• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
11
0
0

Teks penuh

(1)

mme.modares.ac.ir

:

Please cite this article using:

1 2

*3

- 1

- 2

- 3

* 16844

saffari@ iust.ac.ir

: 22 1394

: 17 1394

: 11 1394

.

) (

. . .

. .

.

.

One dimensional modeling of two phase heat transfer in a bi-porous structure

Alireza Rahimpour, Amir Mirza Gheitaghy, Hamid Saffari

*

School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

* P.O.B. 16844, Tehran, Iran, [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 13 November 2015 Accepted 06 February 2016 Available Online 01 March 2016

Due to increasing the heat transfer surface area and providing high capillary pressure with high permeability, porous structures play a key role in improving the performance of two phase heat transfer devices such as heat pipes. New porous structures (bi-porous structures) have two distinct size distribution of pores, of which the small pores provide the capillary pressure required for delivering liquid to the surface and large pores help vapor escape from the surface through increasing its permeability. The main goal is to gain a deeper understanding of the evaporator section of heat pipes and compare the performances of sample biporous structures. Towards this goal, first the Kovalev modeling technique is applied to determine the possibility of each phase’s existence in pores of different sizes throughout the computational domain. One dimensional heat transfer in a bi-porous wick is investigated. Inside the domain the conservation equations are solved for each phase and the results such as heat flux versus wall superheat are presented. Thermo-physical properties of the fluid and the matrix like the fluid properties, phase saturation and permeability and the conduction heat transfer coefficient are calculated from the geometry of the matrix and experimental relationships.

Keywords:

Bi-porous

Two-phase heat transfer Heat pipe

Modeling

- 1

.

. .

.

] [ 1 .

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(2)

. ]

[ 2

. .

.

. ]

[ 3

. .

.

1

. .

. .

.

2

) 50

( 100

. 1

3

( ) 40

Fig.1 Schematic of biporous wick

1

1 wick

2 Sintering

3 Bed of spheres

] [ 3 .

.

- 2

- 2 - 1 ]

[ 4

.

.

.

]

[ 5 .

) 1200

(

] [ 6 .

. . .

] [ 7

.

.

)

8 . 0

( .

.

.

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(3)

123

] [ 8 . .

% 130 ]

[. 9

- 2 - 2

. ]

[ 10 .

.

.

. .

. .

1

] [. 11 .

] [ 12 .

. .

. .

.

( )

.

.

]

[ 13 .

1 Capillary number

.

2 3

. : - 1

- 2 - 3

- 4

) .(

)

. (

.

. .

20

. .

.

] [ 14

.

.

. .

.

.

. .

. .

] [ 15 .

.

2 Surface Evolver

3 Fluent

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(4)

.

] [ 16

. .

.

. .

) .

(

.

] [ 17 .

.

.

.

.

] [ 18 .

. . .

. .

] [ 11

.

1

. .

.

( )

.

2

.

] [ 19 .

.

.

- 3 - 3 - 1 2

.

)

- 3 - 1 - 1

.

) ( 1 ) ( 2

1

] . [ 18

) ( 3 Re = ( )

. ]

[ 19

1 MATLAB

2 Shooting method

) ( 1

=

) ( 2

=

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(5)

125

Fig. 2 Biporous computational domain

2

-6

× 10 313 1 .

. 400

2257

77 1 .

-5

× 10 8 . - 1

129 0 . .

-

) ( 4

= 2

R

] . [ 18 R

. -

) .( R

. ) .(

) ( 5

=

) ( 6

= (1 ) G

. R

- 3 - 1 - 2 3

) ]

[ 18

.(

.

3

) ( 7

+ = 0

) ( 8

( ( + ) ( )) + = 0

) ( 9

= (1 )

. k

eff

(1- ) .

:

) ( 10

= (1 ) .

n

) ( 9 ) ( 10

) ( 8

) ( 11 (1 ) + (1 ) = 0

) ( 11 .

