• Tidak ada hasil yang ditemukan

Griffiths Quantum Mechanics 3e

N/A
N/A
Reza Alfreda Rahma Sandy

Academic year: 2023

Membagikan "Griffiths Quantum Mechanics 3e"

Copied!
5
0
0

Teks penuh

(1)

Problem 2.53

The Scattering Matrix. The theory of scattering generalizes in a pretty obvious way to arbitrary localized potentials (Figure 2.21). To the left (Region I), V(x) = 0, so

ψ(x) =Aeikx+Be−ikx, wherek≡

√ 2mE

ℏ . (2.178)

To the right (Region III),V(x) is again zero, so

ψ(x) =F eikx+Ge−ikx. (2.179) In between (Region II), of course, I can’t tell you whatψ is until you specify the potential, but because the Schr¨odinger equation is a linear, second-order differential equation, the general solution has got to be of the form

ψ(x) =Cf(x) +Dg(x),

wheref(x) andg(x) are two linearly independent particular solutions.63 There will be four boundary conditions (two joining Regions I and II, and two joining Regions II and III). Two of these can be used to eliminateC and D, and the other two can be “solved” forB and F in terms of Aand G:

B =S11A+S12G, F =S21A+S22G.

The four coefficientsSij, which depend on k(and hence onE), constitute a 2×2 matrixS, called thescattering matrix (orS-matrix, for short). The S-matrix tells you the outgoing

amplitudes (B and F) in terms of the incoming amplitudes (A andG):

B F

=

S11 S12

S21 S22 A G

. (2.180)

In the typical case of scattering from the left,G= 0, so the reflection and transmission coefficients are

Rl = |B|2

|A|2 G=0

=|S11|2, Tl= |F|2

|A|2 G=0

=|S21|2. (2.181) For scattering from the right,A= 0, and

Rr= |F|2

|G|2 A=0

=|S22|2, Tr = |B|2

|G|2 A=0

=|S12|2. (2.182)

63See any book on differential equations—for example, John L. Van Iwaarden,Ordinary Differential Equations with Numerical Techniques, Harcourt Brace Jovanovich, San Diego, 1985, Chapter 3.

(2)

(a) Construct the S-matrix for scattering from a delta-function well (Equation 2.117).

(b) Construct the S-matrix for the finite square well (Equation 2.148). Hint: This requires no new work, if you carefully exploit the symmetry of the problem.

Solution Part (a)

With

V(x) =−αδ(x), (2.117)

the Schr¨odinger equation becomes iℏ∂Ψ

∂t =−ℏ2 2m

2Ψ

∂x2 −αδ(x)Ψ(x, t), −∞< x <∞, t >0.

Applying the method of separation of variables [Ψ(x, t) =ψ(x)ϕ(t)] results in two ODEs, one inx and one in t.

iℏϕ(t) ϕ(t) =E

−ℏ2 2m

ψ′′(x)

ψ(x) −αδ(x) =E





 Solve the TISE for the second derivative.

d2ψ

dx2 =−2m

2 [αδ(x) +E]ψ(x) (1)

The delta function is zero everywhere exceptx= 0.

d2ψ

dx2 =−2mE

2 ψ(x), x̸= 0 For scattering states,E >0, which means the general solution is

ψ(x) =

(Aeikx+Be−ikx ifx <0 F eikx+Ge−ikx ifx >0, wherek=√

2mE/ℏ. The wave function [and consequently ψ(x)] is required to be continuous at x= 0.

x→0limψ(x) = lim

x→0+ψ(x) : A+B =F +G (2)

Integrate both sides of equation (1) with respect tox from −ϵtoϵ, whereϵis a really small positive number.

ϵ

−ϵ

d2ψ

dx2 dx=−2m ℏ2

ϵ

−ϵ

[αδ(x) +E]ψ(x)dx dψ

dx

ϵ

−ϵ

=−2m ℏ2

α

ϵ

−ϵ

δ(x)ψ(x)dx+E

ϵ

−ϵ

ψ(x)dx

=−2m ℏ2

αψ(0) +Eψ(0)

ϵ

−ϵ

dx

=−2m

2 [αψ(0) +Eψ(0)(2ϵ)]

(3)

Take the limit as ϵ→0.

dψ dx

0+ 0

=−2mα ℏ2 ψ(0)

The spatial derivative of the wave function, on the other hand, is discontinuous at x= 0.

x→0lim+

dx − lim

x→0

dx =−2mα

2 ψ(0) : ik(F−G)−ik(A−B) =−2mα

2 (A+B) (3) Solve equations (2) and (3) for B and F.

B = imα

kℏ2−imαA+ kℏ2

kℏ2−imαG=S11A+S12G F = kℏ2

kℏ2−imαA+ imα

kℏ2−imαG=S21A+S22G Therefore, the scattering matrix for the delta-function well is

S=

imα kℏ2−imα

kℏ2 kℏ2−imα kℏ2

kℏ2−imα

imα kℏ2−imα

 .

