• Tidak ada hasil yang ditemukan

Proofs - EJMS-2206419

N/A
N/A
Protected

Academic year: 2024

Membagikan "Proofs - EJMS-2206419"

Copied!
13
0
0

Teks penuh

(1)

Volume 10, Number 2, 2022, Pages 341-353 https://doi.org/10.34198/ejms.10222.341353

Received: June 19, 2022; Accepted: July 20, 2022 2020 Mathematics Subject Classification: 30C45.

Keywords and phrases: analytic function, Borel distribution, strongly starlike, strongly convex, coefficient estimates, integral representation.

*

A Certain Subclass of Multivalent Functions Associated with Borel Distribution Series

Abbas Kareem Wanas1,* and Hussein Kadhim Radhi2

1Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq e-mail: [email protected]

2Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq e-mail: [email protected]

Abstract

In this paper, we determine the necessary and sufficient conditions for the power series whose coefficients are probabilities of the Borel distribution to be in the family , , , , of analytic functions which defined in the open unit disk. We derive a number of important geometric properties, such as, coefficient estimates, integral representation, radii of starlikeness and convexity. Also we discuss the extreme points and neighborhood property for functions belongs to this family.

1. Introduction

Indicate by the family of all functions of the form

= + , 1.1

which are analytic and multivalent in the open unit disk = ∈ ℂ: | | < 1!. Also, let " denote the subfamily of consisting of functions of the form:

= − ≥ 0, ∈ & . 1.2

The function ∈ " is said to be starlike of order ( 0 ≤ ( < if it satisfies the

(2)

condition:

*+ , - . > ( ∈ ,

A function ∈ " is said to be convex of order ( 0 ≤ ( < if it satisfies the condition

*+ ,1 + --- . > ( ∈ .

A function ∈ " is said to be close-to-convex of order ( 0 ≤ ( < if it satisfies the condition

*+ , -0 . > ( 1 .

Let the function and 5 be analytic in . We say that the function is subordinate to 5, if there exists a Schwarz function C analytic in with C 0 = 0 and |C | <

1 ∈ such that = 5DC E. This subordinate is denoted by ≺ 5 or ≺ 5 ∈ . It is well known that (see [6]), if the function 5 is univalent in , then

≺ 5 if and only if 0 = 5 0 and ⊂ 5 .

Denote by I and K the families of starlike and convex functions of order(, respectively. These families were introduced and studied by Silverman [9].

The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the Binomial have been partially studied in the Geometric Function Theory from a theoretical point of view (see [1,3,4,7,8,10,11]).

A discrete random variable L is said to have a Borel distribution if it takes the values 1,2,3, … with the probabilities OPQ! ,STOS!PUQ,VTUX!OPWQ, … respectively, where is called the parameter.

Very recently, Wanas and Khuttar [12] introduced the Borel distribution (BD) whose probability mass function is

Y L = Z = Z [0 +0T[

Z! , Z = 1,2,3, … .

Wanas and Khuttar [12] introduced a series whose coefficients are probabilities of the Borel distribution (BD)

(3)

\ ; = − D ^ − E 0 0 +0T 0

^ − ! = − Φ , ,

where 0 < ≤ 1 and

Φ , =D ^ − E 0 0 +0T 0

^ − ! .

We consider a linear operator ` , ∶ " ⟶ " defined by the convolution or Hadamard product

` , = \ ; ∗ = − D ^ − E 0 0 +0T 0

^ − ! ,

where ≥ 0,0 < ≤ 1 and ∈ .

We now recall the following Lemmas that will be used to prove our main results.

Lemma 1.1 [5]. If and 5 are analytic in with ≺ 5, then c d Z+ef dg

Sh i

jk ≤ c d5 Z+ef dgjk,

Sh

i

where l > 0, = Z+ef ^j 0 < Z < 1 .

Lemma 1.2 [2]. Let ≥ 0. Then *+ C > if and only if |C − + | <

|C + − |, where Cbe any complex number.

2. Main Results

We begin this section by defining the family , , , , as follows:

Definition 2.1. A function of the form (1.2) is said to be in the class , , , , if satisfies the following condition:

*+

⎩⎪⎪

⎪⎪⎧

` , -+ SD` , E--

qD` , E-+ D` , , E--r + 1 − q D` , E-+ 1 − ` , r⎭⎪⎪⎬

⎪⎪⎫

> , 2.1

where 0 ≤ < 1, 0 ≤ < 1, 0 ≤ < 1 and 0 < ≤ 1.

