Sistem Listrik AC Tiga Fasa
• Pertemuan 4 Teknik Tenaga Listrik
MENGAPA LISTRIK AC ?
• Transmisi listrik harus
menggunakan tegangan yang sangat tinggi agar rugi-rugi
rendah
• Untuk distribusi dan pemakaian tegangan diturunkan kembali
menggunakan trafo. Trafo
bekerja untuk tegangan AC tidak
bisa DC
MENGAPA TIGA FASA ?
• Daya sesaat yang dikirimkan ke beban akan
“melonjak tinggi”pada sistem 1 fasa. Pada Sistem tiga fasa daya yang dikirimkan lebih
“stabil/ steady” (ingat mesin mobil dengan
multi silinder)
MENGAPA TIGA FASA ?
• Untuk mengirimkan daya yang sama, ukuran konduktor/ kabel
dan komponen lainnya lebih kecil dibanding dengan
menggunakan 1 fasa.
3 Ph ase
cv 1
Ph as e
MENGAPA TIGA FASA ?
• Daya listrik yang dibangkitkan pada pembangkit adalah fasa banyak dengan frekuensi 50 Hz atau 60
Hz
LISTRIK DI INDONESIA
• Tegangan rms fasa = 220 V →Vp
• Tegangan fasa ke fasa (Line Voltage) = 380 V
→ VL.
• frekuensi 50 Hz
LISTRIK DI AMERIKA
• Tegangan rms fasa = 115 V
• frekuensi 60 Hz
Listrik 1 fase
• Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase biasanya terdiri atas 3 kabel (Ideal):
– Kabel fase, yang merupakan sumber listrik bolak-balik → kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah.
– Kabel Netral. Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang biasanya
disambungkan ke tanah di pembangkit tenaga listrik dapat dibandingkan seperti kutub negatif pada sistem listrik arus searah; jadi jika listrik ingin dialirkan ke lampu misalnya, maka satu kaki lampu harus dihubungkan ke kabel fase dan kaki lampu yang lain dihubungkan ke kabel netral
– Kabel Tanah/Ground. Kabel ini adalah acuan nol di lokasi pemakai, yang biasanya disambungkan ke tanah di rumah pemakai; kabel ini benar-benar berasal dari logam yang ditanam di tanah dekat rumah kita; kabel ini merupakan kabel pengamanan yang biasanya disambungkan ke badan
(chassis) alat2 listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik.
• Listrik 3 Phase adalah jaringan listrik yang menggunakan tiga kawat Phase (R,S,T) dan satu kawat neutral (N) atau sering dibilang kawat ground.
Menurut istilah Listrik 3 Phase terdiri dari 3 kabel bertegangan listrik dan 1 kabel neutral. Umumnya listrik 3 Phase bertegangan 380 volt yang banyak digunakan Industri atau pabrik.
• Listrik 3 fasa adalah listrik AC (Alternating Current) yang menggunakan 3 kawat penghantar yang mempunyai tegangan pada masing-masing
Phasenya sama, tetapi berbeda dalam sudut curvenya sebesar 120 derajat.
• Ada 2 macam tegangan listrik yang dikenal dalam sistem 3 phase ini, yaitu : - Tegangan antar phase (Vpp : voltage phase to phase atau ada juga yang
menggunakan istilah Voltage line to line atau VL)
- Tegangan phase ke neutral (Vpn : Voltage phase to neutral atau Voltage line
to neutral atau Vp).
Vbn
Vcn Van
a b
n
c n
Van Vbn
Vcn
- Vab/VL : Tegangan antar phase (Vpp : voltage phase to
phase atau ada juga yang menggunakan istilah Voltage
line to line) 380 V
- Van/Vp : Tegangan phase ke neutral (Vpn : Voltage phase to
neutral atau Voltage line to neutral). 220V
220V AC dll
Rangkaian Tiga Fase Seimbang
• Sistem Tenaga Listrik pada umumnya disalurkan menggunakan sistem 3 fase,
karena penyaluran daya dapat lebih efektif.
