mme.modares.ac.ir
*1 2
1 -
2 -
* 3995
1394 27 :
10 :
1394
31 :
1394
.
-
. .
- .
) )
. .
)
.
Flow Resistance Analysis of Water flow in the nanochannels by using Non- equilibrium Molecular Dynamics Simulation
Younes Bakhshan
*Alireza Shadloo Jahromi
Department of Mechanical Engineering, Hormozgan University, Bandar Abbas, iran P.O.B. 3995 Bandar Abbas, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 18 July 2015 Accepted 01 September 2015 Available Online 22 September 2015
In this paper, non-equilibrium molecular dynamic simulation has been employed to study the effect of wall interfacial properties and temperature of system on the hydrodynamics and heat transfer of water molecules in nanochannel. The charges and Lennard-Jones potential are used to model the interactions between particles. The external forces are applied to the mass center of every water molecule in the direction to create its flow and the thermal and hydrodynamics behavior of the water molecules was then analyzed. To construct the wall pore model, two silicon solid surfaces were used and the temperature of system was controlled by utilizing Nose-Hoover thermostat. The interaction strength ) between wall atoms and water's oxygen atoms were adjusted to indicate different surface wettability or wall–fluid interaction. The higher value of ) causes the higher hydrophilic wall interface. The simulation results showed that the interaction strength ( ) and temperature of system are important in determining the nanorheology of the nanochannel and flow resistance of the confined water. The drag resistance at the solid–fluid interface will increase with increasing the hydrophilicity of walls ) Also, the heat dissipation of system will increase with increasing the drag resistance at the solid–fluid interface and as result, the heat flux of system will decrease.
Keywords:
Molecular Dynamics Nano-Channel Water Molecule Friction
Non-Equilibrium
1 -
-
1
.
- _
1- Nanochannels
. .
.
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
. .
. .
. .
. .
.
.
-
. ]
1 - 6 [
- .
1
. . ]
7 - 9 .[
.
] 11 10 [
.
1- Interaction
.
] 12
] [
13 [
] 14 [ .
] 15 .[
] 16 [ - . -
6 - 12
- 6
- 9 -
] 17 [
. .
] 18 [
-
] 19 [ .
.
] 20 [
.
] 21 [ .
2
_
3.
2- Quartz 3- Cooper
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
.
] 22 [ .
.
] 23 .[
.
. ] 24 .[
. .
. .
2 - .
.
.
.
(9nm ×
8nm × 8nm)
) 15000
( .
- .
-
1
.
1 Kcal mol 2 Kcal mol
23.5 Kcal mol
.
935 954 987
1
1
1- Non Equilibrium Molecular Dynamics 2- Case-
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
. .
1
.
5ns 1fs
2
.
] 25 [
-
.
]
326 [
.
] 20 .[
.
-
. -
) 1 (
] 28 27 :[
) 1 (
= 4 +
,
W
-
.
.
) (
) ( + 8.99 × 10
. .
= = 3
= 2.5
.
-
) 2 ( ]
28 :[
) 2 (
= 4
Si
. W
1- minimization
2- Periodic Boundary Condition 3- LAMMPS
4
- ] 28
) [
3 ) ( 4 (
) 3 (
=
) 4 (
= +
2 . O-H
) O-H
5 (
) 5 (
= 2 ( )
O-H
) 6 (
) 6 (
= 2 ( )
SPC/E
2 .
1
] 27 - 29 [ :
) .
7 (
) 7 (
= 1
1
K cal
1533
mol/0
K cal
0
mol166 /3 058
Å/2
8476 /0 - 4238
/0
K cal
1000
mol.K cal
1000
mol.1 47
deg/ 109
gram
9994
mol/ 15
gram
008
mol/1
K cal
23
mol/0
K cal
8264
mol/3
2
4- Lorentz–Berthlot
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
3
.
3 × 3
. 6
3
x . , ,
.
1) 8 (
2
-
) 8 (
= 3 (0). ( ) .
.
3. .
.
) (
] 30 [ .
mass = 10 × mass
.
] 13 .[
. -
. ]
31 [ .
4
1- Thermal conductivity (K) 2- Green- kubo
3- lattice
4- Knudsen number
) (
.
3 .
. .
. Y
. 450
.
= 3
× = 52.5 nm ×
3 nm
.
= 0.1 Kcal mol
.
) 9 ( ) 10 (
) 9 (
3
2 = ( )
) 10 (
( ) = 1
2
3 -
. .
5( ) =
.
( ) =
bin( )
( )
.
= 0.5
Å] 12 [ ] 20 .[
3 - 1 -
4 .
] 13 12 .[
4 . )
10 ( -
5- Bin
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
. .
- .
