mme.modares.ac.ir
:
Please cite this article using:
1 2
*3
- 1
- 2
- 3
* 16844
saffari@ iust.ac.ir
: 22 1394
: 17 1394
: 11 1394
.
) (
. . .
. .
.
.
One dimensional modeling of two phase heat transfer in a bi-porous structure
Alireza Rahimpour, Amir Mirza Gheitaghy, Hamid Saffari
*School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
* P.O.B. 16844, Tehran, Iran, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 13 November 2015 Accepted 06 February 2016 Available Online 01 March 2016
Due to increasing the heat transfer surface area and providing high capillary pressure with high permeability, porous structures play a key role in improving the performance of two phase heat transfer devices such as heat pipes. New porous structures (bi-porous structures) have two distinct size distribution of pores, of which the small pores provide the capillary pressure required for delivering liquid to the surface and large pores help vapor escape from the surface through increasing its permeability. The main goal is to gain a deeper understanding of the evaporator section of heat pipes and compare the performances of sample biporous structures. Towards this goal, first the Kovalev modeling technique is applied to determine the possibility of each phase’s existence in pores of different sizes throughout the computational domain. One dimensional heat transfer in a bi-porous wick is investigated. Inside the domain the conservation equations are solved for each phase and the results such as heat flux versus wall superheat are presented. Thermo-physical properties of the fluid and the matrix like the fluid properties, phase saturation and permeability and the conduction heat transfer coefficient are calculated from the geometry of the matrix and experimental relationships.
Keywords:
Bi-porous
Two-phase heat transfer Heat pipe
Modeling
- 1
.
. .
.
] [ 1 .
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
. ]
[ 2
. .
.
. ]
[ 3
. .
.
1. .
. .
.
2
) 50
( 100
. 1
3
( ) 40
Fig.1 Schematic of biporous wick
1
1 wick
2 Sintering
3 Bed of spheres
] [ 3 .
.
- 2
- 2 - 1 ]
[ 4
.
.
.
]
[ 5 .
) 1200
(
] [ 6 .
. . .
] [ 7
.
.
)
8 . 0
( .
.
.
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
123
] [ 8 . .
% 130 ]
[. 9
- 2 - 2
. ]
[ 10 .
.
.
. .
. .
1
] [. 11 .
] [ 12 .
. .
. .
.
( )
.
.
]
[ 13 .
1 Capillary number
.
2 3
. : - 1
- 2 - 3
- 4
) .(
)
. (
.
. .
20
. .
.
] [ 14
.
.
. .
.
.
. .
. .
] [ 15 .
.
2 Surface Evolver
3 Fluent
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
.
] [ 16
. .
.
. .
) .
(
.
] [ 17 .
.
.
.
.
] [ 18 .
. . .
. .
] [ 11
.
1
. .
.
( )
.
2
.
] [ 19 .
.
.
- 3 - 3 - 1 2
.
)
- 3 - 1 - 1
.
) ( 1 ) ( 2
1
] . [ 18
) ( 3 Re = ( )
. ]
[ 19
1 MATLAB
2 Shooting method
) ( 1
=
) ( 2
=
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
125
Fig. 2 Biporous computational domain
2
-6
× 10 313 1 .
. 400
2257
77 1 .
-5
× 10 8 . - 1
129 0 . .
-
) ( 4
= 2
R
] . [ 18 R
. -
) .( R
. ) .(
) ( 5
=
) ( 6
= (1 ) G
. R
- 3 - 1 - 2 3
) ]
[ 18
.(
.
3
) ( 7
+ = 0
) ( 8
( ( + ) ( )) + = 0
) ( 9
= (1 )
. k
eff(1- ) .
:
) ( 10
= (1 ) .
n) ( 9 ) ( 10
) ( 8
) ( 11 (1 ) + (1 ) = 0
) ( 11 .
R
R . )
( 11
) ( 11 .
W
) ( 12
= )) 13 (( 13
)) 18 (( 18
) ( 13 ( )
2 cos( ) ( ) = 0
) ( 14
=
) ( 15
= = ( ) (1 ) (1 )
) ( 16 + ( ) (1 )
= 0
) ( 17 + (1 ( ) ) = 0
) ( 18 ( ) = 0
Fig.3 Schematic of Control Volume
3
z2R
Q
evapQ
evapQ
Cond( z ) Q
Cond( z+ z ) G ( z+ z )
G ( z )
Vapor Core (Upper Boundary)
Heater Wall (Lower Boundary)
Qw
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
A(R)
) ( 19
( ) = 1
(1 ) 1
- 3 - 1 - 3
( )
( )
) ( 13 ) ( 18 .
.
)
R P
vP
l.