• Pada sistem tenaga listrik 3 fase, idealnya
daya listrik yang dibangkitkan, disalurkan dan diserap oleh beban semuanya seimbang,
P pembangkitan = P pemakain,
Kelebihan 3 fase dibanding 1 fase
• Kapasitas penyaluran daya lebih besar dibandingkan 1 fase.
• Dengan nilai daya yang sama, harga peralatan 3 fase lebih ekonomis
• Listrik 3 fase lebih stabil daripada 1 fase.
Terhubung Bintang (Wye, Y, Star, Bintang)
• Pada hubungan bintang (Y, wye), ujung-ujung tiap fase dihubungkan menjadi satu dan menjadi titik netral atau titik bintang.
• Dengan adanya saluran / titik netral maka besaran tegangan fase dihitung terhadap saluran / titik netralnya, juga membentuk sistem tegangan 3 fase yang seimbang dengan magnitudenya (akar 3 dikali magnitude dari tegangan fase).
• Sedangkan untuk arus yang mengalir pada semua fase mempunyai nilai yang sama,
ILine = Ifase
Ia = Ib = Ic
Terhubung Bintang (Wye, Y)
Relationship between line and phase value in the Y- Connection
• The voltages and currents in a given phase are called phase quantities.
• The voltages between lines and currents in the lines connected to the generators are called line quantities.
• Line voltage,
• Phase voltage,
Vab ; Vbc ; Vca Van ; Vbn ; Vcn
• The phase voltage in this generator are given by:
• The relationship between the magnitudes of the line-to-line(line) voltage and line-to-neutral (phase) voltageis:
− VBN VAB = VAN
= VAN0 −VBN −120
=VAN0 −VAN −120
= VAN(10 −1 −120)
= VAN((1+ j0) −(−0.5 − j0.866))
= VAN (1.5 +j0.866)
= VAN(1.73230)
VL leads Vφ by 30°
= 3VAN30
VAB
VBC = VBN −VCN
= 3VBN −90
V
CA= V
CN− V
AN= 3V
CN150
• Since the load connected to this generator is assumed to be resistive, the current in each phase of the generator will be at the same angle.
• The current in each phase:
• The current in any line is the same as the current in the corresponding phase which is:
•Figures show the line-to-lineand phase voltages forthe
Y-connection.
(abc phase sequence)
a) Phasor diagram of the line and phase voltages of a three-phase generator; (b) demonstrating that the vector sum of the line voltages of a three-phase system is zero.
Phase sequence (Y-connected generator)
ABC (Positive) Phase sequence
Phase voltage (in phasor):
= E
AN0(reference)
= E
BN−120
E
ANE
BNE
CN= E
CN120
Line voltage (in phasor):
E
CA= E
CA120
= E
AB0(reference)
= E
BC −120
E
ABE
BC16
= E
BN120
E
BNE
CN= E
CN −120
= E
AN0(reference) E
ANLine voltage (in phasor):
= E
BC120
E
BCE
CA= E
CA −120
= E
AB0(reference) E
AB17
Phase sequence (Y-connected generator)
ACB (Negative) Phase sequence
Phase voltage (in phasor):
Y-Connected Generator with a Y-Connected Load
• Loads connected with three-phase supplies are of two types: the Y and the ∆.
• If a Y-connected load is connected to a Y-connected generator, the system is symbolically represented by Y-Y
• If the load is balanced, the neutral connection can be removed without affecting the circuit in any manner; that is, if Z1 =Z2 =Z3, then INwill be zero
The currents flowing in the three phases are:
IA IB IC
Contoh 1
Calculate the line currents in the three-wire Y-Y system as shown below
SOLUTION
• Due to the three-phase circuit isbalanced; we may replace it with its single-phase equivalent circuit
• Phase “a”equivalent circuit:
= = 6.81 − 21.8
16.15521.8
I I Z
Aa
T
= V
ANAa
;
Z
T= (5 − j2) + (10 + j8) = 16.15521.8
1100
• Since the source voltage are in positive (ABC) phase sequence, the line currents are also in positive sequence:
I
Bb= I
Aa−120
= 6.81 −141.8A I
Cc= I
Aa− 240
= 6.81 − 261.8 = 6.81 98.2 A
Contoh 2 → Latihan
(a) Hitung Arus Line.