3 - 2 -
5 6 .
.
] 12 - 14 .[
4
5
6
. .
5 .
84k
. 252k
. .
.
. .
6 .
5 6 -
. .
1 Kcal mol 2 Kcal mol
3.5 Kcal mol
. 7
. 15
/1 -
51 /1 3/
2 .
Bin Y
U
10 10
20 20
30 30
40 40
50 50
60 60
0 0
0.0025 0.0025
0.005 0.005
0.0075 0.0075
0.01 0.01
0.0125 0.0125
0.015 0.015
0.0175 0.0175
0.02 0.02
0.0225 0.0225
0.025 0.025
T = T = T = T =
K K K K
(A/fs)o
84 252 420 588
( A )o
Bin Y 10
10
20 20
30 30
40 40
50 50
60 60
0 0
0.5 0.5
1 1
1.5 1.5
2 2
2.5 2.5
(gr/cm3 )
T = T = T = T =
84 K 252 K 420 K 588 K
( A )o
Bin Y
10 20 30 40 50 60
0 0
0.5 0.5
1 1
1.5 1.5
2 2
2.5 2.5
T = T = T =
gr/cm3
840 K 1180 K 1500 K
( A )o
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
7
0.3 nm
.
] 28 [
0.25 nm
.
0.55 nm
] 5 ] [ 12 - 14 .[
5 6 7 -
.
.
.
588 5
840 K
6 .
. 7
. -
. _
] 28 [
. . 5
6
7
1 gr cm (1000 Kg m )
.
3 - 3 -
1 2
.
4.5 Kcal mol
)
( )
. (
8
1- Tangential Force (T.F) 2- Normal Force (N.F)
7
= 1500K
8
058 /0 218 /0
38 /0 48 /0 18
/0 363 /0 573 /0 628 /0
3
. ]
32 .[
. 9
.
.
.
3- Friction Coefficient (F.C)
Bin Y 10
10
20 20
30 30
40 40
50 50
60 60
0 0
0.25 0.25
0.5 0.5
0.75 0.75
1 1
1.25 1.25
1.5 1.5
1.75 1.75
2 2
2.25 2.25
2.5 2.5
(gr/cm3 )
Case -1 Case -2 Case -3
( A )
oF
0 0
1 1
2 2
3 3
4 4
5 5
0 0
0.1 0.1
0.2 0.2
0.3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8
0.9 0.9
1 1
T .F N .F
( K cal / mol )
( K ca l / m o l . A )
o
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
9
10
10 -
. .
4 -
.
. .
.
5 -
[1] V. S. Craig, C. Neto, and D. R. Williams, Shear-dependent boundary slip in an aqueous Newtonian liquid, Phys. Rev. Lett Vol. 87, No. 5, p. 054504, 2001.
[2] M. Gad-el-hak, The Fluid Mechanics of Microdevices The Freeman Scholar Lecture, J. Fluids Eng Vol. 121, No. March, pp. 33, 1999.
[3] R. Pit, H. Hervet, and L. Léger, Direct experimental evidence of slip in hexadecane: solid interfaces, Phys. Rev. Lett Vol. 85, No. 5, pp. 980–983, 2000.
[4] T. R. Bewley, K. Sharp, R. J. Adrian, J. G. Santiago, M. Gad-el-hak, W. N.
Sharpe, F. Kreith, and J. F. Kreider, The MEMS Handbook Vol. 55, No. 6, 2002.
[5] J. L. Barrat and L. Bocquet, Large slip effect at nonwetting fluid-solid interface, Phys. Rev. Lett. Vol. 82, No. 23, pp. 4671–4674, 1999.
[6] K. P. Travis, K. E. Gubbins, N. Carolina, Poiseuille flow of Lennard-Jones fluids in narrow slit pores, J. Chem. Phys Vol. 112, No. 4, pp. 1984–1994, 2000.
[7] N. V. Priezjev, A. A. Darhuber, and S. M. Troian, Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations, Phys. Rev. Stat.
Nonlinear, Soft Matter Phys Vol. 71, No. 4, 2005.
[8] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows Fundamentals and Simulation, Interdiscip. Appl. Math. Vol. 29, 2005.
[9] M. Cieplak, J. Koplik, and J. R. Banavar, Applications of statistical mechanics in subcontinuum fluid dynamics, Phys. Stat. Mech. its Appl Vol. 274, No. 1, pp. 281–293, 1999.
[10] J. Koplik, J.R. Banavar,Continuum Deductions from Molecular Hydrodynamics, Annu. Rev. Fluid Mech Vol. 27, pp. 257-292, 1995 [11] D. J. Evans and W. G. Hoover, Flow far from Equilibrium via Molecular
Dynamics,Ann Rev. Fluid Mech, pp. 243–264, 1986.
