• Tidak ada hasil yang ditemukan

Slide Beam deflection-Moment-Area Method

N/A
N/A
Mevila Risanti

Academic year: 2023

Membagikan "Slide Beam deflection-Moment-Area Method"

Copied!
18
0
0

Teks penuh

(1)

Moment-Area Method

Beam Deflection

Wawan Hermawan Department of Mechanical and Biosystem Engineering Faculty of Agricultural Engineering and Technology Bogor Agricultural University

(2)

Introduction

• The moment-area method, developed by Otto Mohr in 1868, is a powerful tool for finding the deflections of structures primarily subjected to bending.

• Mohr’s Theorems also provide a relatively easy way to derive many of the classical methods of

structural analysis.

Otto C. Mohr (1835-1918) A German civil engineer

• The moment-area method is a semi graphical method

utilizing the relations between successive derivatives of the deflection y and the moment diagram.

• For problems involving several changes in loading, the area-moment method is usually much faster than the double- integration method; consequently, it is widely used in

practice.

(3)

Moment-Area Theorems

A B

P

C

D

C B

A

��

 

x

C D B

A

D

D

D

C

C D B

AD/C

Except for a difference in the scale of ordinates, the diagram will be the same as the bending moment diagram, if the flexural rigidity EI is constant.

 

deflection diagram  

  � �=

�� ��

 

Considering two arbitrary points C and D, and integrating both equations from C to D

� � = ∫

�� ��

 

slope

(4)

= area under (M/EI) diagram between C and D

= area under (M/EI) diagram between C and D

  

The first moment-area theorem

= ∫

�� ��

 

Area under (M/EI) diagram between C and D

  /

P D

B A

C P’

dx x1

dt d

D P

A C P’

x1 E

dx

x

Consider two points P and P’ located between C and D, and a distance dx from each other.

�� =

1

� �

 

�� =

1

�� ��

� �=  

�� ��

 

��

 

Since the slope  at P and the angle d

are small quantities,  dt equal to the arc of circle of radius x1 subtending the angle d

(5)

B D

A C

x

 ��  

´

1

B

D A

C

C’

tC/D

Tangential deviation of C with respect to D Tangential deviation

/

= ∫

1

�� ��

 

The tangential deviation t

C/D

of C with respect to D is equal to the first

moment with respect to a vertical axis through C of the area under the (M/EI) diagram between C and D

The tangential deviation t

C/D

of C with respect to D is equal to the first

moment with respect to a vertical axis through C of the area under the (M/EI) diagram between C and D

The second moment- area theorem

(area between C and D)

 

is the distance from the centroid of the area to the vertical axis through C

 

(6)

Areas and centroid

of common shapes

(7)

Example 1

Determine the slope and deflection at end B of the prismatic cantilever beam AB when it is loaded as shown in the figure, knowing EI= 10

 

50 kN

90 kN.m

A B

3 m

50 kN

A B

RA =50 kN MA =60

kN.m 1 Free body diagram

2 Bending-moment diagram

+90 kN.m

A B

M

x

- 60 kN.m D xD

3 m - xD

Determine the point D where M = 0

60 =3−�

90 = 3 150

  xD = 1.2 m

90 kN.m

(8)

3 M/EI diagram +910-3 m-1

A B

x - 610-3 m-1

D

1.8 m

 ��

1.2

EI =10 MN.m2 m M = -60 kN.m = 

M = 90 kN.m = 

0.8 m

2.6 m

0.6 m

4 Slope at B (using first moment-area theorem)

negatif

positif

A1

A2

/

=

= area ¿ � �� �=

1

+

2

 

¿ 

(

12 (1.2m)(6×103m1)

)

+

(

12 (1. 8m)(9×103m1)

)

¿ 3.6 × 10

3

+ 8.1 × 10

3

 

¿ + 4.5 × 10

3

rad

 

A = 0

=+ 4.5 × 10

3

rad

 