(b) Hitung tegangan line-line dan tegangan fasa.
Balanced Y-Δ Connection
• There is no neutral connection for the Y-∆system as shown below.
• Any variation in the impedance of a phase that produces an unbalanced system will simply vary the line and phase currents
of the system.
• For a balanced load, Z1 = Z2 = Z3 =ZΔ
• The voltage across each phase of the load is equal to the line voltage of the generator for a balanced or an unbalanced
load: Vɸ =EL.
• Assuming the positivesequence:
– the phase voltageare:
– The line voltages are:
– The phase currentis
Vab = 3Vp30 =VAB Vbc= 3VBN −90 =VBC Vca= 3VCN150 =VCA
Contoh 3
• A balanced positive sequence Y-connected source with VAN
= 10010V is connected to a -connected balanced load (8+j4) per phase. Calculate the phase and line currents.
SOLUTION
• Balanced WYE source, VAN = 10010V
• Balanced DELTA load, Z= 8 + j4
• Phasecurrents:
V
AB= 3 V
AN30 = V
ab= 3 (10010)30
V
ab= 173.210+ 30 = 173.240V
ab
Δ
I = V Z
ab I
ab= 173.240 = 19.3613.43 A
8 + j4
I
bc= I
ab −120 = I
ab13.43 −120
I
bc= 19.36 −106.57 A
I
ca= I
ab120 = 19.3613.43+120
I
ca= 19.36133.43 A
Linecurrents:
I
Aa= 3 I
ab − 30
= 3 (19.36) 13.43 − 30
I
Aa= 33.53 −16.57 A
I
Bb= I
Aa −120 = 33.53 −136.57 A
I
Cc= I
Aa +120 = 33.53 103.43 A
Contoh 4
(a) Hitung Arus Line.
(b) Hitung tegangan line-line dan tegangan fasa.
Terhubung Segitiga (delta, Δ, D)
• Pada hubungan segitiga (delta, Δ, D) ketiga fase saling dihubungkan sehingga membentuk hubungan segitiga 3 fase
• Dengan tidak adanya titik netral, maka besarnya
tegangan saluran dihitung antar fase, karena tegangan saluran dan tegangan fasa mempunyai besar magnitude yang sama, maka:
Vline = Vfase
Terhubung Segitiga (delta, Δ, D)
I fase
I saluran
Relationship between line and phase value in the ∆ - Connection
• Phase voltage, Vab ; Vbc ; Vca
• The phase voltage in this generator are given by:
• The line-to-line voltage between any two lines will be the same as the voltage in the corresponding phase. So :
▪Unlike the line current for the Y-connected generator, the line currentfor the ∆-connected system is not equal to the phase current. The relationship between the two can be found by applying Kirchhoff’s current law at one of the nodes and solving for the line current in terms of the phase current; that is, at node A,
IBA = IAa +IAC or
IAa = IBA - IAC = IBA +ICA
35
In 3-phase system, for ∆-connected, the current that flow from one phase to another is called a phase current.
IBA– phase A current ICB– phase B current IAC –phase C current
36
Definition of Phase Current
In 3-phase system, for ∆-connected, the current that flow through the line is called a line current.