R

R . )

( 11

) ( 11 .

W

) ( 12

= )) 13 (( 13

)) 18 (( 18

) ( 13 ( )

2 cos( ) ( ) = 0

) ( 14

=

) ( 15

= = ( ) (1 ) (1 )

) ( 16 + ( ) (1 )

= 0

) ( 17 + (1 ( ) ) = 0

) ( 18 ( ) = 0

Fig.3 Schematic of Control Volume

3

z

2R

Q

evap

Q

evap

Q

Cond

( z ) Q

Cond

( z+ z ) G ( z+ z )

G ( z )

Vapor Core (Upper Boundary)

Heater Wall (Lower Boundary)

Qw

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(6)

A(R)

) ( 19

( ) = 1

(1 ) 1

- 3 - 1 - 3

( )

( )

) ( 13 ) ( 18 .

.

)

R P

v

P

l

.

G . W

) ( 20

=

. W

)

. .

W

R=R

max

R

max

] [ 18

. .

P

v

P

l

. G

- 3 - 2

.

( )

. .

( )

.

.

.

- 3 - 2 - 1

)

) .

- 3 - 2 - 2

1 2

. .

4

80 . 275

. 900

.

] [ 19 30

3 5

12 6

.

.

] [ 20

.

3

5 . 4

. 700 .

70 100

250 ) 300

"

"

.(

4

) (

) .

( 22

) ( 22

4 . 6

. 50

1 SEM

2 Particle Analyzer

3 Probability Mass Function

4 Cumulative distribution function

) ( 21

=

) ( 22 CDF = ( )

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(7)

127

Fig.4 SEM photograph of a biporous wick sintered copper powder consist 275 µm clusters

4 275

Fig.5 Probability mass function of pores and clusters for the bi-porous wick shown in Fig.4

5 4

100 5

0 . 100

. 400

1

. 400

1

( )

- 3 - 2 - 3

R CDF

.

] [ 18 R

. . R R

CDF

Fig.6 Cumulative distribution function of pores and clusters for the bi- porous wick shown in Fig.4

6 4

. 5

50 R

) 100

R

CDF

5 0 . 50

50 . 100

R .

R

- 3 - 2 - 4 .

] [ 19 .

]

[ 19

15

. .

.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0 100 200 300 400 500 600 700

PDF

d m) 0

0.2 0.4 0.6 0.8 1

0 100 200 300 400 500 600 700

CDF

d m

)

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(8)

) ) ( 23 ( 24

) ( 23

= (0.04 × ( × 10 ) 0.83) × 10

) ( 24

= (1.2 × ( × 10 ) 190.1) × 10

) ) 23 ( ( 23 4

4 ) )

24 ( 24 (

8 8

- 3 - 2 - 5

] [ 19

) ( 25

) ( 25

= (2987 × 10 )

.

)) 25 (( 25 5

// 5 42 42

150 150 6

// 6 3 . 3

150 )) 150

25 (( 25

- 3 - 3

)

)) 13 (( 13 )) 18 (( 18 (

.

.

) ( 26 ( + ) = ( ) + ( ( )

)

1

. z

.

f(z)

.

.

.

( )

.

. R

) ( 27

=

) ( 28

=

.

Y

1

=R Y

2

) .

( 27

) ( 28

) ( 29

= 1

) ( 30

= 0

) ( 31

= 0

1 under-relaxation

) ( 32

= 1

) ( 33

= ( ) + +

) ( 34

= ( ) + +

) ( 35

= + 1 0 0 1

Y ER ET

) ( 36

0 1 0 1 =

Y

) ( 37

= +

) ( 38

= +

001 Y . 0

- 4

- 4 - 1

. ]

[ 21 .

.

60 90

65 0 . . 7

69 275

] 8

[ 20 7

.