G . W
) ( 20
=
. W
)
. .
W
R=R
maxR
max] [ 18
. .
P
vP
l. G
- 3 - 2
.
( )
. .
( )
.
.
.
- 3 - 2 - 1
)
) .
- 3 - 2 - 2
1 2
. .
4
80 . 275
. 900
.
] [ 19 30
3 5
12 6
.
.
] [ 20
.
3
5 . 4
. 700 .
70 100
250 ) 300
"
"
.(
4
) (
) .
( 22
) ( 22
4 . 6
. 50
1 SEM
2 Particle Analyzer
3 Probability Mass Function
4 Cumulative distribution function
) ( 21
=
) ( 22 CDF = ( )
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
127
Fig.4 SEM photograph of a biporous wick sintered copper powder consist 275 µm clusters
4 275
Fig.5 Probability mass function of pores and clusters for the bi-porous wick shown in Fig.4
5 4
100 5
0 . 100
. 400
1
. 400
1
( )
- 3 - 2 - 3
R CDF
.
] [ 18 R
. . R R
CDF
Fig.6 Cumulative distribution function of pores and clusters for the bi- porous wick shown in Fig.4
6 4
. 5
50 R
) 100
R
CDF5 0 . 50
50 . 100
R .
R
- 3 - 2 - 4 .
] [ 19 .
]
[ 19
15
. .
.
0.000 0.005 0.010 0.015 0.020 0.025 0.030
0 100 200 300 400 500 600 700
d m) 0
0.2 0.4 0.6 0.8 1
0 100 200 300 400 500 600 700
CDF
d m
)
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
) ) ( 23 ( 24
) ( 23
= (0.04 × ( × 10 ) 0.83) × 10
) ( 24
= (1.2 × ( × 10 ) 190.1) × 10
) ) 23 ( ( 23 4
4 ) )
24 ( 24 (
8 8
- 3 - 2 - 5
] [ 19
) ( 25
) ( 25
= (2987 × 10 )
.)) 25 (( 25 5
// 5 42 42
150 150 6
// 6 3 . 3
150 )) 150
25 (( 25
- 3 - 3
)
)) 13 (( 13 )) 18 (( 18 (
.
.
) ( 26 ( + ) = ( ) + ( ( )
)
1. z
.
f(z)
.
.
.
( )
.
. R
) ( 27
=
) ( 28
=
.
Y
1=R Y
2) .
( 27
) ( 28
) ( 29
= 1
) ( 30
= 0
) ( 31
= 0
1 under-relaxation
) ( 32
= 1
) ( 33
= ( ) + +
) ( 34
= ( ) + +
) ( 35
= + 1 0 0 1
Y ER ET
) ( 36
0 1 0 1 =
Y
) ( 37
= +
) ( 38
= +
001 Y . 0
- 4
- 4 - 1
. ]
[ 21 .
.
60 90
65 0 . . 7
69 275
] 8
[ 20 7
.
Fig.7 Probability mass function for one of Semenic’s biporous wicks [18]
] 7 [ 21
0 0.05 0.1 0.15 0.2
0 100 200 300 400 500 600 700
d m)
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
129
- 4 - 2 .
:
.( )
5 . 900
9 . 500
900 80
. ( )
15 55 60 140 1
. 60
. 10
.
Fig.8 Comparison between Numerical results and Semenic [20] data for the wick with characteristics shown in Fig.6
8 ] [ 20 7
Fig.9 Thermal performance of the wick
9 .
11 .
R .
) ( 150
) ( 200
) 4 .( 4
) (
.
) .
( 1100
. )
1200
(
)
Fig.10 Liquid and vapor pressures through the computation domain
10
Fig.11 Kovalev critical radius vs. wall heat flux
11
0 10 20 30 40 50 60 70 80 90
0 100 200 300 400 500
Tw(K)
qw
(W/
cm2) Semenic (2007) Present Work
0 10 20 30 40 50 60 70 80 90
0 100 200 300 400 500
(K)
qw(W/cm2) 14500
14700 14900 15100 15300 15500 15700 15900
14500 14700 14900 15100 15300 15500 15700 15900
0 100 200 300 400 500 600 700 800 900 Pv(Pa) Pl(Pa)
z m)
P
lP
v050100150200250300
0 200 400 600 800 1000 1200
R(m)
qw(W/cm2)
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
50 . 300 .
12
- 2 1
] [ 6 .
12
. 80
50
275 300
)
( 95
80
.
- 5
.
. ]
[ 16 .
.