IAa– line A current IBb – line B current ICc –line C current
37
Definition of Line Current
Line current:
IAa ; IBb ;ICc
Phase current:
for generator:
IBA ; IAC ;ICB
38
∆ -Connected system(Generator)
Line current:
IAa ; IBb ;ICc Phase current:
for load:
Iab ; Ibc ;Ica
39
∆ -Connected system(Load)
Current in ∆ -Connected system (Generator Side)
For 3-phase ∆-connected system (generator), if the phase current IBA is taken as the reference, so
I BA = I BA 0
I CB = I CB −120
I AC = I AC 120
40
I Aa = 3I BA − 30 A
Current in ∆ -Connected system (Generator Side)
By applying Kirchhoff’s Current Law, the line current can be written as
I
Aa= I
BA−I
AC= I
BA0 − I
BA120
= I
BA(10 −1120)
= I
BA(1+ j0 − (−0.5 + j0.866))
= I
BA(1.5 − j0.866)
= I
BA(1.732 − 30)
41
Current in ∆ -Connected system (Generator Side)
With the same method,
I Bb = I CB − I BA
= 3I CB −150
and
I Cc = I AC − I CB
= 3I AC 90
42
Current in ∆ -Connected system (Load Side)
For 3-phase ∆-connected system (load), if the phase current Iab is taken as the reference, so
I ab = I ab 0
I bc = I bc −120
I ca = I ca 120
43
I Aa = 3I ab − 30 A
Current in ∆ -Connected system (Load Side)
By applying Kirchhoff’s Current Law, the line current can be written as
I
Aa=I
ab−I
ca= I
ab0 − I
ab120
= I
ab(10−1120)
= I
ab(1+ j0 − (−0.5 + j0.866))
= I
ab(1.5 − j0.866)
= I
ab(1.732 − 30)
44
I Bb = I bc − I ab
= 3I bc −150
I Cc = I ca − I bc
= 3I ca 90
45
Current in ∆ -Connected system (Load Side) With the same method,
and
∆ -Connected system
The relationship between the line current and the phase current can be represented as
Where; IL : linecurrent Iφ = Ip : phase current
I L = 3I φ − 30
I
Llags I
φby 30°
46
▪
The phasor diagram is shown below for a balanced load.▪ In general, line current is:
= 3I
BA −30 I
AaI
Bb= 3I
CB− 150
= 3I
AC 90 I
Cc47
Phase current Line current
48
Phase sequence (Δ -connected generator)
▪
Even though the line and phase voltages of a ∆ -connected system are the same, it is standard practice to describe the phase sequence in terms of theline voltages▪In drawing such a diagram, one must take care to have the sequence of the first and second subscripts the same
▪ In phasor notation,
EAB = EAB 0o = Ep 0o EBC = EBC −120o = Ep −120o ECA = ECA 120o = Ep 120o
ABC (positive) phase sequence
▪
In phasor notation, EAB = EAB 0o EBC = EBC 120o ECA = ECA -120oACB (negative) Phase sequence
49
Phase sequence (Δ -connected generator)
• Because the load is resistive, the phase current are given by:
• The relationship between the magnitudes of the line and phase currentsis:
• Figures show theline and phase currents forthe
∆-connection.
(abc phase sequence)
Contoh5 → (∆ -Connected Generator with a ∆ - Connected Load)
• A balanced delta connected load having an impedance 20 - j15 is connected to a delta connected, positive sequence
generator having VAB = 3300V. Calculate the phase currentsof the load and the line currents.
Z
Δ= 20 − j15 = 25 − 36.87
V
AB= 3300 V
SOLUTION
= I
ab +120 + 36.87 = 13.2156.87A I
caI
bc= I
ab −120 + 36.87 = 13.2 - 83.13A
= 13.236.87A 3300
I
Z
Δ25 − 38.87
ab
= V
ab=
= ( 13.2 36.87 ) ( 3 − 30 )
= 22.866.87 A
I
Bb= I
Aa −120 + 6.87 = 22.86 -113.13 A I
Cc= I
Aa +120 + 6.87 = 22.86126.87 A
3 − 30
I
Aa= I
ab• Phase currents of the load
• Line currents.