(4)

Theorem 2.1. Let ∈ " , then ∈ , , , , if and only if

^ − 1 + 1 ^ − − ^ − 1 v,

≤ − 1 + 1 − − − 1 , 2.2 where 0 < ≤ 1, 0 ≤ < 1, 0 < ≤ 1, 0 ≤ ≤ 1 and ∈ &.

The result is sharp for the function

= − − 1 + 1 − − − 1

^ − 1 + 1 ^ − − ^ − 1 Φ , ,

^ ≥ + 1, ∈ & . 2.3 Proof. Assume that ∈ , , , , , so we have

*+

⎩⎪⎪

⎪⎪⎧

` , ′ + S ` , ′′

qD` , E-+ D` , , E--r + 1 − q D` , E-+ 1 − ` , r⎭⎪⎪⎬

⎪⎪⎫

> .

Then

*+

− ∑ v, ^ + − 1 − ∑ v, ^ ^ − 1

− ∑ v, ^ + − 1 − ∑ v, ^ ^ − 1

+ 1 − − ∑ v, 1 − ^ + 1 − 1 − D − ∑ v, E⎭⎪

> .

Or equivalently

*+ , − 1 + 1 − − − 1 − ∑ ^ − 1 + 1 ^ − − ^ − 1 Φ ,

D1 + − 1 ED1 + − 1 E − ∑ Φ , D1 + ^ − 1 ED1 + ^ − 1 E . > 0.

This inequality is correct for a ∈ . Letting → 10 yields

*+ , − 1 + 1 − − − 1

− ^ − 1 + 1 ^ − − ^ − 1 Φ , z > 0.

(5)

Therefore

^ − 1 + 1 ^ − − ^ − 1 Φ ,

≤ − 1 + 1 − − − 1 .

Conversely, let (2.2) hold. We will prove that (2.1) is correct and then ∈ , , , , . By Lemma 1.2, we put

C = ` , ′ + S ` , ′′

qD` , E-+ D` , , E--r

+ 1 − q D` , E-+ 1 − ` , r

.

Or show that { = 1

|& | | D` , E-+ SD` , E--− + D` , E-− + ` , ′′d = },

where

& = qD` , E-+ D` , , E--r

+ 1 − q D` , E-+ 1 − D` , Er

and it is easy to verify that } − { > 0.

And so the proof is complete.

Corollary 2.1. If ∈ , , , , , then

≤ − 1 + 1 − − − 1

^ − 1 + 1 ^ − − ^ − 1 Φ , , ^ ≥ + 1, ∈ & . Theorem2.2. Let a function ∈ , , , , . Then is -valently close-to-convex of order ( 0 ≤ ( < in the disk | | < * , where

* = inf , − ( ^ − 1 + 1 ^ − − ^ − 1 Φ ,

− 1 + 1 − − − 1 .

•P€~

,

^ ≥ + 1; ∈ & . The result is sharp, with the extermal function given by (2.3).

(6)

Proof. It is sufficient to show that

-0 − • ≤ − ( 0 ≤ ( < , for | | < * , we have that

-0 − • ≤ Φ , ^ | | 0 .

Thus

-0 − • ≤ − (, if

Φ , | | 0

− ( ≤ 1. 2.4 Hence, by Theorem 2.1, (2.4) will be true if

1

− ( | | 0 ≤ ^ − 1 + 1 ^ − − ^ − 1 Φ ,

− 1 + 1 − − − 1 ,

and hence

| | ≤ , − ( ^ − 1 + 1 ^ − − ^ − 1 Φ ,

− 1 + 1 − − − 1 .

•P€~

,

^ ≥ + 1; ∈ & . The result is sharp for the function given by (2.3).

Theorem 2.3. Let ∈ , , , , . Then is -valently starlike of order ( 0 ≤ ( < in the disk | | < *S, where

*S= inf , − ( ^ − 1 + 1 ^ − − ^ − 1 Φ ,

^ − ( − 1 + 1 − − − 1 .

•P€~

,

^ ≥ + 1; ∈ & . The result is sharp for the function given by (2.3).

(7)

Proof. It is sufficient to show that

- − • ≤ − ( 0 ≤ ( < , for | | < *S, we have

- − • ≤∑ Φ , ^ − | | 0

1 − ∑ ƒ| | 0 .

Thus

- − • ≤ − (, if

^ − (

− ( Φ , | | 0 ≤ 1. 2.5 Hence, by Theorem 2.1, (2.5) will be true if

^ − (

− ( | | 0 ≤ ^ − 1 + 1 ^ − − ^ − 1

− 1 + 1 − − − 1 ,

and hence

| | ≤ , − ( ^ − 1 + 1 ^ − − ^ − 1

^ − ( − 1 + 1 − − − 1 .