  =+4.5×103rad

B A

(9)

5 Deflection at B (using second moment- area theorem)

tB/A = A1 () + A2 ()

 

tB/A = A1 () + A2 ()

  A B

x D

1.8 m

 ��

1.2 m

0.8 m

2.6 m negatif

positif

A1

A2 0.6 m

tB/A = ) () + () ()

 

tB/A = + 4.86 )

 

tB/A = =

 

A = 0, the reference is horizontal

y

B

= t

B/A

=

 

  =+4.5×103rad

B A

yB = - 4.5 mm

´

2

 

´

1

  Reference tangent

A = 0

(10)

Bending moment by parts

For the prismatic beam AB and the loading shown in the figure, determine the slope at a support (A)and the maximum

deflection. E= 50 GPa and I = 0.810-6 m4

w=2 kN/m

A B

4 m

1 m 2 m 1 m

C

1 Sketch the deflected beam A B

C

Reference tangent

 

max= tA/C  

  /

=

=

=0

 

=

/  

or

A B

C

4 kN

RA= 2 kN

RB= 2 kN 2 Free body diagram

=

=2 kN

 

As the maximum deflection at point C, the bending moment diagram may be drawn for the portion AC.

Since the loading is symetrical, the midpoint C can be used as the reference

Example 2

(11)

A B C

4 kN

RA= 2 kN RB= 2 kN

3 Bending moment diagram by parts

M

D

A C

D

4 kN.m

-1 kN.m

x

Moment by RA

Moment by distributed load 2 kN/m 4 diagram by parts and their centroids 

��

 

A C

D

0.1 m-1

-0.025 m-1

x

E= 50 GPa and I = 0.8 10-6 m4 EI= (50 × 109 N/m2) (0.8 10-6 m4)

EI= 40 × 103 Nm2

a. Moment by RA Triangle

b. Moment by distributed load 2 kN/m

 Parabolic spandrel

A1 A2

2 m m  

m   A1 triangle A1= (2 m)(0.1 m-1)=

0.1  

A2 parabolic

spandrel A2= (1 m)(-0.025 m-1)= - 0.0083

 

0.1 m-1 2 m

A1

-0.025 m-1 1 m

Slope at A )

rad = 5.25o

  A2

(12)

��

 

A C

D

x A1

2 m m  

m   Maximum deflection (at

C)

= 0.1333 m – 0.0145= 0.1188 m

 

´

1

 

´

2

 

0.1 m-1

-0.025 m-1A2

max

= t

A/C

= – 0.1188 m = 11.88 cm

 

A B

C

5.25o

 

11.88

Problem: cm

For the example 2, determine moment of the inertia I if the desired deflection does not exceed 5 cm, using the same material (E= 50 GPa)

/=

1

�� ��

 

constant

I = 0.8 10-6 m4 max  = tA/C = 11.88 cm

max= tA/C = 5 cm

  I =  0.8 10  -6 m4

I = 1.9 10-6 m4

New:

Problem:

Determine E if the

desired deflection does not exceed 5 cm, using the same beam size (I = 0.8 10-6 m4)

(13)

For the prismatic beam and loading shown in the figure, determine the deflection at

point A. E= 100 GPa and I = 210-6 m4 A C

4.5 m 1 kN/m

1.5 m

Example 3

M

B

-2 kN.m

-0.01 m-1

��

  3 m

2 m

B

A1 A2

A2 triangle A1= (4.5 m)(0.01 m-1)

= 0.0225  

A1 parabolic

spandrel A1= (2 m)(-0.01 m-1)= - 0.0067

 

diagram by parts and their centroids

 

2 m

-0.01 m-1

4.5 m

-0.01 m-

1

at B  =- 0.01 m-1

 

B

(14)

B

4.5 m 2 m

A”

C’

C A’

Reference tangent

tA/B yA

tC/B

1.5 m

- 0.01 m-1 3 m

A1 B A2

��

 

A2= - 0.0225 A1= - 0.0067

 

´

2

´

 

1

 

C

From the similar triangles A”A’B and CC’B,

A

 

� {� {� � ′= } rsub / } left ({2} over {4.5} right ) =−0.0675× {2} over {4.5} =−0.03

Using the second moment area theorem,

Using the second moment area theorem,  

 

= 4 cm

 

(15)

w=2 kN/m

A B

5 m

3 m 2 m

C

Problem 1

For the prismatic beam and loading shown in the figure, determine the deflection at point C.