Contoh6 → (∆ -Connected Generator with a Y- Connected Load) → Latihan
Impedan fasa = 40 + j25 dengan sumber-benan setimbang, dengan urutan positif V line = 210 V. Hitung Arus Line dan Arus Fasa.
Summary of relationships in Y and ∆ -Connections
Y-Connections ∆ -Connections
Voltage Magnitude
C u rren t Magnitude abc phase sequence
acb phase sequence
Perbandingan hub Delta-Y
Delta Wye Terdapat 1 jenis tegangan, yaitu
tegangan fase ke fase
Terdapat dua nilai tegangan, fase ke fase dan fase netral
Tidak perlu titik ground Harus memasang ground pada netralnya
Power in three-phase circuit (Phase Quantities)
• Apply to each phase of a Y- or ∆- connected three-phase load.
1) Real, P
P = 3 V
I
cos
2) Reactive, Q
Q = 3 V
I
sin
3) Apparent, S
S = 3 V
I
2
Q = 3I Z sin
S = 3I
2Z
The angle θ is again the angle between the voltage and current in any phase of the load ( it is the same in all phases), and the power factor of the load is the
cosine of the impedance angle θ
2
P = 3I Z cos
Power in three-phase circuit (Line Quantities)
3) Apparent, S
S = 3V
LLI
L• Y-Connected load:
1) Real, P
The power consumed by a load is given by
P = 3VIcos
I
L= I
V
LL= 3 V
3
LL
) I
Lcos
P = 3( V
P = 3V
LLI
Lcos
2) Reactive, Q
Q = 3V
LLI
Lsin
• ∆-Connected load:
1) Real, P
P = 3VIcos
IL = 3I VLL =V
LL 3
P = 3V ( IL
) cos
P = 3V I cos
LL L
2)Reactive, Q
Q = 3V
LLI
Lsin
3)Apparent, S
S = 3 V
LLI
LContoh 7
A 208-V three-phase power system is shown in above figure. It consists of an ideal 208-V Y-connected three-phase generator connected through a three-
phase transmission line to a Y-connected load. The transmission line has an impedance of 0.06+ j0.12Ωper phase, and the load has an impedance of 12
+ j9Ω per phase. Find
(a) the real, reactive and apparent powers consumed by the load (b) the power factor of the load
SOLUTION
(a) The real power consumed by the load is
(b) The load power factor is
=3VL IL cos
Pload
=3(119.1V)(7.94A) cos36.9
= 2270W
The reactive power consumed by the load is
= 3VLIL sin
Qload
= 3(119.1V)(7.94A) sin 36.9
=1702 var
The apparent power consumed by the load is
= 3VLIL Sload
= 3(119.1V)(7.94A)
= 2839VA
PF load= cos
= cos 36.9
= 0.8lagging
Contoh 8 → Latihan
Hitung
(a) S, Q, dan P (b) PF
Impedans, Admitans, Resistans, Reaktans
Impedans dan Admitans
• Impedansi adalah perbandingan fasor tegangan V dan fasor arus I pada suatu elemen kutub dua dengan adanya sinyal masukan gelombang sinusoidal dalam keadaan setimbang atau mantap atau tunak (steady state).
• Admitansi merupakan kebalikan dari Impedansi.
• Impedansi dan admitansi bukan merupakan fasor.
• Impedansi dapat dihubungkan seri atau paralel seperti halnya pada
Resistansi.
Impedans dan Admitans
• Impedansi Z = V / I [Ohm]
Z = R ± jX
R: resistansi;
X : induktans : resultan antara kapasitans dan induktans
• Admitansi Y = I / V [Mho]
Y = 1/ Z Y = G ± jB
G:konduktansi = 1/R; B:suseptansi = 1/X
Pengertian Impedansi Dan Admitansi
Pengertian Impedansi Dan Admitansi
◼
Elemen L
Pengertian Impedansi Dan Admitansi
◼
Elemen C
• Impedansi Z = V / I [Ohm]
Z = R ± jX
TERIMAKASIH