•P€~

, ^ ≥ + 1; ∈ & . Setting | | = *S, we get the desired result.

Theorem 2.4. Let ∈ , , , , . Then is -valently convex of order ( 0 ≤ ( < in the disk | | < *X, where

*X= inf , − ( ^ − 1 + 1 ^ − − ^ − 1

^ − ( − 1 + 1 − − − 1 .

•P€~

, ^ ≥ + 1; ∈ & . The result is sharp with the extermal function given by (2.3).

Proof. It is sufficient to show that

•1 + --- − • ≤ − ( 0 ≤ ( < ,

(8)

for | | < *X, we have

•1 + --- − • ≤∑ Φ , ^ ^ − | | 0

− ∑ Φ , | | 0 .

Thus

•1 + --- − • ≤ − (, if

^ ^ − (

− ( Φ , | | 0 ≤ 1. 2.6 Hence, by Theorem 2.1, (2.6) will be true if

^ ^ − (

− ( | | 0 ≤ ^ − 1 + 1 ^ − − ^ − 1

− 1 + 1 − − − 1 ,

and hence

| | ≤ , − ( ^ − 1 + 1 ^ − − ^ − 1

^ ^ − ( − 1 + 1 − − − 1 .

•P€~

, ^ ≥ + 1; ∈ & . Setting | | = *X, we get the desired result.

Theorem 2.5. Let the functions [ defined by

[ = − ,[ , D ,[ ≥ 0, ^ ≥ + 1, ∈ &, Z = 1,2, … , †E, 2.7 be in the class , , , , for every Z = 1,2, … , †.

Then the function defined by

ℎ = − + , + ≥ 0, ^ ≥ + 1, ∈ & ,

also belongs to the class , , , , where + =1

,[

[

, ^ ≥ + 1, ∈ & .

Proof. Since [ ∈ , , , , it follows from Theorem 2.1 that

(9)

^ − 1 + 1 ^ − − ^ − 1 Φ , ,[

≤ − 1 + 1 − − − 1 ,

for every Z = 1,2, … , †. Hence

^ − 1 + 1 ^ − − ^ − 1 Φ , +

= ^ − 1 + 1 ^ − − ^ − 1 Φ , Š1

,[

[

=1

† Š ^ − 1 + 1 ^ − − ^ − 1 Φ , ,[

[

≤ − 1 + 1 − − − 1 .

By Theorem 2.1, it follows that ℎ ∈ , , , , .

Theorem 2.6. Let the functions [ defined by (2.7) be in the class ∈ , , , , for every Z = 1,2, … , †. Then the function S defined by

S = Œ[ [

[

is also in the class ∈ , , , , where

Œ[ = 1, Œ[≥ 0 .

[

Proof. By Theorem 2.1 for every Z = 1,2, … , †, we have

^ − 1 + 1 ^ − − ^ − 1 Φ , ,[

≤ − 1 + 1 − − − 1 .

(10)

But

S = Œ[ [

[

= Œ[Š − ,[ ‹ =

[

− Š Œ[ ,[

[

‹ .

Therefore

^ − 1 + 1 ^ − − ^ − 1 Φ , Š Œ[ ,[

[

= Œ[

[

Š ^ − 1 + 1 ^ − − ^ − 1 Φ , ,[

≤ Œ[

[

− 1 + 1 − − − 1

= − 1 + 1 − − − 1

and the proof is complete.

Theorem 2.7. Let • > 0. If ∈ , , , , and suppose that Ž is defined by

Ž = − − 1 + 1 − − − 1

• − 1 + 1 • − − • − 1 ΦŽ, Ž,

• ≥ + 1; ∈ & . If there exists an analytic function C defined by

DC EŽ0 = • − 1 + 1 • − − • − 1 ΦŽ,

− 1 + 1 − − − 1 0 .

Then, for = Z+ef and 0 < Z < 1 , c | |jk

Sh i

≤ c | Ž |jk, • > 0 . 2.8

Sh

i

Proof. We show that

c ’1 − 0

jk

Sh i

(11)

≤ c •1 − − 1 + 1 − − − 1

• − 1 + 1 • − − • − 1 ΦŽ,

Ž0jk.

Sh

i

By applying Lemma 1.1, it suffices to show that

1 − 0 ≺ 1 − − 1 + 1 − − − 1

• − 1 + 1 • − − • − 1 ΦŽ, Ž0 . Set

1 − 0 = 1 − − 1 + 1 − − − 1

• − 1 + 1 • − − • − 1 ΦŽ, DC EŽ0 . We find that

DC EŽ0 = • − 1 + 1 • − − • − 1 ΦŽ,

− 1 + 1 − − − 1 0 ,

which readily yield C 0 = 0.