Fig.12 Thermal performance of the wick with 50 and 300 micron characteristic pore sizes
12 50
300 - 6
m) d ( m) D ) ER ( m
ET (kgm
-2s
-1) G
) h kJkg
-1( ) k Wm
-1K
-1(
) P ( Pa ) q Wcm
-2( ) R ( m
Re ) T
( K ) v ms
-1(
Y
nm) z
) WKm
-3(
) ( K
(m
2)
) kgm
-1s
-1(
) kgm
-3( ) Nm
-1(
cond eff evap l n S v w
- 7
[1] B. Soleimani, A. Keshavarz Valian, T. Malek Pour, Experimental investigation of velocity and roughness effects on subcooled flow boiling, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 327-334, 2015 (in Persian ).
[2] R. Ahmadi, T. Okawa, Observation of bubble dynamics during subcooled flow boiling on different surface wettability in atmospheric pressure, Modares Mechanical Engineering, Vol. 15, No.7, pp. 313-320, 2015 (in Persian ).
[3] H. F. O'Hanley, Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces, PhD Thesis, Massachusetts Institute of Technology, 2012.
0 10 20 30 40 50 60 70 80 90 100
0 100 200 300 400 500
(K)
qw(W/cm2)
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]
131
[4] P. Vityaz, S. Konev, V. Medvedev, V. Sheleg, Heat pipes with bidispersed capillary structures, Proceeding of 5th International Heat Pipe Conference, Elsevier Science Oxford, pp. 127-135, 1984 .
[5] J. Wang, I. Catton, Biporous heat pipes for high power electronic device cooling, Proceeding of seventeenth IEEE symposium, pp. 211-218, 2001.
[6] C.-C. Yeh, C.-N. Chen, Y.-M. Chen, Heat transfer analysis of a loop heat pipe with biporous wicks, International Journal of Heat and Mass Transfer, Vol. 52, No. 19, pp. 4426-4434, 2009.
[7] D. oso, M.-C. Lu, J.-Y. Chang, A. Majumdar, V. Srinivasan, Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes, Journal of Heat Transfer, Vol. 134, No. 10, pp. 101501.1- 101501.11, 2012.
[8] Z. C Liu, H. Li, B. B. Chen, J. G. Yang, W. Liu, Operational characteristics of flat type loop heat pipe with biporous wick, International Journal of Thermal Sciences, Vol. 58, pp. 180–185, 2012.
[9] S. C. Wua, D. Wangb, W.J. Lina, Y. M. Chenc, Investigating the effect of powder-mixing parameter in biporous wick manufacturing on enhancement of loop heat pipe performance, International Journal of Heat and Mass Transfer, Vol. 89, pp 460–467, 2015.
[10] B. Baliga, S. Patankar, A control volume finite-element method for two- dimensional fluid flow and heat transfer, Numerical Heat Transfer, Vol. 6, No. 3, pp. 245-261, 1983.
[11] F. A. Dullien, Porous media: fluid transport and pore structure. Second Edition, pp. 118-128, Academic press, 1991.
[12] M. Hanlon, H. Ma, Evaporation heat transfer in sintered porous media, Journal of Heat Transfer, Vol. 125, No. 4, pp. 644-652, 2003.
[13] R. Ranjan, J. Y. Murthy, S. V. Garimella, A microscale model for thin-film evaporation in capillary wick structures, International Journal of Heat and Mass Transfer, Vol. 54, No. 1, pp. 169-179, 2011.
[14] S. M. Rao, A. Balakrishnan, Analysis of pool boiling heat transfer over porous surfaces, Heat and mass transfer, Vol. 32, No. 6, pp. 463-469, 1997.
[15] T. Kaya, J. Goldak, Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe, International Journal of Heat and Mass Transfer, Vol. 49, No. 17, pp. 3211-3220, 2006.
[16] F.-C. Lin, B.-H. Liu, C.-T. Huang, Y.-M. Chen, Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure, International Journal of Heat and Mass Transfer, Vol. 54, No. 21, pp. 4621-4629, 2011.
[17] A. Vadnjal, High Heat flux Evaporator, PhD dissertation, Department of Mechanical Engineering, UCLA, 2007.
[18] S. Kovalev, S. Solovyev, O. Ovodkov, Theory of boiling heat transfer on a capillary porous surface, Proceeding of The 9th International Heat Transfer Conference, Vol.2 , pp.105-110, 1999.
[19] T. Semenic, Y.-Y. Lin, I. Catton, Thermophysical properties of biporous heat pipe evaporators, Journal of Heat Transfer, Vol. 130, No. 2, pp. 022602.1- 022602.9, 2008.
[20] T. Semenic, High Heat Flux Removal Using Biporous Heat Pipe Evaporators, PhD Thesis, UCLA, 2007.
[ Downloaded from mme.modares.ac.ir on 2023-12-09 ]