E= 100 GPa and I = 210-6 m4

Problem 2

For the prismatic beam and loading

shown in the figure, determine magnitude and location of the maximum

deflection.

E= 100 GPa and I = 210-6 m4

P=5 kN

A B

5 m 2 m

C

(16)

w=2 kN/m

A B

5 m

3 m 2 m

C

Problem 1Problem 1

=

2 ��

×2�×1

5 =0.8��

 

RA=0.8 kN

A2 A1

Maximum moment by RA at point B

Maximum moment by RA at point

B

  ��

=0.8 �� × 5 = 4 �� .

E= 100 GPa and I = 210-6 m4

� � =100 ��� × 2 × 10

6

4

= 200 �� .

2

 

�� = 4 ��.�

200�� .�2=0.021  

 ��

0.02

 

1

 

0.02

1

1=5×0.02

2 =0.05

 

2=2× −0.02

3 =0.05

 

C

(17)

A B

C tC/B

Reference tangent

A2 A1

 ��

0.02

 

1

 

0.02

1

C

D E yC

(18)

Problem 2

For the prismatic beam and loading

shown in the figure, determine magnitude and location of the maximum

deflection.

E= 100 GPa and I = 210-6 m4

P=5 kN

A B

5 m 2 m

C

=

5 ��

×3

5 =3��

  Reaction at AReaction at A

Maximum moment at CMaximum moment at C

E= 100 GPa and I = 210-6 m4

�−��

= 3 �� × 2 =6 �� .

 

� � =100 ��� × 2 × 10

6

4

= 200 �� .

2

 

�� = 6�� .�

200�� .�2=0.031  

0.03 m-1

C B

A

��

 

A B

C

Referensi

Dokumen terkait

Mata kuliah ini memperkenalkan Strategi Penyusunan Materi (Bahan Ajar), khususnya yang terkait dengan IPS (Terpadu) untuk kepentingan pembelajaran di Sekolah

Tujuan penelitian adalah (1) Untuk mendapatkan bahan ajar berupa pengembangan lembar kerja mahasiswa pada materi Fungsi Distribusi mata kuliah Statistika Matematika

Penelitian ini bertujuan untuk (1) Mengetahui relevansi materi bahan ajar mata kuliah Teori Mesin Listrik dengan silabi kurikulum 2009; (2) Menetapkan materi Teori Mesin Listrik

Hasil yang diperoleh dari penelitian ini berupa modul ajar media visual (filem pendek dan animasi ) pengujian bahan untuk pengembangan materi kuliah Pengetahuan Bahan

Hasil dari ketiga cara perhitungan perisai radiasi pada kepala sumber untuk Pesawat Radioterapi Eksternal menggunakan Co-60, pada posisi Beam Off dengan bahan timbal (Pb) adalah

Berdasarkan hasil penelitian yang telah dilakukan, dapat diambil kesimpulan bahwa bahan ajar mata kuliah Bahasa Inggris Matematika dengan materi Geometri untuk

Tujuan penelitian ini untuk mengetahui besar tegangan dan energi impak yang mampu diserap oleh bumper beam dari bahan busa polimer diperkuat serbuk TKKS dengan penambahan

Persiapan Bahan Materi Untuk Media Pembelajaran Mobile Learning Berbasis Android Pokok Bahasan Anatomi Fisiologi Sistem Respirasi Pada Mata Kuliah KKPMT ....