[12] S. C. Yang, Effects of surface roughness and interface wettability on nanoscale flow in nanochannel, Microfluid Nanofluidd pp. 501–511, 2006.
[13] R. Kamali and A. Kharazmi, International Journal of Thermal Sciences Molecular dynamics simulation of surface roughness effects on nanoscale fl ows, Int. J. Therm. Sci. Vol. 50, No. 3, pp. 226–232, 2011.
[14] G. Nagayama and P. Cheng, Effects of interface wettability on microscale flow by molecular dynamics simulation, Int. J. Heat Mass Transf. Vol. 47, no. 3, pp. 501–513, 2004.
[15] W. M. Zhang, G. Meng, and X. Wei, review on slip models for gas microflows, Microfluid. Nanofluidics Vol. 13, No. 6, pp. 845–882, 2012.
[16] H. Aminfar, N. Razmara, Molecular Molecular dynamics simulation of liquid argon flow in nanochannels using different potential functions,Modares Mechanical Engineerin,Vol. 13, No. 6, pp. 114-125, 2013 (In Persian) [17] B. Cao, M. Chen, Z. Guo, Effect of surface roughness on gas flow in
microchannels by molecular dynamics simulation, International Journal of Engineering Science, No 44, pp. 927–937, 2006
[18] H. Rahmatipour, A. R. Azimian, Molecular dynamics simulation of Couette flow behavior in smooth and rough nanochannels, Modares Mechanical Engineering Vol. 15, No. 7, pp. 119-130, 2015. (In Persian) [19] M. Rezaei, A. R. Azimian, D. Toghraie, Molecular dynamics study of
structural properties of electro-osmotic flow in nanochannel, Journal of Solid and Fluid Mechnics,Vol. 2, No. 4, pp. 77-91, 2012. (In Persian) [20] Y. Bakhshan, A. Shadloo jaromi, Molecular Dynamics Simulation of
Surface Specifics Effects on the nanoscale fluid flow, Modares Mechanical Engineering Vol. 15, No. 5, pp. 176-184, 2015. (In Persian)
[21] A. kucaba-pietal, Z. Walenta, Molecular dynamics computer simulation of water lows in nanochannels, Vol. 57, No. 1, pp. 55–61, 2009.
F . C
0 0
1 1
2 2
3 3
4 4
5 5
0 0
0.1 0.1
0.2 0.2
0.3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8
0.9 0.9
1 1
( K cal / mol )
J
0 0
1 1
2 2
3 3
4 4
5 5
0.0005 0.0005
0.001 0.001
0.0015 0.0015
0.002 0.002
0.0025 0.0025
0.003 0.003
( K cal / mol )
(Kcal/mol.cm3 ) Fe
Fe Fe Fe
= 0.1 ( K cal / mol. A)
= 0.3 ( K cal / mol. A)
= 0.5 ( K cal / mol. A)
= 0.8 ( K cal / mol. A)
o o o o
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]
carbon nanotube membranes, Proc. Natl. Acad. Sci. U. S. A. Vol. 100, No.
18, pp. 10175–10180, 2003.
[23] T. W. Allen, S. Kuyucak, S. H. Chung, “The effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions,” J. Chem. Phys. Vol. 111, No. 17, pp. 79–85, 1999.
[24] C. Hartnig, W. Witschel, E. Spohr, “Molecular Dynamics Study of the Structure and Dynamics of Water in Cylindrical Pores,” J. Phys. Chem. B Vol. 102, No. 7, pp. 1241–1249, 1998.
[25] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids Oxford University Press Oxford 1989.
[26] S. N. Laboratories. LAMMPS: Large scale Atomic/Molecular Massively Parallel Simulator Available: http://lammps.sandia.gov/, (version Mar 2014).
[27] G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows Fundamentals and Simulation, Interdiscip. Appl. Math. Vol. 29, 2005.
nanoconfined water in silt pores by molecular simulations: Effect of pore wall interfacial properties, Fluid Phase Equilib Vol. 362, pp. 235–
241, 2014.
[29] P. Mark, L. Nilsson, Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models the Journal of Chemical Physics Vol. 105, pp. 9954-9960, 2001
[30] P. a. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature Vol. 389, No. September, pp. 360–
362, 1997.
[31] M. Cieplak, J. Koplik, and J. R. Banavar, “Boundary conditions at fluid- solid interface,” Phys. Rev. Lett. Vol. 86, No. 5, pp. 803–806, 2001.
[32] L.Z. Zhang, S.Y. Jiang, Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111), The Journal of Chemical Physics Vol.
117, pp. 1804–1811, 2002.
[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]