Fig.7 Probability mass function for one of Semenic’s biporous wicks [18]

] 7 [ 21

0 0.05 0.1 0.15 0.2

0 100 200 300 400 500 600 700

PDF

d m)

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(9)

129

- 4 - 2 .

:

.( )

5 . 900

9 . 500

900 80

. ( )

15 55 60 140 1

. 60

. 10

.

Fig.8 Comparison between Numerical results and Semenic [20] data for the wick with characteristics shown in Fig.6

8 ] [ 20 7

Fig.9 Thermal performance of the wick

9 .

11 .

R .

) ( 150

) ( 200

) 4 .( 4

) (

.

) .

( 1100

. )

1200

(

)

Fig.10 Liquid and vapor pressures through the computation domain

10

Fig.11 Kovalev critical radius vs. wall heat flux

11

0 10 20 30 40 50 60 70 80 90

0 100 200 300 400 500

Tw(K)

qw

(W/

cm2

) Semenic (2007) Present Work

0 10 20 30 40 50 60 70 80 90

0 100 200 300 400 500

(K)

qw(W/cm2) 14500

14700 14900 15100 15300 15500 15700 15900

14500 14700 14900 15100 15300 15500 15700 15900

0 100 200 300 400 500 600 700 800 900 Pv(Pa) Pl(Pa)

z m)

P

l

P

v

050100150200250300

0 200 400 600 800 1000 1200

R(m)

qw(W/cm2)

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(10)

50 . 300 .

12

- 2 1

] [ 6 .

12

. 80

50

275 300

)

( 95

80

.

- 5

.

. ]

[ 16 .

.

Fig.12 Thermal performance of the wick with 50 and 300 micron characteristic pore sizes

12 50

300 - 6

m) d ( m) D ) ER ( m

ET (kgm

-2

s

-1

) G

) h kJkg

-1

( ) k Wm

-1

K

-1

(

) P ( Pa ) q Wcm

-2

( ) R ( m

Re ) T

( K ) v ms

-1

(

Y

n

m) z

) WKm

-3

(

) ( K

(m

2

)

) kgm

-1

s

-1

(

) kgm

-3

( ) Nm

-1

(

cond eff evap l n S v w

- 7

[1] B. Soleimani, A. Keshavarz Valian, T. Malek Pour, Experimental investigation of velocity and roughness effects on subcooled flow boiling, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 327-334, 2015 (in Persian ).

[2] R. Ahmadi, T. Okawa, Observation of bubble dynamics during subcooled flow boiling on different surface wettability in atmospheric pressure, Modares Mechanical Engineering, Vol. 15, No.7, pp. 313-320, 2015 (in Persian ).

[3] H. F. O'Hanley, Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces, PhD Thesis, Massachusetts Institute of Technology, 2012.

0 10 20 30 40 50 60 70 80 90 100

0 100 200 300 400 500

(K)

qw(W/cm2)

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

(11)

131

[4] P. Vityaz, S. Konev, V. Medvedev, V. Sheleg, Heat pipes with bidispersed capillary structures, Proceeding of 5th International Heat Pipe Conference, Elsevier Science Oxford, pp. 127-135, 1984 .

[5] J. Wang, I. Catton, Biporous heat pipes for high power electronic device cooling, Proceeding of seventeenth IEEE symposium, pp. 211-218, 2001.

[6] C.-C. Yeh, C.-N. Chen, Y.-M. Chen, Heat transfer analysis of a loop heat pipe with biporous wicks, International Journal of Heat and Mass Transfer, Vol. 52, No. 19, pp. 4426-4434, 2009.

[7] D. oso, M.-C. Lu, J.-Y. Chang, A. Majumdar, V. Srinivasan, Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes, Journal of Heat Transfer, Vol. 134, No. 10, pp. 101501.1- 101501.11, 2012.

[8] Z. C Liu, H. Li, B. B. Chen, J. G. Yang, W. Liu, Operational characteristics of flat type loop heat pipe with biporous wick, International Journal of Thermal Sciences, Vol. 58, pp. 180–185, 2012.

