Singularity Functions
Beam Deflection
Wawan Hermawan Department of Mechanical and Biosystem Engineering Faculty of Agricultural Engineering and Technology Bogor Agricultural University
Introduction
• By using double integration
method, in the case of two or more differential functions are needed to represent the bending moment
over the entire length of the beam, additional constants and a
corresponding number of additional equations would be required.
A B
P1 w P2
1 2 3 4
Needs 4 differential functions
Lengthy computations
These computations will be
simplified through the use of the
singularity functions
Singularity function
⟨
� − � ⟩
�=¿
( � − � )
�
0
when x ≥ a
when x < a
∫
⟨ � − � ⟩
��� = � 1 +1 ⟨ � − � ⟩
�+1 for n ≥ 0a
Loading Bending Moment
Mo
O x � (�)=��
⟨
�−�⟩
0a
O x
P
� ( � ) =− � ⟨ � − � ⟩
1
a
O x
wo
� ( � ) =− 1
2 �
�⟨ � − � ⟩
2
a
O x
Slope=k
� ( � ) =− �
6 ⟨ � − � ⟩
3
� (�)=�
⟨
�−�⟩
1a
O x
� ( � ) =− �
(� + 1 )( �+ 2) ⟨ � − � ⟩
�+2
� (�)=�
⟨
�−�⟩
�L A
P
D
3� 4
� 4 y
x B Consider the beam and loading as
shown in the figure.
3�
4 �
4 Using the appropriate singularity
function, to represent the contribution to the shear of concentrated load P,
� ( �)=3 �
4 − �
⟨
�− 14 �⟩
0
Integrated in x,
� (�)=3 �
4 �− �
⟨
�− 14 �⟩
�� �2�
�� =3 �
4 � −�
⟨
�− 14 �⟩
�� �2�
�� =�(�)
Integrated in x,
�� ��
��=�� �=3
8 � �2− 1
2 �
⟨
�− 14 �⟩
2+�1
���=1
8 � �3− 1
6 �
⟨
�− 14 �⟩
3+�1 �+�2
and can be determined from the boundary conditions
� =0, � =0
0=0− 1
6 �
⟨
0− 14 �⟩
3+0+�2= 0
�
2= 0
� = � , � =0
0=1
8 � �3− 1
6 �
⟨
�− 14 �⟩
3+�1 �
�1=− 7 � �2 128
1
2
0=1
8 � �3− 1
6 �
⟨
34 �⟩
3+�1�
�1=
− 1 6
128 � �3+ 9
128 � �3
�
Example 1
�� ��
��=�� �=3
8 � �2− 1
2 �
⟨
�− 14 �⟩
2+�1
���=1
8 � �3−1
6 �
⟨
�− 14 �⟩
3+�1 �+�2
�1=− 7 � �2 128
�� ��
�� =�� �=3
8 � �2− 1
2 �
⟨
� − 14 �⟩
2− 7128� �2
���=1
8 � �3− 1
6 �
⟨
�− 14 �⟩
3− 7128� �2 ��
2= 0
For x L
⟨
� − 14 �⟩
=0❑���
= 1 8 � �
3− 7 128 � �
2� �
= �� 1 ( 1 8 � �
3− 7 128 � �
2� )
For x L x L
⟨
� − 14 �⟩
0❑ ���=18 � �3− 16 �
(
�− 14 �)
3− 7128� �2 �
�= 1
��
(
18 � �3− 16 �(
�− 14 �)
3−7128� �2 �)
AD AD segmentsegment
DB DB segmentsegment
Example 2
Consider the beam and loading as shown in the figure. Determine the deflection equation and the deflection at the mid point C. EI = 50 kN.m2
w=2 kN/m
A B
5 m
3 m 2 m
C
5
�
�− ( 4 �� × 1 )= 0 �
�=0.8 �� =800 �
2.5 m
RA
RB
� ( � ) = �
�� − 1
2 �
�⟨ � − � ⟩
2
� ( � ) = 800 � − 1
2 ( 2000 ) ⟨ � − 3 ⟩
2
� ( � ) = 800 � − 1000 ⟨ � − 3 ⟩
2
�� �=400 �2−3 33.3
⟨
�−3⟩
3+�1
�� �=133.3 �3−8 3.3
⟨
�−3⟩
4+�1�+�2
Boundary conditions
Integrating twice Reaction
Moment
� =0, � =0
0 = 0 − 0 + 0 + �
2
�
2= 0
� =5 � , � = 0
0 =133.3(53)−8 3.3
⟨
5 −3⟩
4+�1(5)+0�1=−133.3
(
53)
+83.3⟨
5− 3⟩
45 =− 3066
� = 1
�� ( 133.3 �
3− 83.3 ⟨ � − 3 ⟩
4− 3066 � )
� = 1
�� ( 133.3 �
3− 83.3 ⟨ � − 3 ⟩
4− 3066 � ) 133.3 �
3
EI = 50 kN.m2
� = 1
50000 ( 133.3 �
3− 83.3 ⟨ � − 3 ⟩
4− 3066 � )
(m)
Deflection at point CDeflection at point C
x = 2.5 m
� = 1
50000 ( 133.3 × 2.5
3− 83.3 ⟨ 2.5 − 3 ⟩
4− 3066 × 2.5 )
- 0.11 m = - 11 cm
Determine deflection at x=4 m
Determine deflection at x=4
m
Untuk batang dan pembebanan seperti pada Gambar (a), dengan menggunakan metode fungsi singularitas:
(a)Nyatakan persamaan slope dan defleksi sebagai fungsi dari jarak x dari titik A,
(b)Hitung defleksi pada titik tengah D.
Gunakan E= 200 Gpa, I= 6.87 x 10-6 m4
Example 3
Beban terdistribusi (C-D) diganti dengan beban terdistribusi C-B dan D-B (penyeimbang)
Beban terdistribusi (C-D) diganti dengan beban terdistribusi C-B dan D-B (penyeimbang)
Shear and Bending Moment:
Diintegrasikan dua kali:
Menggunakan kondisi batas untuk mencari C1 dan C2
Untuk x=0, y=0, pada persamaan (9.49) maka diperoleh C2 =0 Untuk x=3,6, y=0, dan C2=0 maka:
Diperoleh C1= -2,692 Untuk titik D (x = 1,8 m), maka dapat persamaan :
Bila nilai dalam kurung negative, maka menjadi NOL, sehingga diperoleh:
Dengan menggunakan data E dan I, maka diperoleh defelksi pada titik D:
Problem 1
A
5 kN
C 2 �
x B
Consider the beam and loading as shown in the figure. Determine
the deflection equation and the deflection at point C. EI = 50
kN.m
23 �
4 �
Hint:
Determine reaction at A
Compose the moment equation a=2 m
Double integration EI y
Determine constants (using boundary condition)
Compose deflection equation y= ...
Determine deflection at C (x= 4 m)
Problem 2
Determine magnitude and location of the maximum deflection.
E= 50 GPa and I = 210-6 m4
P=5 kN
A B
5 m 2 m
C
Hint:
Determine reaction at A
Compose the moment equation a=2 m
Integration EI
Double integration EI y
Determine constants (using boundary condition)
Compose slope equation = ...
Determine the location of the maximum deflection =