Furthermore using (2.2), we obtain

|C |Ž0 = ’ • − 1 + 1 • − − • − 1 ΦŽ,

− 1 + 1 − − − 1 0

≤ | | ’ ^ − 1 + 1 ^ − − ^ − 1 Φ ,

− 1 + 1 − − − 1 ’

≤ | | < 1.

Next, the proof for the first derivative

Theorem 2.8. Let • > 0. If ∈ , , , , and

Ž = − − 1 + 1 − − − 1

• − 1 + 1 • − − • − 1 vŽ, Ž,

• ≥ + 1; ∈ & . Then for = Z+ef and 0 < Z < 1 ,

(12)

c | - |jk

Sh i

≤ c | Ž- |jk, • > 0 . 2.9

Sh

i

Proof. It is sufficient to show that

1 − ^ 0 ≺ 1 − • − 1 + 1 − − − 1

• − 1 + 1 • − − • − 1 ΦŽ, Ž0 . This follows because

|C |Ž0 = ’ • − 1 + 1 • − − • − 1 ΦŽ,

• − 1 + 1 − − − 1

^ 0

≤ | | ’ ^ − 1 + 1 ^ − − ^ − 1 Φ ,

− 1 + 1 − − − 1 ’

≤ | | < 1.

References

[1] S. Altinkaya and S. Yalçin, Poisson distribution series for certain subclasses of starlike functions with negative coefficients, An. Univ. Oradea Fasc. Mat. 24(2) (2017), 5-8.

[2] E. S. Aqlan, Some problems connected with geometric. Function Theory, Ph.D. Thesis, Pune University, Pune, 2004.

[3] S. M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59(2) (2019), 301-314.

[4] B. A. Frasin, S. Porwal and F. Yousef, Subclasses of starlike and convex functions associated with Mittag-Leffler-type Poisson distribution series, Montes Taurus J. Pure Appl. Math. 3(3) (2021), 147-154.

[5] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc.

23(2) (1925), 481-519.

[6] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York and Basel, 2000. https://doi.org/10.1201/9781482289817

[7] W. Nazeer, Q. Mehmood, S. M. Kang and A. U. Haq, An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl. 26 (2019), 11-17.

(13)

[8] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27 (2016), 10-21.

https://doi.org/10.1007/s13370-016-0398-z

[9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc.

51(1) (1975), 109-116.https://doi.org/10.1090/S0002-9939-1975-0369678-0

[10] R. Themangani, S. Porwal and N. Magesh, Generalized hypergeometric distribution and its applications on univalent functions, J. Inequal. Appl. 2020 (2020), Art. ID: 249, 1-10.

https://doi.org/10.1186/s13660-020-02515-5

[11] A. K. Wanas and N. A. Al-Ziadi, Applications of Beta negative binomial distribution series on holomorphic function, Earthline J. Math. Sci. 6(2) (2021), 271-292.

https://doi.org/10.34198/ejms.6221.271292

[12] A. K. Wanas and J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci. 4(2) (2020), 71-82.

https://doi.org/10.34198/ejms.4120.7182

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

Referensi

Dokumen terkait

Alb Lupa¸s, On Sufficient Conditions for Certain Subclass of Analytic Functions Defined by Differential S˘ al˘ agean Operator, International Journal of Open Problem in Complex

Ex- tremal functions from an important subclass obtained in this way are expressed as mean values of extremal functions from another subclass of these

In this paper we derive several subordination results for certain class of analytic functions defined by an extended multiplier transformation.. 2000 Mathematics Subject

Also, application of our results for subclass of functions defined by convolution with a normalized analytic function are given.. In particular, Fekete-Szeg¨ o inequalities for

THE IMPACT OF THE MONOID HOMOMORPHISM ON THE STRUCTURE OF SKEW GENERALIZED POWER SERIES RINGS Ahmad Faisol1,2, Budi Surodjo1 and Sri Wahyuni1 1Department of Mathematics

and their Genetically Modified on Skin Coloration of Red Sea Bream AGUS KURNIA1∗∗∗∗∗, SHUICHI SATOH2, SATOSHI HANZAWA3 1Department of Aquaculture, Faculty of Fisheries and Marine

TIME SERIES ANALYSIS FOR THE TREATMENT OF TYPHOID ENTERIC FEVER IN MAIDUGURI: USING ARIMA MODEL Aishatu Kaigama1Umar Yusuf Madaki2 1Department of Mathematics and Computer Science,

Abbas 1Department of Animal Production, Faculty of Animal Science, University of Andalas, Limau Manis Campus, 25163 Padang, Indonesia 2Department of Animal Science, Faculty of