[9] S. C. Wua, D. Wangb, W.J. Lina, Y. M. Chenc, Investigating the effect of powder-mixing parameter in biporous wick manufacturing on enhancement of loop heat pipe performance, International Journal of Heat and Mass Transfer, Vol. 89, pp 460–467, 2015.

[10] B. Baliga, S. Patankar, A control volume finite-element method for two- dimensional fluid flow and heat transfer, Numerical Heat Transfer, Vol. 6, No. 3, pp. 245-261, 1983.

[11] F. A. Dullien, Porous media: fluid transport and pore structure. Second Edition, pp. 118-128, Academic press, 1991.

[12] M. Hanlon, H. Ma, Evaporation heat transfer in sintered porous media, Journal of Heat Transfer, Vol. 125, No. 4, pp. 644-652, 2003.

[13] R. Ranjan, J. Y. Murthy, S. V. Garimella, A microscale model for thin-film evaporation in capillary wick structures, International Journal of Heat and Mass Transfer, Vol. 54, No. 1, pp. 169-179, 2011.

[14] S. M. Rao, A. Balakrishnan, Analysis of pool boiling heat transfer over porous surfaces, Heat and mass transfer, Vol. 32, No. 6, pp. 463-469, 1997.

[15] T. Kaya, J. Goldak, Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe, International Journal of Heat and Mass Transfer, Vol. 49, No. 17, pp. 3211-3220, 2006.

[16] F.-C. Lin, B.-H. Liu, C.-T. Huang, Y.-M. Chen, Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure, International Journal of Heat and Mass Transfer, Vol. 54, No. 21, pp. 4621-4629, 2011.

[17] A. Vadnjal, High Heat flux Evaporator, PhD dissertation, Department of Mechanical Engineering, UCLA, 2007.

[18] S. Kovalev, S. Solovyev, O. Ovodkov, Theory of boiling heat transfer on a capillary porous surface, Proceeding of The 9th International Heat Transfer Conference, Vol.2 , pp.105-110, 1999.

[19] T. Semenic, Y.-Y. Lin, I. Catton, Thermophysical properties of biporous heat pipe evaporators, Journal of Heat Transfer, Vol. 130, No. 2, pp. 022602.1- 022602.9, 2008.

[20] T. Semenic, High Heat Flux Removal Using Biporous Heat Pipe Evaporators, PhD Thesis, UCLA, 2007.

[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]

Referensi

Dokumen terkait

Fracture analysis of a unidirectional composite double cantilever beam specimen with finite length AmirReza Shahani*, Razieh Abolfathitabar Department of Mechanical Engineering, K..

Fe3O4 Design and construction of thermal conductivity measurement device and measuring of magnetic nanofluids thermal conductivity Hadi Kargarsharifabad1* Morteza

Effects of interphase damageon the elastoviscoplastic behavior of general unidirectional metal matrix composites Mohammad Javad Mahmoodi1*, Mohammad Kazem Hassanzadeh Aghdam2 Reza

Variable Thickness Supersonic Airfoil Post flutter with plunging and pitching free play and Non-linear Damping and Stiffness Hamid Moosazadeh1 Behzad Ghadiri Dehkordi1* Puria Zarifian2

Because of the great importance of dynamic viscosity applications in related applications of nanofluids in heat transfer and energy systems, experimental investigation of the effects of

The impact of vertical laminar water jet translating over the quiescent pool of water at constant velocity was studied empirically, and the penetration depth as well as distribution of

Analysis of stress, strain and estimation of the fatigue life of amir kabir semi-submersible drilling platform by using hot spot method in Caspian Sea Rahmatollah Ghajar* Seyed

The study of the flow pattern visualization, velocity values and vorticity shows, at first, the flow separation shear layer forms and the clockwise vortex generate at the rear edge of