Part (b)

Now solve the Schr¨odinger equation, iℏ∂Ψ

∂t =−ℏ2 2m

2Ψ

∂x2 +V(x, t)Ψ(x, t), −∞< x <∞, t >0, with

V(x) =

(−V0 if −a≤x≤a

0 if|x|> a , (2.148)

Applying the method of separation of variables [Ψ(x, t) =ψ(x)ϕ(t)] results in two ODEs, one inx and one in t.

iℏϕ(t) ϕ(t) =E

−ℏ2 2m

ψ′′(x)

ψ(x) +V(x) =E





 Solve the TISE for the second derivative.

d2ψ dx2 = 2m

2 [V(x)−E]ψ(x) (4)

For scattering states,E >0, which means the general solution is

ψ(x) =





Aeikx+Be−ikx ifx <−a Csin(lx) +Dcos(lx) if −a≤x≤a F eikx+Ge−ikx ifx > a

,

(4)

where

k=

√ 2mE

ℏ and l=

p2m(V0+E)

ℏ .

Require the wave function [and consequentlyψ(x)] to be continuous at x=−a.

x→−alimψ(x) = lim

x→−a+ψ(x) : Ae−ika+Beika=−Csin(la) +Dcos(la) (5) Require the wave function to be continuous atx=aas well.

x→alimψ(x) = lim

x→a+ψ(x) : Csin(la) +Dcos(la) =F eika+Ge−ika (6) Integrate both sides of equation (4) with respect tox from −a−ϵto−a+ϵ, whereϵis a really small positive number.

−a+ϵ

−a−ϵ

d2ψ

dx2 dx= 2m ℏ2

−a+ϵ

−a−ϵ

[V(x)−E]ψ(x)dx dψ

dx

−a+ϵ

−a−ϵ

= 2m ℏ2

−a

−a−ϵ

(0−E)dx+

−a+ϵ

−a

(−V0−E)dx

= 2m ℏ2

[(−E)(ϵ) + (−V0−E)(ϵ)]

Take the limit as ϵ→0.

dψ dx

−a+

−a

= 0

It turns out that the spatial derivative of the wave function∂Ψ/∂x is continuous atx=−a.

lim

x→−a

dx = lim

x→−a+

dx : ik(Ae−ika−Beika) =l[Ccos(la) +Dsin(la)] (7) Now integrate both sides of equation (4) with respect tox froma−ϵtoa+ϵ.

a+ϵ

a−ϵ

d2ψ

dx2 dx= 2m ℏ2

a+ϵ

a−ϵ

[V(x)−E]ψ(x)dx dψ

dx

a+ϵ a−ϵ

= 2m ℏ2

a

a−ϵ

(−V0−E)dx+

a+ϵ

a

(0−E)dx

= 2m ℏ2

[(−V0−E)(ϵ) + (−E)(ϵ)]

Take the limit as ϵ→0.

dψ dx

a+ a

= 0

It turns out that the spatial derivative of the wave function∂Ψ/∂x is also continuous atx=a.

x→alim

dx = lim

x→a+

dx : l[Ccos(la)−Dsin(la)] =ik(F eika−Ge−ika) (8)

(5)

To summarize, there are four equations involvingA,B,C,D,E, andF.









Ae−ika+Beika=−Csin(la) +Dcos(la) Csin(la) +Dcos(la) =F eika+Ge−ika ik(Ae−ika−Beika) =l[Ccos(la) +Dsin(la)]

l[Ccos(la)−Dsin(la)] =ik(F eika−Ge−ika) Solve for B and F, eliminating C and D.

B = i(l2−k2)e−2ikasin 2la

2lkcos 2la−i(l2+k2) sin 2laA+ 2lke−2ika

2lkcos 2la−i(l2+k2) sin 2laG F = 2lke−2ika

2lkcos 2la−i(l2+k2) sin 2laA+ i(l2−k2)e−2ikasin 2la 2lkcos 2la−i(l2+k2) sin 2laG Therefore, the scattering matrix for the finite square well is

S=

i(l2−k2)e−2ikasin 2la 2lkcos 2la−i(l2+k2) sin 2la

2lke−2ika

2lkcos 2la−i(l2+k2) sin 2la 2lke−2ika

2lkcos 2la−i(l2+k2) sin 2la

i(l2−k2)e−2ikasin 2la 2lkcos 2la−i(l2+k2) sin 2la

 .

Referensi

Dokumen terkait

Tích phân suy rộng nào sau đây hội tụ?. Chuỗi nào sau đây hội

The location of zero shear is determined by the equation for shear at the unknown dis- tancexfrom the left support: 375 – 100 ×x = 0, x= 3.75 ft The maximum value for positive moment