS(pu)S(pu)
X
XT1(pu)T1(pu) ZZline(pu)line(pu) XXT2(pu)T2(pu)
Z Zload(pu)load(pu) IIloadload(pu)(pu)
IISS(pu)(pu)
Step 3: Find the base values Step 3: Find the base values S
SBB for the entire network is for the entire network is 30kVA. Find the base voltages and 30kVA. Find the base voltages and impedancesimpedances of each zone.
of each zone.
Ω Ω
==
==
==
××
==
Ω Ω
==
==
==
××
==
××
==
Ω Ω
==
==
==
==
48 48 ..
0 30 0
30 120 120 120
120 480
460 480 460 115 115
68 68 ..
7 30 7
30 480 480 480
480 240
240 240 240 480 480
92 92 ..
1 30 1
30 240 240 240
240
2 2 3
3 3
3
2 2 2
2 1
1 1
1 2 2 2 2
2 2 1
1 1
1
2 2
k Z k
Z V
V V
V
k Z k
Z V
V V
V V V V V V
V
k Z k
Z V
V V
V
S S V Z V
Z
B B B
B
B B B
B B
B
B B B
B
B B B B B
B
Find base current in zone 3 [!:to calculate the load current later]
Find base current in zone 3 [!:to calculate the load current later]
A k A
k V
V S I S
I
B B B B B
B 250250
120 120 30 30
3 3 3
3 == == ==
Step 4: Find the per unit values Step 4: Find the per unit values
7 7
pu pu j
j j j ZB
ZB Zload Zload
pu pu S
S S S V
V V X V
X X
X
or or
pu pu S
S S S V
V V X V
X X
X
pu Z pu
Z X X X
X
pu pu X
X X
X
pu V pu
V V V V
V
old old B B
new new B B new
new B B
old old B old B
old T T new
new T T
old old B B
new new B B new
new B B
old old B old B
old T T new
new T T
B B line line pu
pu line line
old old T T new
new T T
B B s s pu
pu s s
4167 4167 ..
0 0 875 875 ..
1 48 1
48 ..
0 0
2 2 ..
0 0 9 9 ..
0 0 3 Z 3
Z
ratio ratio voltage voltage using
using n
n calculatio calculatio ::
::
1378 1378 ..
0 20 0 20 30 30 120
120 115 1 115 1 ..
0 0
value value base
base using using n
n calculatio calculatio ::
::
1378 1378 ..
0 20 0 20 30 30 480
480 460 1 460 1 ..
0 0
2604 2604 ..
0 68 0 68 ..
7 7
2 2 1 1 ..
0 0
0 0 9167 9167 ..
0 240 0
240 0 0 220 220
load(pu) load(pu)
2 2
2 2 2
2 2
2
2 2
2 2 2
2 2
2
2 2 ))
((
1 1 1
1
1 1 ))
((
++
++ ==
==
==
==
××
××
==
××
××
==
==
××
××
==
××
××
==
==
==
==
==
==
°°
∠
∠
°° ==
∠
== ∠
==
Step 5: Find the load current Step 5: Find the load current
A A I
I I
I I
I
pu pu
j j j
j
Z Z X
X X
X X
X j j
V V Z Z V I V
I I
I
B B pu pu load load load
load
pu pu load load T
T line
line T
T
pu pu s s pu pu total total pu pu s s pu
pu s s pu pu load load
°°
−−
∠
∠
==
××
°°
−−
∠
∠
==
××
==
°°
−−
∠
∠
==
°°
∠
∠
°°
∠
== ∠
++
++
++
++
°°
∠
== ∠
++
++
== ++
==
==
01 01 ..
26 26 9
9 ..
109 109
250 250 01
01 ..
26 26 4395
4395 ..
0 0
01 01 ..
26 26 4395
4395 ..
0 0
01 01 ..
26 26 086 086 ..
2 2
0 0 9167 9167 ..
0 0
)) 4167 4167 ..
0 0 875 875 ..
1 1 ((
)) 1378 1378 ..
0 0 2604 2604 ..
0 0 1 1 ..
0 0 ((
0 0 9167 9167 ..
0 0
)) ((
3 3 )) ((
)) ((
2 2 1
1
)) ((
)) ((
)) ((
)) ((
)) ((